
Matrices 

We have already defined what we mean by a matrix. In this section, 

we introduce algebraic operations into the set of matrices. 

Definition. If A and B are two matrices of the same size, say 

k by n, we define A t B to be the k by n matrix obtained by adding 

the corresponding entries of A and B, m d  we define cA to be the matrix 

obtained from A by multiplying each entry of A by c. That is, if aij 

and bij 
are the entries of A and B, respectively, in row i and column 

j ,  then the entries of A + B and of cA in row i and column j are 

aij bij 
and caij ' 

respectively. 

PJot? that for fixed 1: ar:d n , the set of all k by n matrices 

satisfies all the properties of a linear space. This fact is hardly 

surprising, for a k by n matrix is very much like a Ic-n tuple; 

that only difference is that the components are written in a rectangular array 

instead of a linear array. 

Unlike tuples, however, matrices have a further operation, a product 

operation. It is defined as follows: 

Cefinition. If A is a k by n mtrix, and B is an n by 

p matrix, we define the product D = A *  B of A and B to be the matrix 

of size k by p whose entry dij in row i and column j is given by 

the formula 

n 

Here i = k and j = I,...,p. 



The entry dij is computed, roughly speaking, by tak-

ing the "dot product" of the 1-'th row of A with the j-th 

column of B .  Schematically, 

This definition seems rather strange, but it is in fact e,xtremely 

useful. Motivation will come later! One important justification for this 

definition is the fact that this product operation satisfies some of the familar 

"laws of algebra" : 

Theorem '1. Matrix-multiplication has the following properties: k t--
A, B, C ,-Dbe matrices. 

(1) (Distributivihy) If A-(B + C) is defined, then- - -

Similarly; .-if (B + C). D is- defined, then.-

(El + C)* D = B * D  + C.D. 

(2) (Homogeneity) If- A * B  -is defined, then 

(3) (Associativity) -If A * B  -and B6C are-defined,then.-



(4) (Existenceof identities) Fcr- -each m, there is an m by m 

matrix s ~ c hthat for- I m . -- - matrices A and B, we have- - -

I .A = A and B *Im = B 
li'i 

whenever these products are defined.--. -

Proof. We verify the first distributivity formula. In order for 

B + C to be defined, B and C must have the same size, say n by p. 

men in order for A-(B+ C) to be defined, A must have n columns. Suppose 

A has size 'x by n. .Then A - B  and A - C  aredefinedand have size k 

by p; thus their sum is also defined. The distributivity formula now follows 

from the equation 
n n n

1 a ( b . + c  ) = I  a b + I  a c 
s=l is SJ sj s=l is sj s=l is sj' 

The other distributivity formula and the homogeneity formula are proved similarly. 

We leave them as exercises. 

Now let us verify associativity. - .  
If A is k by n and B is n by p, then 

A B is k by p. The product (AeB) C is thus defined 

provided C has size p by q. The product A (B*C) is 

defined in precisely the same circumstances. Proof of equality 
I (  

is an exercise in summation symbols: The entry in row i and 

column j of (A*B) C is 

and the corresponding entry of A ( B = C )  is 



These t w o  expressions are equal. 

Finally, we define matrices 
I* that act as identity elements. 

Given m, let Im be the m by rn matrix whose general entry is 4j, 
where & = 1 if i = j and 6: = 0 if i # j. The matrix Im is a square 

1j lj 

matrix that has 1's down the "main diagonal" and 0's elsewhere. For instance, 

I4 is the matrix 

Now the product Im*A is defined in the case where A has m rows. In 

this case, the general entry of the product C = - A  is given by the equationIm 

Let i and j be fixed. Then as s ranges from 1 to m, a1.lbut one 

of the terms of this sunanation vanish. The only one that does not vanish 

is the one for which s = i, and in that case &. = 1. We conclude that 
1s 

c = 0+. . .+ 0 + TiQ l j  + O+ . . a +  0= Q5.
ij 

Ar, entirely similar proof shows that B * I = B if B has rn columns.m 

Remark. I f  A B is d e f i n e d ,  t h e n  B A need no t  be  

d e f i n e d .  And even i f  it i s  d e f i n e d ,  t h e  two p r c d u c t s  need n o t  

b e  equa l .  For example, 



Remark. A natural qestion to ask at this point concerns the existence 

of multiplicative inverses in the set of matrices. WE'shall study the answer 

to this question in a later section. 

