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Linear Spaces

We have seen (12.1-12.3 of Apostol) that n-tuple space

v has the following properties:

n
‘Addition:
1. (Commutativity) A + B = B + A.
2. (Associativity) A + (B+C) = (A+B) + C.
3. (Existence of zero) There is an element ]
such that A + 0 = A for all A.
4. (Existence of negatives) Given A, there is a

B such that A + B = 0.
Scalar multiplication:
5. (Associativity) c¢(dA) = (cd)A.
6. (Distributivity) (c+d)A = cA + dA,
c(A+B) = cA + cB.
7. (Multiplication by unity) 1A = A,

Definition. More generally, let V be any set of objects

(which we call vectors). And suppose there are two operatiohs on
V, as follows: The first is an operation (denoted +) that
assigns to each pair A, B of vectors, a vector denoted A + B.
The second is an operation that assigns to each real number c¢
and each vector A, a vector-denoted cA. Suppose also that the

seven preceding properties hold. Then V, with these two opera-

tions, is called a linear space (or a vector space). The seven

properties are called the axioms for a linear space.
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There are many examples of linear spaces besides n-tuple space Vn .
The study of linear spaces and their properties is dealt with in a subject called
Linear Algebra. We shall treat only those aspects of linear algebra needed
for calculus. Therefore we will be concerned only with n-tuple space
Vn and with certain of its subsets called "linear subspaces" :

Definition. Iet W be a non-empty subset of Vn ; Suppose W

is closed under vector addition and scalar multiplication. Then W is

called a linear subspace of Vn~ (or sometimes simply a subspace of Vn .)
To say W is closed under vector addition and scalar multiplication
means that for every pair A, B of vectors of W, and every scalar c,
the vectors A + B anrd cA belong to W. Note that it is automatic that
the zero vector 0 belongs to W, since for any A in W, we have 0 = OA.
Furthermore, for each A in W, the vector -A is also in W. This means
(as you can readily check) that W is a 1linear space in its own right (i.e.,
it satisfies all the axioms for a linear space).

Subspaces of Vn mey be specified in many different ways, as we shall

see.

Example 1. The subset of Vn consisting of the O0-tuple
alone is a subspace of Vn; it is the "smallest possible" sub-
space. And of course Y is by definition a subspace of Vi
it is the "largest possible" subspace.

Example 2. Let A be a fixed non-zero vector. The subset of Vn
consisting of all vectors X of the form X = cA is a subspace of Vi
It is called the subspace spanned by A, In ﬁhe case n =2 or 3, it can

be pictured as consisting of all vectors lying on a line through the origin.
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Example 3. Let A and B be given non-zero vectors that are not

parallel. The subset of Vn consisting of all vectors of the form

X=cA + dB

is a subspace of Vn' It is called the subspace spanned by‘ A and B.

In the case n = 3, it can be pictured as consisting of all vectors lying

in the plane through the origin that contains A and B.

We generalize the construction given in the preceding

examples as follows:

Definition. Let S = §A1, ey Ag} be a set of vectors in Vn .

A vector X of Vn of the form

X = clA1 + ... F CkAk

is called a linear combination of the vectors Al""'Ak . The set W of
all such vectors X 1is a subspace of Vn’ as we will see; it is said to be

the subspace spanned by the vectors Al,...,Ak . It is also called the

linear span of Al,}..,Ak and denoted by L(S).

Let us show that W 1is a subspace of Ve If X and Y
belong to W, then
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X = clAl + eee 4 ckAk and Y = dlAl + e 4 dk "

for some scalars cy and di' We compute

X.+Y = (cl+dl)Al + e 4 (ck+dk)Ak,

axX

(acl)Al + e + (ack)Akl

so both X + Y and aX belong to W by definition. Thus W

is a subspace of V.

Giving a spanning set for W is one standard way of specifying W.
Different spanning sets can of course give the same subspace. Fcr example,
it is intuitively clear that, for the plane through the origin in Example 3,
any two non-zero vectors C and D that are not parallel and lie in this

plane will span it. We shall give a proof of this fact shortly.

Example 4. The n-tuple space Vn has a natural spanning set,

namely the vectors

‘El = (1,0,0,...,0),
E, = (0,1,0,...,0),
E . = (0,0,0,...,1). ’

These are often called the unit coordinate vectors in Vn' It

is easy to see that they span V for if - X = (xl,...,xn) is

nl

an element of Vn’ then

X = xlEl + e + XnEn'
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In the case where n =2, we often denote the unit
coordinate vectors El and E, in v, by I and ;,
respectively. In the case where n = 3, we often denote El,
E2, and- E3 by I, 3, and k respectively. They are pic-

tured as in the accompanying figure.
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Example 5. The subset W of V3 consisting of all vectors of
" the form (a,b,0) is a subspace of V3. For if X and vy
are 3-tuples whose third component is 0, so are X + Y and

cX. It is easy to see that W 1is the linear span of (1,0,0)

and (0,1,0).

Example 6. The subset of Vs consisting of all vectors of the
form X = (3a+2b,a-b,a+7b) 1is a subspéce of V3. It consists

of all vectors of the form

X =a(3,1,1) + b(2,-1,7),

B

so it is the linear span of (3,1,1) and (2,-1,7).

