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Matrices
[}

We have already defined what we mean by a matrix. In this section,

we introduce algebraic operations into the set of matrices.

Definition. If A and B are two matrices of the same size, say
kK by n, wedefine A+ B tobethe k by n matrix obtained by adding
the corresponding entries of A and B, and we define cA to be the matrix
obtained from A by multiplying each entry of A by c¢. That is, if aij
and bij are the entries of A and B, respectively, in row i and column

j, then the entries of A+ B ard of cA inrow i and column j are

aij + bij and caij ,

respectively.

Notg that for fixed k and n , the set of all k by n matrices
satisfies all the properties of a linear space. This fact is hardly
surprising, for a k by n matrix is very much like a k°n  tuple;
that only difference is that the components are written in a rectangular array

instead of a linear array.

Unlike tuples, however, matrices have a further operation, a product

operation. It is defined as follows:

Definition. If A isa k by n matrix, and B is an n by
p matrix, we define the product D =A«B of A and B to be the matrix
of size k by p whose entry dij in row i and columm j 1is given by

the formula

Here i=1,...,k and j=1,...,pP. L
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The entry dij is computed, roﬁghly speaking, by tak-
ing the "dot product" of the ifl row of A with the jEE

column of B. Schematically,
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This definition seems rather strange, but it is in fact extremely
useful. Motivation will come later! One important justification for this
definition is the fact that this product operation satisfies some of the familar

"laws of algebra" :

Theorem 1. Matrix multiplication has the following properties: Let

A, B, C, D be matrices.

(1) (Distributivity) If A-(B + C) is defined, then

A-(B+C) = A‘B + A-C.

Similarly; if (B + C)-D is defined, then

(B+C)'D = B*D + C-*D.

(2) (Homogeneity) If A*B 1is defined, then

(cA)*B = c(A*B) = A +<(cB)

(3) (AssociatiVity) If A'B and B*C aredefined, then

A+(B*C) = (AeB).C.
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(4) (Existence of identities) Fcr each m, there is an m by m

_matrix Im such that for matrices A and B, we have

I A = A and B*I = B
il m

.whenever these products are defined.

Proof. We verify the first distributivity formula. In order for
_B + C to be defined, B and C must have the same size, say n by p.
Then in order for A« (B + C) to be defined, A must have n cclums. Suppose
A has size kX by n. Then A-B and A-C aredefinedand have size k
ky p; thus their sum is also defined. The distributivity formula now follows

from the equation
n n n
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The other distributivity formula and the homogeneity formula are proved similarly.
We leave them as exercises.

Now let us verify associativity.

If A is k by n and B 1is n by p, then
A+ B is k by p. The product (A*B) * C is thus defined

providéd C has size p by g. The product A + (B*C) is

defined in precisely the same circumstances. Proof of equality
is an exercise in summation symbols: The entry in row i and

column j of (A*B) *« C is

P n
t=1'(is=l a; POy

"and the corresponding entry of A - (B+C) |is

P
Z ais(z bstctj)'
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These two expressions are equal.

Finally, we define matrices Im that act as identity elements.
Given m, let Im be the m by m matrix whose generai entry is J;j’
where é;j =1 if i =3 and J;j =0 if i # j. The matrix I is a square
matrix that has 1's down the "main diagonal" and 0's elsewhere. For instance,

I4 is the matrix

©O O O
o O = O
o +~H O O
= O O ©

Now the product Inf A is defined in the case where A has m rows. In

this case, the general entry of the product C = Inf A is given by the equation

m é‘
— L] a [}
Cij = § s=1 1s sj

Let i and j be fixed. Then as s ranges from 1 to m, all but one
of the terms of this summation vanish. The-only one that does not vanish

is the one for which s = i, and in that case 5&5 = 1. We conclude that

- 04404 Tl Ok OF @

cij U .

An entirely similar proof shows that B:* Im =B if B has m columns. []

Remark. If A *« B is defined} then B * A need not be
defined. And even if it is defined, the two products need not

be equal. For example,

1 27 [1 -17] 35

1. 3 -1 -3

—d

—1 -1 1 27 1 3]
1. 34 Lo -1 1 -1 .

' and
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Remark. A natural question to ask at this point céncerns the existence
of multiplicative inverses in the set of matrices. We shall study the answer

to this question in a later section.