Exercises 

1. Verify the other half of distributivity. 

2 .  Verify homogeneity of matrix multiplication. 

3. Show the identity element is unique. [Hint: If I and I; 

are two possible choices for the identity element of size m by m, compute 

1; I; , I  

4. Find a non-zero 2 by 2 matrix A such that A * A  is the zero 

matrix. Conclude that there is no matrix B such that B O A  = 12. 

5. Consider the set of m by m matrices; it is closed under addition 

and multiplication. Which of the field axioms (the algebraic axioms that the 

real numbers satisfy) hold for this set? (Such an algebraic object is called 

in modem algebra a "ring with identity.I ! )  



Systems -of linear equations 

Given numbers a for i = 1 . k and j = l,--=,n,ij 
and given numbers cl,,c 

k , we wish to study the following, which is called 
a system of k linear equations 9 n unknowns: 

A solution of this system is a vector X = (xl,...,x ) that satisfies each n 

equation. The solution-set of the system consists of all such vectors; it is 

a subset of Vn . 
We wish to determine whether this systemhas a solution, and if so, what 

the nature of the general solution is. Note that we are not assuming anything 

about the relative size of k and n; they may be equal, or one may be larger 

than the other. 

Let 

aij 

Matrix notation is convenient for 

A denote the k by n matrix whose 

Let X and C denote the matrices 

dealing with this systemof equations. 

entry in rcw i ar?d column j is 



B7 

These are matrices with only one column; accordingly, they are called column 

matrices . The system of equations ( * )  can now be written in matrix form as 

A solution of this matrix equation is now, strictly speaking, a column matrix 

rather than an n-tuple. However, one has a natural correspondence 

between n-tuples and column matrices of size n by 1. It is a one-to-one 

correspondence, and even the vector space operations correspond. What this means is 

that we can identify Vn with the space of all n by 1 matrices if we wish; 

all this amounts to is a change of notation. 

Representing elements of Vn as column matrices is so convenient that 

we will adopt it as a convention throughout this section, whenever we wish. 

Example 1. Consider the system 

[Here we use x, y, z for the unknowns instead of xl, x2, 

X 3 r  for convenience.] This system has no solution, since 

the sum of the first two equations contradicts the third 

equation. 



D-ample2. Consider the system-

2 x + y + z = l  

This system has a solution; in fact, it has mora than one solution. In 

solving this sytem, we can ignore the third equation, since it is the sum of the 

first two. Then we can assign a value to y arbitrarily, say y = t, and solve 
-

* -
the first two equations for x and z. We obtain the result 

The solution set consists of all matrices of the form 

Shifting back to tuple notation, we can say that the solution set consists of 

all vectors X such that 

This expression shows that the solution set is a line in 
V3, and in "solvingt1 

the system, we have written the equation of this line in parametric form. 

Now we tackle the general problem. We shall prove the following 

result: 

Sbppose one is given a system of k linear equations in n unknowns. 

Then the solution set is either (1) empty, or (2) it consists of a single point, 

or (3) it consists of the points of an m-plane in Vn, for some m7O. 

In case (11, we say the system is inconsistent,meaning that it has no solution. 



In case ( 2 ) ,  the solution is unique. in case ( 3 ) ,  the system has infinitely 

I many solutions. 

F;C shall apply Gauss-Jordan elimination to prove these facts. The 

crucial result we shall need is stated in the following theorem: 

Tlieorem 2, Consider the system of equations A'X = C, where A is 

a k by' n matrix and C is a k by 1 matrix. Let B be the matrix obtained by 

applying an elementary row operation to A, arrd let C' be the matrix obtained 

by applying the same elementary row operation to C. Then the solution set 

of the system B-X= C' is the same as the solution.setofthe system A'X = C. 

Proof. Exchanging rows i and j of both matrices has the effect of 

simply exchanging equations i and j of the system. Replacing row i by itself 

plus c times row j has the effect of replacing the ith equation by itself 

plus c times the jth equation. And multiplying rcw i by a non-zero scalar 

d has the effect of multiplying both sides of the ith equation by d. Thus each 

solution of the first system is also a solution of the second system. 