Example 7. The set W of all tuples (xl,xz,x3,x4) such that

3x1 - X, + 5x, + X = 0
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is a subspace of V, , as you can check. Solving this equation for x we see

q !
that a 4-tuple belongs to W if and only if it has the form

X '= (xl, Xor Xgs —3x1 + X, - 5x3),

where X, ar:d Xy and Xy are arbitrary. This element can be written in the form

X = xl(l,0,0,—B) + xz(O,l,O,l) + x3(0,0,l,—5).

It follows that (1,0,0,-3) and (0,1,0,1) and (0,0,1,-5) span W.

Exercises

1. Show that the subset of V., specified in Example 5 is a subspace

3

of V3. Do the same for the subset of V specified in Example 7. What can

a
you say about the set of all (kl,...,xn) such that a;x; + ...+ ax = 0

in genéral?l (Here we assume A = (al,...,an) is not the zerc vector.) Can you
give a geometric interpretation?

2. In each of the following, let W denote the set of
all vectors (x,y,z) 1in V3 satisfying the condition given.
(Here we use (x,y,z) instead of (xl,xz,x3) for the general
element of V3.) Determine whether W is a subspace of V3.

If it is, draw a picture of it or describe it geometrically,

and find a spanning set for W.

(a) x = 0. (e) X =Y or 2xX = zZ.
(b) x +y = 0. (£) <2 - Y2 =0
= 2
(c) x + vy 1. (g) <% y< = 0.
(d) x =y and 2x = z

3. Consider the set F of all real-valued functions

defined on the interval [a,b].
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(a) Show that F is a linear space if f + g
denotes the usual sum of functions and c<f denotes the usual
product of a function by a real number. What is the zero
vector?

(b) Which of the following are subspaces of F?

(i) All continuous functions.
(ii) All integrable functions.
(iii) All piecewisefmonotonic functions.
(iv) All differentiable functions.
(v) All functions £ such that f(a) = 0.

(vi) All polynomial functions.

Linear independence

Definition. We say that the set S = {Al,...,Ak} of vectors of vy

spans the vector X if X belongs to L(S), that is, if

X = clA1 + ..+ CkAk

for some scalars Cye If S srans the vector X, we say that S spans X

uniquely if the equations

Kk
X = :E: C.A, and X = diA

[re
||[VX77
—

imply that c; = di for all 1i.

It is easy to check the following:

Theorem 1. Let S = ZAI,...,AKK be a set of vectors of V ; let
X be a vector in L(S). Then S spans X uniquely if and only if S sgans

the zero vector 0 uniquely.
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Proof. - Note that 0 = ‘E]OAi . This means that S spans the zero
vector uniquely if and only if the equation
implies that c; = 0 for all i.

Suppose S spans 0 uniquely. To show S spans X uniquely, suppose

kK

k
Xx= >'cA and X= S aa, .
=1 i=1

Subtracting, we see that

’

K
0 = g CHER LY
i=1

whence ci - di =0, or ci = di , for all 1.

Ceonversely, suppose S spans X uniquely. Then

X = 3 XA
i=1

for some (unique) scalars X; . Now if

k
R
i=1
it follows that
k
X = X+0 = El (x; +c;)a; .

Since S spans X uniquely, we must have X; =X +tcp o, 0r ¢y = 0, for all 1i.
This theorem implies that if S spans one vector of L(S) uniquely,

then it spans the zero vector uniquely, whence it spans every vector of L(S)

uniqUely. This condition is important enough to be given a special name:

Definition. The set S = ZAI,...,AK‘} of vectors of Vn is said to

be linearly independent (or simply, independent) if it spans the zero vector

uniquely. The vectors themselves are also said to be independent in this
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situation.

If a set is not independent, it is said to be dependent.

Example 8. If a suﬁset T of a set S 1is dependent, then S itself
is dependent. For if T spans 0 ncn-trivially, so does S. (Just add on the
additional vectors with zero coefficients.)

This statement is equivalent to the statement that if S 1is independent,
then so is any subset of S. |

Example 9. Any set containing the zero vector 0 1is dependent. For

example, if S = {Al"'°'A£§ and Al = 0, then

0 = 1A, + OA2 L OAk .

1

Example 10. The unit coordinate vectors EjreeesBy in V, span 0

uniquely, so they are independent.
Example 11. Let S = gAl,...,Aﬁﬁ . If the vectors Ai are non-zero

and mutually orthogonal, then S 1is independent. For suppose
K

0 = ZciAi.

i=1

Taking the dot product of both sides of this equation with A1 gives the equation

(since A;’A; =0 for i #1). Now A, # 0 by hypothesis, whence A "A # 0,

whence ci = 0. Similarly, taking the dot product with Ai’ for the fixed index

j shows that cj = 0.
Scmetimes it is convenient to replace the vectors Ai by the vectors

By = Ai/UAiH . Then the vectors B.,...,B_ are of unit length and are mutually

I

orthogonal. Such a set of vectors is called an orthonormal set. The coordinate

k

vectors El""’En form such a set.