Exercises

1. Verify the other half of distribuﬁivity.

2. Verify homogeneity of matrix multiplication.

3. Show the identity element is unique. [Hint: If I& and I&
are two possible choices for the identity element of size m by m, compute
Inin el

4. Find a non-zero 2 by 2 matrix A such that A¢A 1is the zero

matrix. Conclude that there is no matrix B such that B+A = IZ'

5. Consider the set of m by m matrices; it is closed under addition
and multiplication. Which of the field axioms (the algebraic axioms that the
real numbers satisfy) hold for this set? (Such an algebraic object is called

in modern algebra a "ring with identity.")
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Systems of linear equations

Given numbers aij for i=1,...,k and j=1,...,n,

and given numbers CpreessC » We wish to study the following, which is called

a system of k linear equations in n unknowns:

X = 2cC

1171 1272 ln’'n 1
alel + a22x2 + ... + aZan = c2

(*)
aklxl + akzx2 + ... + aknxn = ck.

A solution of this system is a vector X = (Xl""’xn) that satisfies each

equation. The solution set of the system consists of all such vectors; it is

a subset of Vn .

We wish to determine whether this systemhas a solution, and if so, what
the nature of the general solution is. Note that we are not assuming anything
about the relative size of k and n; théy may be equal, or one may be larger
than the other.

Matrix notation is convenient for dealing with this systemof equations.
Let A denote the k by n matrix whose entry in rcw i ard column.j is

aij‘ Iet X and C denote the matrices

el
—
9]
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These are matrices with only one column; accordingly, they are called column

matrices . The system of equations (*) can now be written in matrix form as.

AX = C.
A solution of this matrix equation is now, strictly speaking, a column matrix

rather than an n-tuple. However, one has a natural correspondence

X

1
(xl,...,xn) —_—

Moeee

n

between n-tuples and colurm matrices of size n by 1. It is a one-to-one
cérrespondence, and even the vector space operations correspond. .What this means is
that we can identify Vn with the space of all n by 1 matrices if we wish;
all this amounts to is a change of notation.

Representing elements of Vn as column matrices is so convenient that
we will adopt it as a convention throqghout this section, whenever we wish.

e ———————

Example 1. Consider the system

2x +y +z =1
X -y = 2
3x +z=0 .

[Here we use x, y, z for the unknowns instead of xl, Xy
X3r for convenience.] This system has no solution, since
the sum of the first two equations contradicts the third

equation.
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Example 2. Consider the system

2x + y +z =1
X -y = 2

3x + 2z = 3

‘This system has a solution; in fact, it has more than one solution. In

solving this sytem, we can ignore the third equation, since it is the sum of the

first two. Then we can assign a value to y arbitrarily, say y = t, and solve

the first two equations for x and z. We obtain the result
X=2+y=2+t

y ==t

z=1-28x-y=1=2(2+t) - £t = =3 = 3t,

The solution set consists of all matrices of the form

X 2+t
X =]y = t .
2 -3-3t

Shifting back to tuple notation, we can say that the solution set consists of

all vectors X such that

X = (X,Y,Z) = (2+tl tl —3—3t)
or

X = (2’0'—3) + t(1,1[‘3) .

This expression shows that the solution set is a line in V and in "solving"

3!

the system, we have written the equation of this line in parametric form.

Now we tackle the general problem. Wé shall prove the following
result:

Suppose one is given a system of k 1inear‘equations in n unknowns.
Then the solution set is either (1) empty, or (2) it consists of a single point,
or (3) it consists of the points of an m-plane in Vv, + for some m>0. |

In case (1), we say the system is inconsistent, meaning that it has no solution.




B9

In case (2), the solution is unique. And in case (3), the system has infinitely
many solutions.
We shall apply Gauss-Jordan eliminatioh to pfove these facts. The
crucial result we shall need is stated in the following theorem:
Theorem. 2. Consider the system of equations A*X =C, where A is
a k by n matrixand C isa k by 1 matrix. Let B be the matrix obtained by
applying an elementary row operation to A, and let C' be the matrix obtained
by applying the same elementary row operation to C. Then the solution set‘
of the system B*X = C' 1is the same as the solutionset of the system A°*X = C.
Proof. Exchanging rows i and j of both matrices has the effect of
simply exchanging equations i and 'j of the system. Replacing row i by itself

th

plus c times row j has the effect of replacing the i equation by itself

plus c¢ times the jth equation. And multiplying rcw i by a non-zero scalar

th equation by d. Thus each

d has the effect of multiplying both sides of the i
solution of the first system is also a solution of the second system.