Nc~wwe recall that the elementary operations are invertible. 

Thus the system A'X = C can be obtained by applying an elementary operation to 

both sides of the equation BwX= C1. It follows that every solution of the 

second system is a solution of the first system. 

Thus the two solution sets are identical. a 
WE*consider first the case of a homogeneous system of equations, that is, 

a system whose matrix equation has the form 

A G X  = 9 . 
In this case, the system obviously has at least one solution, namely the trivial 

solution X = -0 .  Furthermore, we know that the set of solutions is a 

linear subspace of Vn , that is, an m-plane through the origin for some m. 

We wish to determine the dimension of this solution space, and to find a basis 

for it. 



Dflfinition. Let A be a matrix of size k by n. Let W be the row 

space of A; let r be the dimension of W. Then r equals the number of non-zero 

rows in the echelon form of A. It follows at once that r k. It is also 

true that r 5 n, because W is a subspace of Vn . The number r is called 

the rank of A (or sometimes the row rank of A).--

Theorem 3. Let A be a matrix of size k by n. Let r be the rank-
of A. Then the solution space of the system of equations A 0 X  = 2 is 

a subspace of Vn of dimension n - r. 

Proof. The preceding theorem tells us that we can apply elementary 

operations to both the matrices A and 0 without changing the solution set.-
Applying elementary operations tcr 0 leaves it unchanged, of course.-

So let us apply elementary operations to A so as to bring A into 

reduced echelon form D, and consider the system D-X= Q . The number of 

non-zero rows of D equals the dimension of the row space of A, which is r. 

Now for a zero row of D, the corresponding equation is automatically satisfied, no 

matter what X we choose. Orily the first r equations are relevant. 

Suppose that the pivots of D appear in columns jl,...,j Let J r' 

denote the set of indices lj ,...,jr\ and let K consist of the remaining indices 

from the set {I,. ..,n). Each unknown x for which j is in J appears with a 
j 

non-zero coefficient in only one of the equations of the system D-X= 0.- -

Therefore, we can Itsolveufor each of these unknowns in terms of the remaining 

unknowns xk , for k in K. Substituting these expressions for x , ..., x 
jl jr 

into the n-tuple X = (xl,...,x ) ,  we see that the general solution of the n 

system can be written as a vector of which each component is a linear combination 

of the xk , for k in K. (Of course, if k is in K, then the linear 

cathination that appears in the kth component consists merely of the single 

term 9! ) 



k!t us pause to consider an example.-
EJ-ample3 . Let A be the 4 by 5 matrix given on p.A20. The-

equation A'X = 0 represents a system of 4 equations in 5 unknowns. Nc~w A-
reduces by row operations to the reduced echelon matrix 

Here the pivots appear in columns 1,2 and 4; thus J is the set 11,2.4] and 

K is the set f3.53 . The unknowns xl. x2, and x4 each appear in only 

one equation of the system. We solve for theese unknowns in terms of the others 

as follows: 
3X1 = 8x + 3x5 

X* = -4x3 -
2x5 

x, = 0. 

The general solution can thus be written (using tuple notation for convenience) 

The solution space is thus spanned by two vectors (8,-4.1,O.O) and (3,-2,0.0,1).-
The same procedure we followed in this example can be followed in 

general. Once we write X as a vector of which each component is alinear combination 

of the xk , then we can write it as a sum of vectors each of which involves 

only one of the unknowns 5 , and then finally as a linear combination, with 

coefficients %I of vectors in Vn . There are of course n - r of the 



unknowns , and hence n - r of these vectok. 

It follows that the solution space of the system has a spanning set 

consisting of n - r vectors. We now show that these v~ctorsare independent; 

then the theorem is proved.. To verify independence, it suffices to shox? that if xe 

take the vector X, which equals a linear combination with coefficents % 
of these vectors, then X = 0 if and only if each % (for k in K)-

equals 0. This is easy. Consider the first expression for X tkat we wrote down, 

where each component of X is a linear combination of the unknowns rc-
The kth component of X is simply 5 . It follows that the equation X = 2 

implies in particular that for each k in K, we have % = 0. 