Example 12. A set ccnsisting of a single vector i is independent
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if A #0. A set consisting of two non-zero vectors A,B is independent if and
only if the vectors are not parallel. More generally, one has the following reéult:
Theorem 2. The set S = {Al,...,Ak3 is independent if and only if none

of the vectors Aj can be written as a linear combination of the others.

Proof. Suppose first that one of the vectors equals a linear

combination of the others. For instance, suppose that

.

5 T TP B

then the following non-trivial linear combination equals zero:

A, - c,A, - ce. = ckAk = 0.

1 272

Conversely, if

CiAp * CoAy + vee + CBx = 0.

where not all the C; are equal to zero, we can choose m so

that Sn # 0, and obtain the equation

Am = -(cl/cm)Al - e = (ck/cm)Ak'

where the sum on the right extends over all indices different

from m. a

Given a subspace W of V,r there is a very important relation that

holds between spanning sets for W and independent sets in W :
Theorem 3. Let W be a subspace of v, that is spanned by the k

vectors Al""’Ak . Then any independent set of vectors in W contains at most

k wvectors.
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Proof. Let EBI,...,BQE be a set of vectors of W; 1let m> k. We

wish to show that these vectors are dependent. That is, we wish to find

scalars xl,...,xm , nct all zero, such that

m
DAL
j=1

Since each vector Bj belongs to W, we can write it as a linear combination of
the vectors Ai . We do so, using a "double-indexing" notation for the coefficents,

as follows:

B, = a,, A, + aj,A, + ... + aijk .

Multiplying the equation by Xj and summing over j, and collecting terms, we

have the equation
n

m m
jz%ijj = (;gl gialj)Al + (jéa XjaZj)AZ & (;Ea Xjakj)Ak .
In order for i:Xij to equal 0 , it will suffice if we can choose the xj
so that coefficient of each vector Ai in this equation equals 0. Ncw the
numbers aij are given, so that finding the Xj is just a matter of solving a
(homogeneous) system consisting of k equations in m unknowns. Since m> k,
there are more unknowns than equations. in this case the system always has a non-trivial
solution X (i.e., one different from the zerc vector). This is a standard fact
about linear equations, which we now prove. [

First, we need a definition.

Definition. Given a homogeneous system of linear equations, as in (*)
following, a solution of the system is a vector (Xl""’xn) thaﬁ satisfies

each equation of the system. The set of all solutions is a linear subspace of

Vn (as you can check). It is called the solution space of the system.
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It is easy to see that the solution set is a subspace. If we let

A, = a, A, 4 eeey Q.
b (Jl' J, ! Jn)

be the n-tuple whose components are the coefficerts appearing in the

jth equation of the system, then the solution set consists of those X

such that AJ.-X=O for all _] If X and Y are two solutions, then

A, (X+Y) = A.'X + A.'Y =
J( ) 4 JY 0

and -
A, (cX) = c(AJ.'X) = 0

Thus X +Y and cX are also solutions, as claimed.

Theorem¥, Given a homogeneous system of k linear equations
in n unknowns. 1If k is less than n, then the solution space con-
tains some vector other than 0.

Proof.. We are concerned here only with proving the existence of some
solution other than 0, not with actually finding such a solution in practice,
nor with finding all possible solutions. (We will study the practical prob-
lem in much greater detail in a later section.)

We start with a system of k equations in n unknowns:

anty + a1ts + - - - A A1t = 0,

AnTt + @a9Ty + ¢ - ¢ F AgaTa = 0,

(*)

ATy + Arets + ¢ - -+ Grata = 0.

Our procedure will be to reduce the size of this system step-by-step by
eliminating first xy, then z,, and so on. After k — 1 steps, we will be re-
duced to solving just one equation and this will be easy. But a certain
amount of carc is nceded in the description—for instance, if ayy = - . . =
an = 0, it is nonsense to speak of “eliminating” z,, since all its coeffi-
cients are zero. We have to allow for this possibility.

To begin then, if all the cocflicients of z, are zero, you may verify that
the vector (1, 0, ...,0)is asolution of the system which is different from
0, and you are done. Otherwise, at least one of the coefficients of 7y is
nonzero, and we may suppose for convenience that the equations have
been arranged so that this happens in the first equation, with the result
that ay £ 0. We multiply the first cquation by the scalar as/ay and then
subtract it from the sccond, eliminating the z;-term from the second
equation. Similarly, we eliminate the z,-term in each of the remaining
equations. 'The result is a new system of linear equations of the form
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(**) an®t+ aprs+ - - - + apx, =0,

baaTa + + - - + bop¥a = 0,

6&212 + -+ bknxn = 0.

Now any solution of this new system of equations is also a solution of the
old system (), because we can recover the old system from the new one: -

we merely multiply the first equation of the system (*+) by the same
scalars we used before, and then we add it to the corresponding later
equations of this system.

The crucial thing about what we have done is contained in the following
statement: 1f the smaller system enclosed in the box above has a solution
other than the zero vector, then the larger system (+#) also has a solution
other than the zcro vector [so that the original system (*) we started
with has a solution other than the zcro vector]. We prove this as follows:
Suppose (({2, Cee, d,,) is a solution of the smaller system, different from
((), ..., 0). We substitute into the first equation and solve for zy, thereby
obtaining the following vector,

((—‘1/(111)((lndz + o anda), ds, ... d,.),

which you may verify is a solution of the larger system (s+).