Now we recall that the elementary operations are invertible.
Thus the system A*X = C can be obtained by applying an elementary operation to
both sides of the equation B*X = C'. It follows that every solution of the

second system is a solution of the first systém.

Thus the two solution sets are identical. []

We consider first the case of a homogeneous system of equations, that is,

a system whose matrix equation has the form
A*'X = 0.
In this case, the syétem obviously has at least one solution, namely the trivial
solution X = 0. Furthermore, we know that the set of solutions is a
linear subspace of Vn , that is, an m-plane through the origin for some m.

We wish to determine the dimension of this solution space, and to find a basis

for it.
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Definition. ILet A be a matrix of size k by n. Let W be the row
space of A; let r be the dimension of W. Then r equals the number of non-zero
rows in the echelon form of A. It follows at once that r < k. It is also
true that r £ n, because W is a subspace of V, - The number r 1is called

the rank of A (or sometimes the row rank of A).

Theorem 3. Let. A be a matrix of size k by n. Let r be the rank
of A. Then the solution space of the system of equations A-X = 0 is
a subspace of Vn of dimension n - r.

Proof. The preceding theorem tells us that we can apply elementary
operations to both the matrices A and 0 without changing the solution set.
Applying elementary operations to 0 leaves it unchanged, of course.

So let us apply elementary operations to A so as to bring A into
reduced echelon form D, and consider the system D*X =0 . The number of
non-zero rows of D equals the dimension of the row space of A, which is r.
Now for a zero row of D, the corresponding equation is automatically satisfied, no
matter what X we choose. Only the first r equations are relevant.

Suppose that the pivots of D appear in columns jl,...,jr. Let J
denote the set of indices Ejl,...,j£E and let K consist of the remaining indices
from the set {},...,ﬁ}. Each unknown Xj for which j 1is in J appears with a
non-zero coefficient in only_ggg of the equations of the system D-X = Q.
Therefore, we can "solve" for each of these unknowns in terms of the remaining
unknowns X o for k in K. Substituting these expressiohs for le, coey xjr
into the n-tuple X = (xl,...,xn), we see that the general solution of the
system can be written as a vector of which each component is a linear combination
of the X .for k in K. (Of course, if k 1is in K{ then the linear

combination that appears in the kth component consists merely of the single

term X 1)
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Let us pause to consider an example.
Example3. ILet A be the 4 by 5 matrix given on p.A20. The
equation A°X = 0 represents a system of 4 equations in 5 unknowns. Now A

reduces by row operations to the reduced echelon matrix

1 0-8 0 -3

Here the pivots appear. in columns 1,2 and 4; thus J is the set 21;2,4} and
K 1is the set {3,5} . The unknowns Xyr Xy and Xy each appear in only

one equation of the system. We solve for theese unknowns in terms of the others

as follows: =
x1 8x3 + 3x5
X = -4x3 - 2x5
X4 = 00

The general solution can thus be written (using tuple notation for convenience)

X = (BX ’ —4X3, X3, 0, 0) + (3X5[ —ZXS’ O' 0, XS )I Or
X = X3(8,-4,1’O,O) + X5(3,—2,O,O,1)

The solution space is thus spanned by two vectors (8,-4,1,0,0) and (3,-2,0,0,1).

S,

The same procedure we followed in this example can be followed in
generai. Once we write X as a vectpr of which each component is a linear combination
of the Xy v then we can write it as a sum of vectors each of which involves:
only one of the unknowns X + and then finally as a linear combination, with

coefficients xk, of vectors in Vn . There are of course n - r of the
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unknowns Xk" and hence n - r of these vectors.

It follows that the solution space of the system has a spanning set
consisting of n - r vectors. We now show that these vectors are independent;
then the theorem is proved. To verify independence, it suffices to show that if we
take the vector X, which equals a linear combination with coefficents X
of these vectors, then X = 0 if and only if each % (for in K)
equals 0. This is easy. Consider the first expression for X that we wrote down,
where each component of X is a linear combination of the unknowns X
The kth component of X is simply X It follows that the equation X = 0
"implies in particular that for each k in K, we have X = 0.