For example, in the example we just considered, we see that the equation 

X = -0 implies that x3 = 0 and x = 0 ,  because x.. is the third component5 3 

of X and x5 is the fifth component of X. 

This proof is especially interesting because it not only gives us the 

dimension of the solution space of the system, but it also gives us a method 

for finding a basis for this solution space, in practice. All that is involved is 

Gauss-Jordan elimination. 

Corollary& Let A be a k by n matrix. If the rows of A are 

independent, then the solution space of the system A-X = 0 has dimension n - k. a-

Now we consider the case of a general system of linear equations, of the 

form A'X = C . For the moment, we assume that the system has at least one 
solution, and we determine what the general solution looks like in this case. 

Theorem 5. Let A be a k by n matrix. Let r equal the rank of A.-

If the system A*X = C has a solution, then the solution set is a plane in 

Vn of dimension m = n - r. 



Proof. Let X = P be a solution of the system. Then A-P = C . 
If X is a column matrix such that A'X = C, then A.(X - ?)  = 2 , and 

ccnversely. The solution space of the system A'X = 0 is a subspace of- 'n 

of dimension m = n - r; let All...,A be a basis for it. Then X is a solution 
m 

of the system A'X = C if and only if X - P is a linear combination of the 

vectors Air that is, if and only if 

X = P + t A  t...1 1  + tmAm 

for some scalars ti. Thus the solution set is an m-plane in Vn a 

Nciw let us try to determine when the system A'X = C has a solution. 

One has the follow in^ general result: 

Theorem 6. k t  A be a k by n matrix. Let r equal the rank 

of A' 

(a) If r 4 k ,  then there exist vectors C in Vlc such that the 

system A'X = C has no solution. 

(b) If r = k, tl~enthe system A-X= C al~~ayshas a solution. 

Proof. We consider the system A'X = C and apply elementary row 

operations to both A. and C until we have brought A into echelon form 

. (For the moment, we need not yo all the hay to reduced echelon form.) Let 

C '  be the column matrix obtained by applying these same row operations to C. 

Consider the system B'X = C r .  

Consider first the case r < k. In this case, the last row at least of 

3 is zero. The equation corresponding to this row has the form 

where c' is the entry of C 1  in row k. If c' is not zero, there are nok k 

values of xl,...,x satisfying this equation, so the system has no solution. n 
# 



Let us choose C *  to be a k by 1 mstrix whose last entry is non-zero. 

Then apply the same elementary operations as before, in reverse order, to 

both B and C*. These operations transform B back to A; when we apply them 

to C*, the result is a matrix C such that the system A'X = C has no 

solution. 

Now in the case r = k, the echelon matrix B has no zero rows, so 

the difficulty that occurred in the preceding paragraph does not arise. We shall 

show that in this case the system has a solution. 

More generally, we shall consider the following two cases at the same 

time: Either ( 1) B has no zero rows, or (2) whenever the ithrow of B is zero, 

then the corresponding entry c* of C' is zero. We show that in either ofi 

these cases, the system has a solution. 

Let US consider the system B - X  = C 1  ard apply further operations to 

both B and C', so as to reduce B to reduced echelon form D. Let C" 

be the matrix obtained by applying these same operations to C'. Note that the 

zero rows of B, and the corresponding entries of C', are not affected by these 

operations, since reducing B to reduced echelon form requires us to work only 

with the non-zero rows. 

Consider the resulting system of equations D'X = C t t .  We now proceed as 

in the proof of Theorem 3. Let J be the set of column indices in which the 

pivots of D appear, and let K be the remaining indices. Since each xi , 
2 

for j in J, appears in only one equation of the system, we can solve for each 

x in terms of the numbers c; a d  the unknowns . We can now assign
j 

values arbitrarily to the \ and thus obtain a particular solution of the 

system. The theorem follows. 



The procedure just described actually does much more than was necessary 

to prove the theorem. It tells us how to determine, in a particular case, whether 

or not there is a solution; and it tells us,when there is one,how to express the 

solution set in parametric form as an m-plane in 
'n . 