In this way we have reduced the size of our problem; we now need only
to prove our theorem for a system of k — 1 equationsin 7 — 1 unknowns.
If we apply this reduction a sccond time, we reduce the problem to prov-
ing the theorem for a system of & — 2 cquationsin n — 2 unknowns. Con-
tinuing in this way, after & — 1 elimination steps in all, we will be down
to a system consisting of only one equation, inn — k 4+ 1 unknowns. Now
n —k 41> 2 because we assumed as our hypothesis that n > k; thus
our problem reduces to proving the following statement: a “system” con-
sisting of one linear homogeneous equation in two or more unknowns always
has a solution other than 0.

We leave it to you to show that this statement holds. (Be sure you
ccnsider the case where one or more or all of the coefficents are zero.) ([

_ QX'amgle 13. We have already noted that the vectors El’ .. .,En Span all
of Vn' It follows, for example, that any three vectors in V2 are dependent,
that is, one of them equals a linear combination of the others. The same holds

for any four vectors in V3. The accompanying picture makes these facts plausible.
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Similarly, since the vectors El""’En are independent, any spanning

set of Vn must contain at least n vectors. Thus no two vectors can span V3,

and no set of three vectors can span V4.

Theorem 5. Let W be a subspace of Vn that does not consist of

0 alone. Then:
(a) The space W has a linearly independent spanning set.

(b) Any two linearly independent spanning sets for W have the same

>
number k of elementgj k<n unless W 1is all of Vn'

Proof. (a) Chroose A #0 in W. Then the set {Ai& is independent.
In general, suppose iAl,...,A£§ is an independent set of vectors of W. If
this set spans W, we are finished. Otherwise, we can choose a vector Ai+1
of W that is not in L(Al""'Ai)' Then the set iAl""'Ai'Ai+£} is

indepehdent: For suppose that

c]Al + ...+ CiAi + ci+lAi+1 = 0

for some scalars ci not all zero. If c,

141 = 0, this equation contradicts

independerce of ZAI,...,Ai} , while if i1 # 0, we can solve this equation

for Ai+1’ contradicting the fact that Ai

+1 does not belong to L(Al”"’Ai)'

Continuing the process just described, we can find larger and larger
independent sets of vectors in W. The process stops only when the set we obtain

spans W. Dces it ever stop? Yes, for W is contained in Vn'- ard Vn contains



AlS5

no more than n independent vectors. So the process cannot be repeated
indefinitely! |
(k) Suppose S = gAl""’AkE and T = {Bl,...,Bj} are two
linearly independent spanning sets for W. Because S 1is independent and T
spans W, we must have k< j , by the preceding theorem. Because S spans
W and T 1is independent, we must have k> j. Thus k = j.
Now Vn contains no more than n independent vectors; therefore we
must have k £ n. Suppose that W 1is not all of Vn' Then we can chooee
a vector Ak+1 of Vn that is not in W. By the argument just given, the |
set zAl""’Ak’Ak+l} is independent. It follows that k+1 < n, sc that k< n. [}
Definition. Given a subspace W of V, that does not consist of 0
alone, it has a linearly independent spanning set. Any such set is called a
basis for W, and the number of elements in this set is called the dimension of W.
We make the convention that if W consists of 0 alone, then the dimension of
W 1is zero.
Example 14. The space ‘Vn has a "natural" basis consisting of the

vectors E .,En . It follows that Vn has dimension n. (Surprise!) There

17"

are many other bases for Vn" For instance, the vectors

h
]

1 = (1,0,0,...,0)

>
]

2' (l,l,o,...,O)

e
|

(L,1,1,...,0)

A
n

]

(1,1,1,...,1)

form a basis for Vn, as you can check.
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Exercises

1. Consider the subspaces of V3 listed in Exercise 2, p. A6. Find bases for
each of these subspaces, and fird épanning sets for them that are not bases;

2. Check the details of Example 14.

3. Suppose W has dimension k. (a) Show that any independent set in
W consisting of k vectors spans W. (b) Show that any spanning set for W
consisting of k vectors is independent.

4. Let S = ZAI,...,AmE be a spanning set for W. Show that S
contains a basis for W. [giggz Use the argument of Theorem 5. ]

5. Let gAi""’Akl be an independent set in V, - Show that this

set can be exténded to a basis for Vn . [Hint: Use the argument of Theorem 5.]