For example, in the example we just considered, we see that the equation
X =0 implies that Xy = 0 and Xg = 0, because Xq is the third component

of X and xg is the fifth component of X. [

This proof is especially interesting because it not only gives us the

dimension of the solution space of the system, but it also gives us a method

for finding a basis for this solution space, in practice. All that is involved is

Gauss—Jordan elimination. |
Corollary 4. Let A bea k by n matrix. If the rows of A are

independent, then the solution space of the system A*X = 0 has dimension n - k. []

- Now we consider the case of a general system of linear equations, of the
form A*X = C . For the moment, we assume that the system has at least one

solution, and we determine what the general solution looks like in this case.

Theorem 5. Iet A bea kby n matrix. Let r equal the rank of A.
If the system' A*X = C has a solution, then the solution set is a plane in

Vn of dimension m=n - r.
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Proof. Let X =P bhe a'solution of the system. Then A°‘P =C .
If X is a column matrix such that A‘X =C, then A*(X-P) =0, and
ccnversely. The solution space of the system A°X =0 is a subspace of Vn
of dimension m =n - r; let Al""fAm be a basis for it. Then X is a solution
of the system A*X = C if and only if X - P 1is a linear combination of the

vectors Ai' that is, if and only if

X = P+ t,A, + ... + tA
11 ‘mm

for some scalars ti. Thus the solution set is an m-plane in Vn 4

New let us try to determine when the system A*X = C has a solution.
One has the following general result:

Theorem 6. ILet A bea k by n matrix. ILet r equal the rank
of A.

(a) If r <k, then there exist vectors C in Vk such that the

system A*X = C has no solution.

(b) If r =Xk, then the system A'X = C always has a solution.

Proof. We consider the system A*X = C and apply elementary row
operations to both A. and C until we have brought A into ecﬁelon form
B. (For the moment, we need not go all the way to reduced echelon form.) Let
C' be the colum matrix obtained by applying these same row operations to C.
Consider the system B*X = C'. |

Consider first the case r < k. 1In this case, the last row at least of

B 1is zero. The equation corresponding to this row has the form
. - 1)
Oxl + el + Ox.n = Cp s

where c& is the entry of C' in row k. If cﬁ is not zero, there are no

values of XyreeerX, satisfying this equation, so the system has no solution.

\
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Let us choose C' tobea k by 1 mstrix whose last entry is non-zero.

Then apply the same elementafy operations as before, in reverse order, to

both B and C'. These operations transform B back to A; whén we apply them
to C', the result is a matrix C such that the system A*X = C has no
solution.

Now in the case r =k, the echelon matrix B has no zero rows, so
the difficulty that occurred in the preceding paragraph does not arise. We shall
show that in this case the system has a solution.

More generally, we shall consider the following two cases at the same
time: Either (1) B has no zero rows, or (2) whenever the ithrow of B is zero,
then the corresponding entry ci of C' 1is zero. We show that in either of
these cases, the system has a solution.

Let us consider the system B*X = C' and apply further operations to
both B and C', so as to reduce B to reduced echelon form D. Let C"
be the matrix obtained by applying these same operations to C'. Note that the
zero rows of B, and the corresponding entries of C', are not affected by these
operations, since reducing B to reduced echelon form requires us to work only
with the non-zero rows.

Consider the resulting system of equations D°*X = C". We now proceed as
in the proof of Theorem 3. Let J be the set of column indices in which the
pivots of D appear, and let K be the remaining indices. Since each X: 1
for j in’ J, appears in only one equation of the system, we can solve for each
Xj in terms of the numbers c{ and the unknowns X - We can now assign
values arbitrarily to the X and thus obtain a particular solution of the

system. The theorem follows. [:]
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The procedure just described actually does much more than was necessary
to prové the théorem. It tells us how to determine, in a particular case, whether
or not there is a solution; and it tells us,when there is one, how to express the
solution set in parametric form as an m—plane'in Vn

Censider the following example,

Example 4. Consider once again the reduced echelon matrix of Example 3:

r-l 0-8 0 -3

The system

has no solution because the last equation of the system is
Ox1 + sz + Ox3 + Ox4-+ Ox5 =1.