Ccnsider the following example: 
-

E2:ample 4. Consider once again the reduced echelon matrix of Example 3: 

The system 

has no solution because the last equation of the system is 

On the other hand, the system 

does have,asolution. Fc~llowingthe procedure described in the preceding proof, 

we solve for the unknowns xl,x2,and x4 as follows: 

The general solution is thus the 2-plane in V5 specified by the parametric equation 



Remark. Solving the system A-X= C in practice involves applying 

elementary operations to A , and applying these same operations to C. 

A convenient way to perform these calculations is to form a new matrix from 

A by adjoining C as an additional column. This matrix is often called the 

auqmented matrix of the system. Then one applies the elementary operations to this 

matrix, thus dealing with both A and C at the same time. This procedure 

is described in 16.18 of vol. I of Apostol. 

Exercises-

1. Let A be a k by n matrix. (a) If k< n, show that the system 

A'X = -0 has a solution different from G.(Is this result familiar?) What 

can you say about the dimension of the solution space? (b) If k > n, show that 

therearevalues of C such that the system A'X = C has no solution. /---

2, Ccnsider the matrix A of p. A23. (a) Find the general solution 

of the system AbX = 2. (b) Does the system A-X= C have a solution for 

arbitrary C? 

3.  Repeat Exercise 2 for the matrices C, D l  and E of p. A23. 

4. &t B be the matrix of p. A23. (a) Find the general solution of 

the system .-.= 113. 
(b) Find conditions on a,b, and c that are necessary and sufficient for the 

system B-X= C to have a solution, where C = . [~int:What happens to 

C when you reduce B to echelon form?] 

5. Let A be the matrix of p. A20. Find conditions on a,b,c, and d 

that are necessary and sufficient for the system A'X = C to have a :solution, 

where 



\ @ k t  A be a by n matri::; let r be the rank of A: 
Let R be the set of all those vectors C of Vk fc,rwhich the system 

has a solution. (That is, R is the set of all vectors of the form 

A-X , as X ranges over Vn .) 

( a )  Show that R is a subspace of 
vk 

(b) Show that R has dimension r. [Hint: Let W be the solution 

space of the system A-X= 9 . Then W has dimension m = n - r. C oose 

a basis A f A for W. By adjoining vectors one at a time, extend m 
this to a basis Al,...,A ,B1,...,B for all of Vn . Show the vectors m r 
A.B1 , ..., A.3r span R; this follows from the fact that A.Ai = 0 for-
all i. Show these vectors are independent.] 

(c) Cclnclude that if r € k, there are vectors C in Vk such 

that the system A-X= C has no solution; while if r = kt this system 

has a solution for all C. (This provides an.alternate proof of Theorem 6.) 

@ Let A be a k by n tnztrix. The columns of A, when looked 

at as elements of Vk , span a subspace of Vk that is called the column 

space of A . The row space and column space of A are very different, 

but it is a totally unexpected fact that they have the same dimension ! Prove---
this fact as follows: Let R be the subspace of Vk defined in Exercise 

6. Show that R is spanned by the vectors A-Ei,...,A-En ; conclude 

that R equals the column space of A. 



Csrtesian equations of !:-planes in
'n ' 

There are two standard ways of specifying a k-plane M in Vn. 

One is by an equation in parametric form: 

X = 2+tlA, + . . . +  t?<q.l;, 
L 

vI.ere A , . . . ,  ar2 in3ependent vectors in 'n . (If tkess vectors xere 

not independent, this equation would still specify an n-plane for some m, 

5ut some work would be required to determine m. We normally require the 

vectors to b2 independent 51 the parametric form of the equation of a ?<-plane.) 

bother way to specify a plane in 
Vn is as the solution set of a 

system of linear equations 

where the rows of A are independent. I f  A has size k by n, then 

the plane in question has dimension n - k. The equation is called a 

caretesian form for the equation of a plane. (If the rows of A were not 

independent, then the solutionsetwould be either empty , or an m-plane 

for some m, but some work would be required to determine m.) 

The- process of "solving" the system of equations A S X  = C that 

we described in the preceding section is an algorithm for passing from a 

cartesian equation for M to a parametric equation for M. 0r.e can ask 

whether there is a process for the reverse, for passing from a parametric 

equation for M to a cartesian equation. Tk~eanswer is "yes," as we 

shall see shortly. The other question one might ask is, ''Ifnyshould one 

care?" The answer is that sometimes one form is convenient, and other times 

the other form is more useful. Particularly is this true in the case of 

3-dimensional space V3 , as we shall see. 