6. If V and W are subspaces of Vn and Vk' respectively, a

function T : V =5 W 1is called a linear transformation if it satisfes the usual

linearity properties: ‘
T(X +Y) = T(X) + T(Y),
T(cX) = cT(X).
If T is one-to-one and carries V onto W, it is called & 1linear.
isomorphism of vector spaces.
.«:B

Stippose Al""’Ak is a basis for V; 1let B be arbitrary

1" Kk
veétors of W. (a) Show there exists a linear transformation T : V —>v¢
such that T(Ai) = Bi fcr all i. (b) Show this linear transformationbis unique.
7. Let W be a subspace of Vi let 'Al,...,Ak be a basis for W.
Let X, Y be vectors of W. Then X=3$xA, and Y =¢ y;A; for unique
scalars Xy and yi. These scalars are called the components of X and Y,
respectively, relative to the basis Al""’Ak’
(2) Note thatv X+Y =£(xi+ yi)Ai and X =£ (c:xi)Ai . Conclude
that the function T : V. —5 W defimed by T(x),...,x) = z‘ xA; is a

linear isomorphism .
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(k) Suppose that the basis A]""'Ak is an orthonormal basis. Show

that X'Y =‘z:xiyi - Conclude that the isomorphism T of (a) preserves the

dot product, that is, T(X)'T(Y) = X-y .
8. Prove the following: aﬁ'?'dgzgfeéhhﬂu””“"”“
Theorem. If W is a subspaceiof Vh, then W has an orthonormal basis.

Froof. Step 1. Ilet Bl""’Bm be mutually orthogonal non-zero vectors

in Vn : let Am+1 be a vector ngt in L(Bl,...,Bm). Given scalars

cl,...,cm r  let

Bm+1 = Am+1 + clB1 + ... F cmBm .

Show tha§ Bp+y 1 different from 0 and that L(Bl,...,Bm, m+1)
L(Bl""’ L m+1)” Then show that the c; may be so chosen that Bm+1 is

orthogonal to each of ByeotyBpy .
Step 2. Show that if W 1is a subspace of v, of positive dimension,
then W has a basis consisting of vectors that are mutually orthogonal.

[Hint: Proceed by induction on the dimension of W.]

Step 3. Prove the theorem.

Gauss—Jordan elimination

.

If W is a subspace of Vn’ specified by giving a spanning set for
W, we have at present no constructive process for determining the dimension
of W nor of finding a basis for W, although we know these exist. There

is a simple procedure for carrying out this process; we describe it now.

Definition. The rectangular array of numbers

11 %12 e+ 2y,
a a PP a
A = 21 22 2n
| %kl k2 e ®kn |
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is called a matrix of size k by n. The number aij is

called the entry of A in the iEﬁ row and jEE column.

Suppose we let Ai be the vector

A = (a,

—e

[

—
~

for i=1,...k. Then Ai is just the ith row of the matrix A. The
subspace of V= spanned by the vectors 'Al,...,Ak is called the row space
of the matrix A.
We: now describe a procedure for determining the dimension of this space.

It involves applying operations to the matrix A, of the following types:
(1) 1Interchange two rows of A.
(2) Replace row i of A by itself plus a scalar multiple of another row,

say row m.

(3) Multiply row i of A by a non-zero scalar.

These operations are called theelcmentary row operations. Their usefulness comes

from the following fact:

Theorem 6. Suppose B is the matrix obtained by applying a sequence
of elementary row operations to A,successively. Then the row spaces of
A and. B are the same.

Proof. It suffices to consider the case where B is obtained by
applying a single row operation to A. Let Al,...,Ak be the rows of A,

and let Bl""'B be the rows of B.

k
If the operation is of type (1), these two sets of vectors are the

same (only their order is changed), so the spaces they span are the same.

If the operation is of type (2), then

B, =cA, and B, = A, for j #1i.

i i j 3
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Clearly, any linear combination of Bl""’Bk can be written as a linear

combination of Ai""'Ak' Because c # 0, the converse is also true.

Finally, suppose the operation is of type (2). Then

Bi = Ai + dAm ard Bj = Aj “for j £ i.

Again, any linear combination of Bl""’B can be written as a linear

k

combination of Al""’Ak' Because

i dAm = Bi - dBm ’

A.=Bj f()r j?{i’

and

the converse is also true. []
The Gauss-Jordan procedure consists of applying elementary row operations
~to the matrix A until it is brought into a form where the dimension of its

row space is obvious. It is the following:

Gauss—Jordan elimination. Examine the first column of your matrix.

(I) If this column consists entirely of zeros, nothing needs to be
done. Restrict your attention now to the matrix obtained by deleting the
first column, and begin again.

. (II} If this column has a non-zero entry, exchange rows if necessary
to bring it to the top row. Then add multiplesof the top row to the lower
rows so as to make all remaining entries in the first column into zeros.

Restrict your attention now to the matrix obtained by deleting the first

colum and first row, and begin again.

The procedure stops when the matrix remaining has only one row.

Let us illustrate the pfocedure with an example.



2 5 4 -10 4

~

Sclution. First step. Alternative (I) applies. Exchange rows (1)
and (2), obtainihg

— -

1 -2 0 9 -1

Replace row (3) by row (3) + row (l); then replace (4) by (4) + 2 times (1).

(@]
—
NAN
[
N

0O |1 4

@
[\

‘—

Second step. Restrict attention to the matrix in the box. (II) applies.

Replace row (4) by row (4) - row (2) , oktaining

Third step. Restrict attention to the matrix in the box. (I) applies,

so nothing'needs be done. One obtains the matrix



Fourth step. Restrict attention to the matrix in the box. (II) applies.