On the other hand, the system

DX =

OJwH

does have a solution. Following the procedure described in the preceding proof,

we solve for the unknowns x], X2’ and x4 as follows:

Xl = =1+ 8x3 + 3x5
x2 = 3 - 4x3 - 2x5
x4 = 7

The general solution is thus the 2-plane in V5 specified by the parametric equation

X = (-1,3,0,7,0) + X3(8,_4(1,O'0) + X5(3[—2'0’O,l)o
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Remark. Solving the system A*X = C in practice involves applying
elementary operations to A , and applying these same operations to C.
A convenient way to perform these calculations is to form a new matrix from
A Dby adjoining C as an additional column. This matrix is often called the

augmented matrix of the system. Then one applies the elementary operations to this

matrix, thus dealing with both A and C at the same time. This procedure

is described in (6.18 of vol. I of Apostol.

Exercises

1. Let A bea k by n matrix. (a) If k<« n, show that the system
A*X =0 has a solution different from O0.(Is this result familiar?) What'
can you say about the dimension of the solution space? (b) If k> n, show that
there arevalues of C. such that the system A°*X = C has no solution.

2. Ccnsider the matrix A of p. A23. (a) Find the general solution
of the system A*X = 0. (b) Does the system A*X = C have a solution for
arbitrary C?

3. Repeat Exercise 2 for the matrices C, D, and E of p. A23.

4. Let B be the matrix of p. A23. (a) Find the general solution of
the system 1

BX = 11.

1
(b) Find conditions on a,b, and ¢ that are necessary and sufficient for the
system B:X = C to have a solution, where C = [;] . [Hint: What happens to
C when you reduce B to echelon form?] ©

5. Let A be the matrix of p. A20. Find conditions on a,b,c, and 4

that are necessary and sufficient for the system A*X = C to have a -solution,

wher e

‘nnocw
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let A bea % by n matrix; let r be the rank of A.

Let R be the set of all those vectors C of V

K fcr which the system

AX = ¢C

has a solution. (That is, R is the set of all vectors of the form
A.X , as X ranges over V_ .)

: n
(a) Show that R 1is a subspace of V,_ .

(k) Show that R has dimension r. nggg: Let W be the solution
space of the system A.X =0 . Then W has dimension m=n - r. C oose
a basis Al,..},Am' for W. By adjoining vectors one at a time, extend
this to a basis Al""’Am'Bl""'Br for all of v, o Show the vectors
A-B; » ..., A:B. span R; this follows from the fact that A-A; ;,g for
all i. Show these vectors are independent.] -

(c) Conclude that if r < k, there are vectors C in Vi such
that the system A.X = C has no solution; while if r = k, this system

‘has a solution for all C. (This provides an alternate proof of Theorem 6.)

(:) Let IA ‘be a bk by n metrix. The colums of A, when looked

at as elements of V, , span a subspace of Vk

space of A . The row space and column space of A are very different,

that is called the column

but it is a totally unexpected fact that they have the same dimension ! Prove

this fact as follows: Let R be the subspace of V,_

6. Show that R is spanned by the vectors A'El""’A'En ; conclude

defined in Exercise

that R equals the column space of A.
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Cartesian equations of k-planes in Vn .

There are two standard ways of specifying a k-plane M in Vn'

One is by an equation in parametric form:
X = P+ tlA1L + oeee F tkAk ’

where Al”"'Ak are independent vectors in Vn' (If trese vectors were
not independent, this equation would still specify an m-plane for some m,
but some work would be required to determine m. We normally require"the
vectors to be independent in the parametric form of the equation of a k-plane.)
Arother way to specify a plane in Vn is as the solution set of a
system of linear equations :
AX =C,
where the rows of A are independent. If A has size k by n, then
the plane in question has dimension n - k. The equation is called a

caretesian form for the equation of a plane. (If the rows of A were not

independent, then the solution set would be either empty , or an m-plane
for some m, but some work would be required to determine m.)

