
-- The inverse of a matrix 

We now consider the pro5lern of the existence of multiplicatiave 


inverses for matrices. A t  this point, we must take the non-commutativity 

of matrix.multiplication into account.Fc;ritis perfectly possible, given 

a matrix A, that there exists a matrix B such that A-B equals an 

identity matrix, without it following that B - A  equals an identity matrix. 

r 
Consider the following example: 

Example 6. Let A and B be the matrices 

0 

] 
0 


= 

-Then A-B = I2 , but B-A # I3 , as you can 

1-1
check. 

I 

Definition. Let A be a k by n matrix. A matrix B of size n 

by k is called an inverse for A if both of the following equations hold: 

A-B = Ik and B-A = In . 
W e  shall prove that if k # n, then it is impossible for both these 

equations to hold. Thus only square matrices can have inverses. 

We also show that if the matrices aro,square and one of these equations 

holds, then the other equation holds as v e l l !  

Theorem 13. Let A be a matrix of size k by n. Then A has 

an inverse if and only if k = n = rank A. If A has an inverse, that 

inverse is unique. 



,Proof. Step 1. If B is an n by k matrix, we say B is a 

right inverse for A if A-B = Ik . We say B is a leEt inverse for A if 

B-A = In . 
QA&a.k  
be the rank that if A has a right inverse, 

then r = k; ar.d if A has a left inverse, then r = n. 
I 

of the theorem follows. 

Fjrst, suppose B is a right inverse for A . Then A - B  = I Itk * 

follows that the system of equations A.X = C has a solution for arbitrary 

C, for the vector X = B.C is one such solution, as you can check. 

Theorem 6 then implies that r must equal k. 

Second, suppose B is a left inverse for A. Then B-A = In . It 
follows that the system of equations A-X = -0 has only the trivial solution, 

for the equation A-X = g implies that B-(A*X) = 2 , whence X = d .  
Nc;w the dimension of the solution space of the system A.X = Q is n - r ; 

it follows that n - r = 0. 
* 

Step 2. Now let A be an n by n matrix of rank n. We show there 

is a matrix B such that A.B = In . 
i i

Because the rows of A are independent, the system of equations 


A.X = C has a solution for arbitrary C. In particular, it has a solution 

when C is one of the unit coordinate vectors Ei in Vn. Let us choose 

Bi SG that 

for i = l...,n. Then if B is the n by n matrix whose successive 

columns are B1,... ,B ' the product A.B equals the matrix whose successive n 

columns are El,...,E that is, A.B = I, n i  . 
1 Step 3. We show that if A and B are n by n matrices and . 

A-B= I, , then BmA = In. The " i E n  part of the theorem follows. 



Let us note that if we apply Step 1 to the case of a square matrix 

\ 

of size n by n , it says that if such a matrix has either a right 
inverse or a left inverse, then its rank must be n. 


Now the equation A.B = In says that A has a right inverse and that 

B has a left inverse. Hence both A and B must have rank n. Applying 

Step 2 to the matrix B, we see that there is a matrix C such that 

B.C = I n . Now we compute 

The equation B*C = In now becomes B - A  = In , as desired. 

Step 4. The computation we just made shows that if a matrix has 

an inverse, that inverse is unique. Indeed, we just showed that if 

B has an left inverse A and a ri~ht inverse C, then A = C. 

k:tus state the result proved in Step 3 as a separate theorem: 

Theorem 14. If A and B are n by n matrices such that 

A-B = I n ' then B . A =  I n .  El 
': 

W e  now have a theore t i ca l  criterion for the  ex i s tence  

of A . But how can one f ind  A-Ii n  practice? For 
I. 

instance,  how does one' compute B = d l  'if A is a given 

nonsingular 3 by 3 matrix? By Theorem 14, it will suffice 

to find a matrix 




such t ha t  A . B = 13. But t h i s  problem is j u s t  the sroblem of 

solving three systems of l i n e a r  equations 

Thus the Gauss-Jordan algorithm applies. An efficient way 

to apply this aqlgorithmto the computation af A-I is out-

lined on p.  612 of Apostol, which you should read now. 

There is a l s o  a f o n u l a  fo r  A-' that involves 

determinants. It is given in the next s e c t i o n .  