Replace row (4) by row (4) - %—row (3) , obtaining

2 0 9 -1]
ol@® 4 1 2
B = ,
' o 0 o0 0
0o 0 0 o0 o]
.

The procedure is now finished. The matrix B we end up with is in what is called
echelon or "stair-step"form. The entries beneath the steps are zero. And

the entries -1, 1, and 3 that appear at the "inside corners" of the stairsteps

are non-zero. These entries that appear at the "inside corners" of‘the stairsteps
are often called the pivots in the echelon form.

You can check readily that the non-zero rows of the matrix B are
independent. (We shall prove this fact later.) It follows that thevnon—zero rows
of the matrix B form a basis for the row space of B, and hence a basis for
the row space of the original matrix A. Thus this row space has dimension 3.

The same result holds in general. If by elementary operations you
reduce the matrix A to the echelon form B, then the non-zero rows are B
are independent, so they form a basis for the row space of B, and hence a

bzsis for the row space of A.

Now we discuss how one can continue to apply elementary operations to

reduce the matrix B to an even nicer form. The procedure is this:
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Begin by considering the last non-zero row. By adding multiples of this row
to each row above it, one can bring the matrix to the form where each entry 1ying
above the pivot in this row is zero. Then continue the process, Wofking now
with the next-to-last non-zero row. Because all the entries above the last
pivot are already zero, they remain zero as you add multiples of the next-to-
last non-zero row to the rows above it. Similarly one continues. Eventually
the matrix reaches the form where all the entries that are directly above the
pivots are zero. (Note that the stairsteps do not change during this process,
nor do the pivots themselves.) | |

Applying this procedure in the example considered earlier, one brings

the matrix B into the form

o 0 013 O

0 o0 o o0 O
Note that up to this point in the reduction process , we have used only
elementary row operations of types (1) and (2). It has not been necessary to
multiply a row by a non-zero scalar. This fact will Be important later on.
We are not yet finished. The final step is to multiply each non-zero
row by an appropriate non-zero scalar, chosen so as to make thé pivot entry

into 1. This we can do, because the pivots are non-zero. At the end of

this process, the matrix is in what is called reduced echelon form. g

The reduced echelon form of the matrix C above is the matrix

1 0 -8 0 -3

oj1 4 0 2




A23

As we have indicated, the importance of this process comes from the

following theorem:

Theorem 7. Let A be a matrix; let W be its row space. Suppose
we transform A by elementary row operations into the -echelon matrix B,
or into the reduced echelon matrix D. Then the non-zero rows of B
are a basis for W, ard sb are the non-zero rows of D.

Proof. The rows of B span W, as we noted before; and so do the
rows of D. It is easy to see that no non-trivial linear combination of the
non-zero rows of D equals the zero vector , because each of these rows
has an entry of 1 1in a position where the others all have entries of 0.
Thus the dimension of W equals the number r of non-zero fows of D.

This is the same as the number of non-zero rows of B . If the rows of B
were not independent, then one would equal a linear combination of the others.
This would imply that the row space of B could be spanned by fewer than

r rows, which would imply that its dimension is less than r.

Exercises

1. Find bases for the row spaces of the following matrices:

1 S
A= (2 -1 4 D =
- l 1 =1
3 2 1]
B= 1|5 3
1 1 _i 1 -2 1 2
- = E = 2 3 -1 =5
B T4 =1 1 -1
c=g§§ s -3 2 1
_7 4 5
2. Reduce the matrices in Exercise 1 to reduced echelon form.

ot vppat anaireie fot faToyiise)



*3. Prove the following:

Theorem. The reduced echelon form of a matrix is unique.
Proof. Let D and D' be two reduced echelon matrices, whose

rows span the same subspgce W of Vn' We show that D = D'.

Let Rl""’Rk be the non-zero rows of D ; and suppose that the
pivots (first non-zero entries) in these rows occur in columns jl,...,jk '
respectively.

(a) Show that the pivots of D' occur in the columns jl""’jk'
(Hint: Tet R be a row of D'; suppose its pivot occurs in column p. We
have R = clRl ool + ckRk for some scalars cy - (Why?) Show that

c; = 0 if ji'< p. Derive a contradiction if p is not equal to any of

jllo--’jk o]
(b) If R 1is a row of D' whose pivot occurs in columr.. jm » show

that R = Rm' [Hint: We have R = clR1 + .. + ckRk for some scalars ci

Show that c; = 0 for i # m, and Cp = 1.]

A24
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Parametric equations of lines and planes in Vn

Given n-tuples P and A, with A # 0, the line

through P determined by A 1is defined to be the set of all

points X such that

(*) X =P + tA
for some scalar t. It is denoted by
L(P;A). The vector A 1is called a direction vector for the

line. Note that if P =0, then L 1is simply the l-dimensional subspace

of Vn spanned by A.

The equation (*) is often called a parametric equation

for the line, and t 1is called the parameter in this equation.

As t ranges over all real numbers, the corresponding point X

0, then X = P; when

ranges over all points of the line L. When ¢t
t =1, then X=P +A; when t=12%, then X =P + %A; and so on. All
these are points of L.