The. process of "solving" the system of equations A'X = C that
we described in the preceding section is an algorithm for passing from a
cartesian equation for M to a parametfic equation for M. Ore can ask
whether there is a process for the reverse, for passing from a parametric
equation for M to a cartesian equation. The answer is "yes," as we
shall see shortly. The other question one might ask is, "Why should one
care?" The answer is that sometimes one form is convenient, and other times
the other form is mére useful. Particularly is this true in the case of

3-dimensional space V3 , as we shall see.
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Definition. Let A Dbe a matrix of size k by n. Let Al" "’Ak
be the rows of A; 1let W be the subspace of Vn they span. Now the vector
X 1is a solution of the system A:X = 0 if and only if X is orthogonal
to each of the vectors Ai . This statement is equivalent to the statement
that X 1is orthogonal to every vector belonging to W. The solution space

of this system is for this reason sometimes called the orthogonal complement .

of W. It is often denoted W& (read "W perp".)

We have the following result:

Theorem 7. If W 1is a subspace of v, of dimension k, then
its orthogonal complement has dimension n - k. Furthermore, W is the
orthogonal complement of W'L; that is, (W'L)“' = W.

Proof. That wl ‘has dimension n - k 1is an immediate consequence of

Theorem 35 for W 1is the row space of a k by n matrix A with independent rows

Ai , Wwhence wi is the solution space of the system A*X = 0.

The space (W'L)‘L has dimension n - (n - k) , by what we just proved.
And it contains each vector A, (since A;’X =0 for each X in W'L.)
Therefore it equals the space spanned by Al""' Ak . g

Theorem 8. Suppose a k-pl‘ane M in Vn is specified by the parametric
equation

X = P+t1A1+...+tkAkf

where the vectors Ai are independent. Let W be the space they span;
and let Bl,'...,Bm be a basis for wk. If B is the matrix with rows
Bl""’Bm , then the equation B- (X‘P) =0 3 or

B-X = B-P,

is a cartesian equation for M.
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Proof. The vector X 1lies in M 1if and only if X - P belongs to
W. This occurs if and oniy if X -P |is orthogonal'to each of the vectors

B, and this occurs if and only if B-(X-P) = 0.0

The preceding proof actually tells us how to find a cartesian equation
for M. One takes the matrix A whose rows are the vectors Ai; one finds
a basis ‘Bl"'

w
the G§§S—Jordan algorithm; and then one writes down the equation B.X = B-P .

.,Bm for the solution space of the system A-X = 0, using

We now turn to the special case of V3, whose model is the familiar
3-dimensional space in which we live. In this space, we have only lines
(l1-planes) and planes (2-planes) to deal with. And we can use either the
parametric or cartesian form for lines and planes, as we prefer. However,
in this situation we tend to prefer:

parametric form for a line, and

cartesian form for a plane.

Let us explain why.

If L is a line given in parametric form X = P + tA, then A
is uniquely determined up to a scalar factor. (The point P is of course
not determined.) The equation itself then exhibits some geometric information
about the line; one can‘for instance tell by inspection whether or not
two lines are parallel.

.On the other hand, if M 1is a plane given in parametric form by the
equation X = P + sA + tB , one_does not have as much geometric information
immediately at hand. However, let us seek = to find a cartesian equation
for this plane. We note. that the orthogonal complement of L(A,B) is

one-dimensional, and is thus spanned by a single non-zero vector
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N = (al, ayr a3) - We call N a normal vector to the plane M ; it is

uniquely determined up to a scalar factor. (In practice, one finds N by
solving the system of equations

A.N =_O_)

BN =0 .)

Then a cartesian equation for M 1is the equation

N'(X"P) = Ou
If P 1is the point (pl, Py p3) of the plane M, this equation
has the form
(*) a;(x; - py) + ay(xy - py) + aj(xy - p3 ) = 0.

We call this the equation of the plane through P = (pl, Py p3) with

normal vector N = (al, ayr ag ).
We have thus proved the first half of the following theorem:
Theorem 9. If M is a 2-plane in V3, then M has a cartesian

equation of the form

a. X, + a X, + a.x = b ,

171 272 373
where N = (al, ays a3) is non-zero. Conversely, any such equation is

the cartesian equation of a plane in V the vector N 1is a normal vector

37
to the plane.
Proof. To prove the converse, we note that this equation is a system

consisting of 1 equation in 3 unknowns, and the matrix A = [a1 a, a3] has

Il

rank 1. Therefore the solution space of the system A.X = [b] is a plane

of dimension 3 -1=2. J

Now we see why the cartesian equation of a plane is useful; it
contins some geometric information about the plane. For instance, one can

tell by inspection whether two planes given by cartesian equations are parallel.
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For they are parallel if and only if their normal vectors are parallel,
and that can be determined by inspection of the two equations.
Similarly, one can tell readily whether the line X =P + tA
is parallel to a plane M; one just checks whether or not A is orthogonal
to the normal vector of M.
Meny theérems of 3-dimensional geometry are now easy to prove.

us consider some examples.