Dflfinition. Let A be a matrix of size k by n. Let 

be the rows of A; let W be the subspace of Vn they span. Now the vector 

X is a solution of the system A e X  = g if and only if X is orthogonal 

to each of the vectors 
Ai . This statement is equivalent to the statement 

that X is orthogonal to every vector belonging to W. The solution s2ace 

of this'system is for this reason sometimes called the orthoqonal complement -

of W. It is often denoted W' (read "W perp".) 

We have the following result: 

Theorem 1, If W is a subspace of Vn of dimension k, then 

its orthogonal complement has dimension n - k. Fwthermore, W is the 

I L Iorthogonal complement of W ; that is, (W ) = W. 

Proof. Ttiat wL has dimension n - k is an imnediate consequence of 

Theorem 3 j  for W is the row space of a k by n matrix A with independent rows 

Ai , whence wL is the solution space of the system A - X  = 0. 

The space (WL)' has dimension n - (n - k) , by what we just proved. 

And it contdns each vector Ai (since Ai *X= -0 for each X in W I.) 

Therefore it equals the space spanned by , a 
Theorem Suppose a k-plane M in Vn is specified by the parametric 

equation 

X = P + t A + ... -I-tkq; I1 1  

where the vectors Ai are independent. Let W be the space they span; 

Land let B ,. El be a basis for W . If B is the matrix with rowsrn 

B1,".,B m '  
then the equation B*(x-P) = 0 ,  Or 

is a cartesian equation for M. 



BiO 

Proof. The vector X lies in M if and only if X - P belongs to 

W. This occurs if and only if X - P is orthogonal to each of the vectors 

Bit 
a ~ dthis occurs if and only if B*(X - P) = -0 . a 

The preceding proof actually tells us how to find a cartesian equation 

for M. 0r.e takes the matrix A whose rows are the vectors Ai; one finds 

a basis B1,...,B for the solution space of the system A - X  = 2, usingm* 
the Gass-Jordan algorithm; and then one writes down the equation B.X = BOP . - .  

k 

We now turn to the special case of V3, whose model is the familiar 

3-dimensional space in which we live. In this space, we have only lines 

(1-planes) and planes (2-planes) to deal with. A P ~we can use either the 

parametric or cartesian form for lines and planes, as we prefer. However, 

in this situation we tend to prefer: 

parametric form for a line, and 

cartesian form for a plane. 

Let us explain why. 

If L is a line given in parametric form X = P + tAI then A 

is uniquely determined up to a scalar factor. (The point P is of course 

not determined.) Tlie equation itself then exhibits some geometric information 

about the line; one can for instance tell by inspection whether or not 

two lines are parallel. 

Or1 the other hand, if M is a plane given in parametric form by the 

equation X = P + sA + tB , one does not have as much geometric information 

immediately at hand. However, 1st us seek to find a cartesian equation 

for this plane. We note. that the orthogonal complement of L(A,B) is 

one-dimensional, and is thus spanned by a single non-zero vector 



N = (a a2, a3) . We call N a normal vector to the plane M ; it is 

uniquely determined up to a scalar factor. (1n practice, one finds N by 

solving the system of equations 

A-N = 0 
-1 

B=N= 0 .)-
Then a cartesian equation for M is the equation 

If P is the point (pl,p2, p3) of the plane MI ' thisequation 

has the form 

( * )  al(xl - pl) + a2(x2 - p2) + a3(x3 - P3 ) = 0 .  

We call this the equation of the plane throuqh-- p = (pll P2' p3) with 

normal vector N = (a a2, a3 1. 

WE have thus proved the first half of the following theorem: 

Theorem% If M is a 2-plane in V3, then M has a cartesian 

equation of the form 

a x  + a x  + a x  - b ,1 1  2 2  3 3  -

where N = (al,a2, a3) is non-zero. Conversely, any such equation is 

the cartesian equation of a plane in V3; the vector N is a normal vector 

to the plane. 