Occasionally, one writesthe vector equation out in scalar

form as follows:

xl = pl + tal
x2 = p2 + ta2

X, =p, * ta
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where P = (pl,...,pn) and A = (al,...,an). These are called

the scalar parametric equations for the line.

Of course, there is no uniqueness here; a given line can
be represented by many different parametric equations. The

following theorem makes this result precise:

Theorem 8. The lines L(P;A) and L(Q;B) are egual‘if

and only if they have a point in common and A is parallel to B.

Proof. If L(P;A) = L(Q;B), then the lines obviously have a point
in common. Since P and P + A lie on the first line they also lie on

the second line, so that

P=Q+ tlB and P +A=0Q + tzB

for distinct scalars t1 and tz. ‘Subtracting, we have A = (tz'tl)B’ so

A 1is parallel to B.
Conversely, suppose the lines intersect in a point R, and suppose

A and B are parallel. We are given that -

P + tlA = R = Q + tZB

for some scalars tl ard t2,

solve these equations for P in terms of Q and B:

and that A =cB for some c # 0. We can

P = Q+ tZB - tlA = Q + (tz-th}B.

Now, given any point X = P + tA of the line L(P;A), we can write

X = P+ tA Q + (tz—t c)B + tcB.

1
Thus X belonés to the line L(Q;B).

Thus every point of L(P;A) belongs to L(Q;B). The
symmetry of the argument shows that the reverse holds as well. O

Definition. It follows from the preceding theorem that

given a line, its direction vector is uniquely determined up to

4 non-zero scalar multiple. We define two lines to be parallel
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if their direction vectors are parallel.

Corollary 9. Distinct parallel lines cannot intersect,
Corollary 10. . Given a line L and a point Q, there is

exactly one line containing Q that is parallel to L.

Proof. Suppose L 1is the line L(P;A). Then the line
L(Q;A) contains Q and is parallel to L. By Theorem 8, any
other line containing Q and parallel to L 1is equal to this
one. 0O

Theorem 1l. Given two distinct points P and Q,

there is exactly one line containing them.

Proof. Let A =Q - P; then A # 0. The line L(P;A)
contains both P (since P =P + 0A) and Q (since
Q=P + lA).

Now suppose L(R;B) is some other line containing P

and Q. Then

v
|

= R + t.B,

©
I

2

for,distinct scalars tl and t2. It follows that
Q - P = (tz"tl)B,

so that the vector A = Q - P 1is parallel to B. It follows

from Theorem'a‘that

L(R;B) = L(P;A). O

Now we' study planes in U~



Definition. If p jsg a point of V, and if A ang

B are independent vectors of Vn’ we define the plane through

P determined by A and B to be the set of all points X of

the form
(*) X =P + sA + tB,

where s and t run through all real numbers. We denote this
plane by M(P;A,B).
The equation (*) isg called a parametric équation for the

plane, and s ang t are called the parameters in this egua-

tion. It may be written out as n scalar equations, if desired.

When s = ¢ 0, then X = p; when s =1 and t = O, then X =P + A; when

1]

]
1]

S =0 and ¢t l, then X =7p + B; and so on.

Ncte that if p =0, then this plane is just the 2-dimensional subspace

of Vn spanned: by A and B.

Just as for lines, a plane has many different parametric
representations. More Precisely, one has the following theorem:

Theorem 12, The planes M(P;A,B) and M(Q;C,D) are

eéqual if and only if they have 2 point in common and the linear

span of A and B equals the linear span of C and D.

Proof. 1If the planes are equal, they obviously have a
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point in common. Furthermore, since P and P + A ard P + B all lie

on the first plane, they lie on the second plane as well. Then

P=Q + s,C + t,D,
P+ é =Q+ s,C + tzD,
P+B=0Q + S54C + t4D,

are some scalars s, ard ti' Subtracting, we see that

A = (Sz-sl)C + (tz-t )D,

1
B f (33-sl)C + (t3—tl)D.

Thus A and B 1lie in the linear span of C and D. Symmetry shows that

C and D 1lie in the linear span of A and B as well. Thus these linear

spans are the same.

Conversely, suppose that the planes intersect in a point

R and that L (A,B) = L(C,D). Then

P+ s A+t B = R = Q + s

1 1 C+¢t,D

2 2
for some scalars s; anrd ti' We can solve this equation for P as follows:
P = Q + (linear combination of A,B,C,D).

Then if X 1is any point of the first plane M(P;A,B), we have

X

P + sA + tB for some scalars s and t,

Q + (linear combination of A,B,C,D) + sA + tB

Q + (linear combination of C,D),
sine A and B belong to L(c,D),
Thus X belongs to M(Q;C,D).
Symmetry of the argument shows that every point of
M(Q;C,D) belongs to M(P;A,B) as well. O

Definition. Given a plane M = M(P;A,B), the vectors

A and B are not unigquely determined by M, but their linear
span is. We say the planes M(P;A,B) and M(Q;C,D) are

parallel if L(aA,B) = L(C,D).
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Corollary 13. Two distinct parallel planes cannot intersect.

Corollary 14. Given a plane M and a point Q, there ié

exactly one plane.containing Q that is parallel to M.