R~.mark. It remains to consider the question whether the existence 

of the inverse of a matrix has any practical significance, or whether it is 

of theoretical interest only. In fact, the problem of finding the inverse 

of a matrix in an efficient and accurate lay is of great importance in 

engineering. One way to explain this is t o  note that often in a real-life 

situation, one has a fixed matrix A, and one wishes to solve the system 

A.X = C repeatedly, for many different values of C. Rather than solving 

each one of these systems separately, it is much more efficient to find 

the inverse of A, for then the solution X = A".C can be computed by 

sirple matrix multiplication. 



Exercises 


1. Give conditions on a,b,c,d,e,E such that the matrix 


is a right inverse to the matrix A of Example 6. Find two right inverses for A. 

2. Let A be a k by n matrix with k <  n. Show that A has 

no left inverse. *.ow that if A has a right inverse, then that right inverse 

is not unique. 

3. Let B be an n by k matrix with k 4 n. Show that B has 


no right inverse. Show that if B has a left inverse, then that left 


inverse is not unique. 




-Determinants 

The determinant is a function that assigns, to each square matrix 

.-

A, a real number. It has certain properties that are expressed in the 


following theorem: 


Theorem 15. There exists a function that assigns, to each n by 

n rtlatrix A ,  a real number that we denote by det A. It has the following 

properties: 

(1) If B is the matrix obtained from A by exchanging rows 

i and j of A, then det B = - det A. 

( 2 )  If B is the matrix obtained form A by replacing row i of A 

hy itself plus a scalar multiple of row j (where i # j), then det B = det A . 
(3) If B is the matrix obtained from A by multiplying row i 

i 	 of A by the scalar c, then det B = c-det A . 
4 If In is the identity matrix, then det In = 1 . 

We are going to assume this theorem for the time being, and explore 


some of its consequences. We will show, among other things, that these 


four properties characterize the determinant function completely. kter 


we shall construct a function satisfying these properties. 


First we shall explore some consequences of the first three of these 

properties. We shall call properties (1)-(3) listed in Theorem 15 the 

elementary row properties of the detsrminant function. 

Theorem 16. t f 5e a function that assigns, to each n by n 

matri;: A, a real number. Scppose f satisfies the elementary row 

properties of the determinant function. Then for every n by n matrix A, 

( *) 	 f(A) = f(In).det A . 



-- 

This theorem says that any function f that satisfies properties 

(I), ( 2 ) ,  and (3) of Theorem 15 is a scalar multiple of the determinant 

function. It also says that if f satisfies property (4)as well, then 

E must equal the determinant function. Said differently, there is at 

most one function that satisfies all four conditions. 

-Proof. -St= 1. First we show that if the rows of A are dependent, 

then f ( A )  = 0 and det A = 0 .  Equation ( * )  then holds trivially in this case. 

Let us apply elementary row operations to A to brin~ it to echelon 

form B. We need only the first two elementary row operations to do this, 

and they change the ~ l u e s  of f and of the determinant function by at 

most a sign. Therefore it suffices to prove that f ( B )  = 0 and det B = 0. 

The last row of B is the zero row, since A has rank less than n. If 

we multiply this row by the scalar c, we leave the matrix unchanged, and 

hence we leave the values of f and det urlchanged. On the other hand, 

this operation multiplies these values by c. Since c is arbitrary, we 

conclude that f ( B )  = 0 acd d ~ tB = 0. 

Step 2. Now let us consider the case where the rows of A are 

independent. Again, we apply elementary row operations to A. Hcwever, 

we will do it very carefully, so that the values of f and det do not 

change. 

A s  usual,  we begin with t he  first column. I f  a l l  

e n t r i e s  are zero, nothing remains t o  be done with t h i s  column. 

We move on to consider columns 2,...,n and begin the process again. 

Otherwise, w e  f i n d  a non-zero en t ry  i n  the  f i r s t  column. 

I f  necessary, we exchange rows t o  bring t h i s  entry up t o  the 

upper left-hand corner: this changes the sign of both the func-

t i ons  f and d e t ,  so  we then mult iply this r o w  by -1 to 



change the s igns  back. Then we add mul t ip les  of the  f i r s t  row 

t o  each of the  remaining rows so  as t o  make a l l  t he  remaining 

e n t r i e s  i n  the  f i r s t  column i n t o  zeros. By the  preceding theorem 

and i ts  co ro l l a ry ,  this does not  change the  values of e i t h e r  f 

o r  det. 