Theorem 10. Three planes in V3 intersect in a single point
if and only if their normal vectors are independent.
Proof. Take a cartesian equation for each plane; collectively,
they form a system A*X = C of three equations in three unknowns.
The rows of A are the normal vectors. The solution space of the system
(which consists of the points common to all three planes) consists of a

a single point if and only if the rows of A are independent. [}

Theorem 11. Two non-parallel planes in V3 intersect in a straight

Proof. Let N]-X'= b, and N,*X = b, be cartesian equations for
the two planes. Their intersection consists of those points X that satisfy
both equations. Since Nl and N2 are not zero and are not parallel, the
matrix having rows N1 and N2 has rank 2. Hence the solution of this
,- 0

Theorem 12. Let L be a line, and M a plane, in V

system of equations is a l-plane in V

3° If L is
parallelto M, then their intersection is either empty or all‘of L. If
L 1is not parallel to M, then their intersection is a single point.
Proof. ILet L have parametric equation X = P + tA; let M have
cartesian equation N.X = b. We wish to determine fcr what values of t
the point X = P + tA 1lies on the plane M; that is, to determine the

solutions of the equation

N.(P + tA) = b.
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Now if L 1is parallel to M, then the vector A 1is perpendicular to

the normal vector N to M; that is, N.A = 0. 1In this case, the equation
Ne(P + tA) = b

holds for all t if it happens that N.P = b, and it holds for no t
if N.P # b. Thus the intersection.of L and M is either all of L, or
it is empty.
On the other hand, if 'L 1is not parallel to M, then N.A # O.
In this case the equation can be solved uniquely for t. Thus the iﬁtersection

of L and M consists of a single point. (3

e

Example 5. Ccnsider the plane M = M(P;A,B) in V where

3 4
P=¢(, -7 0) and A=(1, 1, 1) and B= (-1, 2, 0). To find a normal

vector N = (al, 3y a3) to M, we solve the system

a, +a 0

1 2

—a1 +2a2

+a3

0.

One can use the Gauss—Jordan algorithm, or in this simple case , proceed
almost by inspection. One can for instance set a, = 1. Then the second

equation implies that a; = 2; and then the first equation tells us that

ag = —a1 -2, = -3. The plane thus has cartesian equation
2(xl - 1) + (x2 +7) - 3(x3 -0) = 0,
or
le + x2 - 3x3 =."5b




Exercises

1. The  solution set of the equation

—
(8)}

3xl + 2x2 - X5 =

is a plane in V3; write the equation of this plane in parametric form,

2. Write parametric equations for the line through (1,0,0) that

is perpendicular to the plane X) - Xg = 5.

3. Write a parametric equation for the line through (0,5,-2) that

is parallel to the planes Zx2 = X5 ard 5x1 * X, -7x3 = 4,

4. Show that if P and Q are two points of the plane M, then

the line through P and Q 1is conftained in M.

~

5. Write a parametric equation for the line of intersection of the
planes of Exercise 3.

6. Write a cartesian equation for the plane through P = (-1,0,2)
and Q = (3,1,5) that is parallel tovthe line through R = (1,1,1) with

direction vector A = (1,3,4).
7. Write cartesian equations for the plane M(P;A,B) in V4,
were P = (1, -1, 0, 2) and A=(1, 0, 1, 0) ard B= (2,1, O, 1).

8. Show that every n - 1 plane in Vn is the solution set of

an equation of the form a

; (X1 F o A, = b, where (al,...,an) #0 ;

and conversely.

?. Let M1 and M2 be 2-planes in V4; assume they are not

parallel. What can you say about the intersection of M1 and M2 ?

Give examples to illustrate the possibilities.
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