Proof. To prove the converse, we note that this equation is a system 

consisting of 1 equation in 3 unknowns, and the matrix A = [a a a ] has1 2 3  

rank 1. Therefore the solution space of the system A.X = [b] is a plane 

of dimension 3 - 1 = 2. a 

Nctw we see why the cartesian equation of a plane is useful; it 

contins some geometric information about the plane. For instance, one can 

tell by inspection whether two planes given by cartesian equations are parallel. 



For they are parallel if and only if their normal vectors are parallel, 

and that can be determined by inspection of the two equations. 

Similarly, one can tell readily whether the line X = P + tA 

is parallel to a plane 1;  one just checks whether or not A is orthogonal 

to the normal vector of M. 

Mzny theorems of 3-dimensional geometry are now easy to prove. 

us consider some examples. 

Theorem 10. Three planes in V3 intersect in a single point 

if and only if their normal vectors are independent. 

Proof. Take a cartesian equation for each plane; collectively, 

they form a system A - X  = C of three equations in three unknowns. 

The rows of A are the normal vectors. The solution space of the system 

(which consists of the points common to all three planes) consists of a 

a single point if and only if the rows of A are independent.a 
Theorem 11. Two non-parallel planes in V3 intersect in a straight---

line. 

Proof. Let Nl -X= bl and-- N -X= b be ~artesianequations for2 2 

the two planes. Their intersection consists of those pints X that satisfy 

both equations. Since N and N2 are not zero and are not parallellthe1 
matrix having rows N1 aad N2 has rank 2. Hence the solution of this 

system of equations is a 1-plane in V, . 17 
Theorem & Let L be a line, and M a plane, in V,. If L is 

paralleLto M, then their intersection is either empty or all of L. If 

L is not parallel to M, then their intersection is a single pint. 

Proof. LFgt L have parametric equation X = P +.tA; let M have--
~artesianequation N-X= b. We wish to determine fcr what values of t 

the point X = P + tA lies on the plane M; that is, to determine the 

solutions of the equation 



Now if L is parallel to M I  then the vector A is perpendicular to 

the normal vector N to M; that is, N . A  = 0 .  In this case, the equation 

holds for all t if it happens that N.P = b, and it holds for no t 

if N-P # b. Thus the intersection of L and M is either all of L, or 

it is empty. 

On the other hand, if L is not parallel to M, then N - A  # 0. 

In this case the equation can be solved uniquely for t. Thus the intersection 

of L and M consists of a single point. a 

r Ex-ample 5. Ccnsider the plane M = M(P;A,B) in V3 , where 

P = (1, -7,0) and A = (1, 1 1) and B = (-1, 2, 0). TO find a normal 

vector N = (al,a2, a3) to M, we solve the system 

One can use the Gauss-Jordan algorithm, or in this simple case , proceed 

almost by inspection. One can for instance set a2 = 1. Then the second 

1 equation implies that al = 2: and then the first equation tells us that 

a3 = -a1 - a2 = -3. The plane thus has cartesian equation 



Exercises 

1. The , solution set of the equation 

is a plane in V3; write the equation of this plane in parametric form, 

2. Write parametric equations for the line through (1,0,0)that 

is perpendicular to the plane x - x3 = 5.
1 

3. Write a parametric equation for the line through (0,5,-2)that 

is parallel to the planes 2x2 = x3 m d  5x1+ x -7x = 4 .
2 3 

4. Show that if P and Q are two points of the plane M I  then 

the line through P and Q is coniained in M. 
\ 

5. Write a parametric equation for the line of intersection of the 

planes of Exercise 3. 

6. Write a cartesian equation for the plane through P = (-1,0,2) 

and Q = (3,1,5) that is parallel to the line through R = (1,1,1)with 

direction vector A = (1,3,4).  

7. Write cartesian equations for the plane M(P;A,B) in V4, 

where P = (11 -11 0, 2) and A = (11 0, 1, 0) and B = (2, 1, 0, 1). 

8. Show that every n - 1 plane in Vn is the solution set of 

an equation of the form alxl + ... + anXn = b, where (all....an) # 2 ; 
6 

and conversely. 

7 .  Let M1 a ~ dM2 be 2-planes in V4; assume they are not 

parallel. What can you say about the intersection of MI and M2 ? 

Give examples to illustrate the possibilities. 
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