Proof. Suppose M = M(P;A,B). Then M(Q;A,B) is a

plane that contains Q and is parallel to M. By Theorem 12
any other plane containing Q parallel to M is equal to

this one. O

Definition. We say three points P,Q,R are collinear if they lie

on a line.

Lemma 15. The points P,Q,R are collinear if and only if the vectors
Q-P and R-P are dependent (i.e., parallel).

Proof. The line L(P; Q-P) 1is the one containing P and Q, anq
the lip=: L(P;R-P) 1is the one containing P and R. If Q-P and R-P
are parallel, these lines are the séme, by Theorem &, so P, Q,and R
. are collinear. Conversely, if P, Q, and R are collinear, these lines must
be the same, so that Q-P and 'R-P must be parallel. 3

Theorem 16 . Given three non-collinear points P, Q, R,

there is exactly one plane containing them.

Proof. Let A =Q-P and B =R - P; then
A and B are independent. The plane M(P; A,B) ccntains P and P +A =Q
and P+ B =R. |

Now suppose M(S;C,D) 1is another plane containing P,

Q,' and R. Then

g
]

S + s,C + t,D

1 1

R =28 + s3C + t3D



for some scalars s; and t, . Subtracting, we see that the vectors
Q-P=A and R - P =B belong to the linear span of ¢ and D. By

symmetry, C and D belong to the linear span of A and B. Then Theorem

12 implies that these two planes are equal.

Exercises

1. We say the line L is parallel to the plane
M = M(P;A,B) 1if the direction vector of L belongs to L(A,B).
Show that if L 1is parallel to M and intersects M, then L
is contained in M.

- 2. Show that two vectors Al and A, in v, are
linearly dependent if and only if they lie on a line through
the origin.

3. Show that three vectors Al’ AZ, A3 in Vn are
linearly dependent if and only if they lie on some plane through
the origin.

4. Let P=(1,0,-1), Q= (0,0,0), R = (-2,5,0).
Let A=(1,-1,0), B =(2,0,1).
(2) Find parametric equations for the line through P and Q, and
for the line through R with direction vector A. Do these lines intersect?
(k) Find parametric equations for the plane through P, Q, and

R, and for the plane through P determined by A and B.

5. Let L be the line in V. through the points P = (1,0,2) and

= (-1,1,3). Let L' be the line through Q parallel to the vector

O
|

= (3,1,-1). Find parametric equations for the line that intersects both L

o
|

and L' and is orthogonal to both of them.



Parametric equations for K-planes in V-

Following the pattefn for lines and planes, one can define, more
generally, a k-plane in v, as follows:

Definition. Given a point P of v, and a set

Al""’Ak of k independent vectors in Vn' we define the

k-plane through P determined by Ajre.esAL  to be the set of

all vectors X of the form

K =P + tjA) + «o0 + £ A,

for some scalars ti' We denote this set of points by
M(P;Al,...’Ak).
Said differently, X 1is in the k-plane M(P;Al,...,Ak)

if and only if X - P 1is in the linear span of Al""'Ak"’

Note that if P = 0, then this k-plane is just the k- dimensional
 linear subspace of V., spanned by A;,.../A.

Just as with the case of lines (l-planes) and planes
(2-planes), one has the following results:

Theorem 17. Let M; = M(P;A;,...,A) and M, = M(Q;B;,...,B)
be two k-planes in Vn' Then M1 = MZ if and only if they have a point in
common and the linear span of Al""’Ak equals the linear span of Bl""’Bk'

Definition. We say that the k-planes M, and M, of this theorem

1 2
are parallel if the linear span of Al""’Ak equals the linear span of

lloo-lB,K-

Theorem jg . Given a k-plane M in V, and a point

Q, there is exactly one k-plane in V, containing Q and

parallel to M.

Lemma 1&. Given points PO,..,Pk in Vo they are contained in

a plane of dimension less than k if and only if the vectors



A33

Pl - PO,..., Pk- PO are dependent.

or "Pk in Vn'
If these points-do not lie in any plane of dimension less than k, tten

there is exactly onek-plane containing them; it is the k-plane

Theorem 20. Given k+1 distinct points P

M(po; PI—POI...'PK—PO).

More generally, we make the following definition:

Definition. If M1 = M(P;Al,...,Ak) is a k-plane, and
M, = M(Q;Bl,...,Bm) is an m-plane, in Vn » and if k< m, we say
Ml is parallel to M2 if the linear span of Al""’Ak is contained

in the linear span of B,,...,B

1 m °

Exercises

1. Prove Theorems 17 and 18.

2. Prove Theorems 19 and 20.

3. Given the line L = L(Q;A) in V3 , where A = (1,-1,2).
Find parametric equations for a 2_plane containing the point P = (1,1,1)
that is parallel to L. Is it unique? Can you find such a plane containing
both the point P and the point Q = (-1,0,2)?

4. Given the 2-plane M, in V4 coentaining the points P = (1,-1,2,-1)
and Q = (0,1,1,0)and R = (1,1,0,3).Find parametric equations for a 3-plane
in V4 that contains the point S = (1,1,1,1) and is parallel to Ml'
Is it unique? C&n you find such a 3-plane thatcontains both S and the

point T = (0,1,0,2)7?
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