Then w e  repeat the process, working w i t h  t h e  second 

column and with  rows 2 . n .  The operat ions  we a p p l y  w i l l  

n o t  a f f e c t  t he  zeros  w e  already have i n  column 1. 

Ssnce the rows of the original matrix were independent, then we do 

not have a zero row at the bottom when we finish, and the "stairsteps" 

of the echelon form go wer just one step at a time. 

In this case, w e  have brought t he  matrix t o  a form where a l l  of 

the e n t r i e s  below the main diagonal a r e  zero. (This is what is 

c a l l e d  upper t r i angu la r  -form.) Furthermore, all the diagonal 

e n t r i e s  are non-zero. Since the values of f and d e t  remain 

the same i f  we replace  A by this new matrix B ,  it now suf-

fices t o  prove our formula f o r  a matrix of the form 

where t he  diagonal e n t r i e s  a r e  non-zero. 



St.ep 3. We show that our formula holds for the matrix B. To do 

this we continue the Gauss-Jordan elimination process. By adding a multiple 

of the last row to the rows above it, then adding multiples of the next- 

to-last row to the rows lying above it, and so on, we can bring the matrix to 

the form where all the non-diagonal entries vanish. This form is called 

diaqonal form. The values of both f and det remain the same if we replace 

B by t h i s  new matrix C. So now it suffices to prove our 

formula for a matrix of the form 

0 0 0 . 0

0 ..' bnn 
. . 

(Note that the diagonal entries of B remain unchaaged when 

we apply the Gauss-Jordan process to eliminate a11 t h e  

non-zero entries above the diagonal. Thus the diagonal 

entries of C are the same a s  those o f  B.) 

WE?multiply. the first row of C by This action mlt iplies the 
l/bl 

values of both f and det by a Eactor of l/bll. Then we multiply the , 

second row by l/b22, the third by l/b33, and so on. By this process, 

we transform the matrix C into the identity matrix In. We conclude that 

and 

det In (l/bll)...( l/bNI) det C. 

Since det In = 1 by hypothesis, it follows from the second equation that 

det C = bll b22 ... bnn ' 



Then it follows from the first equation that 

E(C) = f(In)- det C, 

as desired. a 

Besides proving the determinant function unique, this theorem also 

tells us one way to compute determinants. O r d  applies this version 

of the Gauss-Jordan algorithm to reduce the matrix to 

echelon form. If the matrix that results has a zero row, then the 

determinant is zero. Otherwise, the matrix that results is in upper triangular 

form with non-zero diagonal entries, and the determinant is the product 
of the diagonal entries. , :- -lz . , .: 

.- ..... <, '.,;; :,-::= ,- .  .). . - : * . . .  .. . <,,, , .. ..... !, c::.= - '-'2. 2 cr:. , ,l 

The proof of this theorem tells us something else: If the rows of 

A are not independent, then det A = 0, while if they are independent, 

then det A # 0. We state this result as a theorem: 

Theorem 16. Let A be an n by n matrix. Then A ha.s rank n 

if and only i f  det A # 0 . 
An n by n matrix A fur which det A # 0 is said to be non-sinqular . 

This theorem tells us that A has rank n if and only if A is non-singular. 

Now we prove a totally unexpected result: 

Theorem 17. L e t  A m d  B k n by n matrices. Then 

det (A-B) = (det A). (det B) . 

Proof. This theorem is almost impossible to prove by direct computation. 

Try the case n = 2 if you doubt me ! Instead, we proceed in another direction: 

Let B be a fixed n by n matrix. Let us define a function f of 

n by n matrices by the formula 

f(A) = det(A9~). 



We shall prove that f satisfies the elementary row properties of the 


determinant function. From this it follows that 


f(A) = f(In)- det A , 

which means that 

det(A*B)= det(In.B)* det A 

= det B . det A , 
and the theorem is proved. 

First, let us note that if A1, ...,A are the rows of A, considered n 


as row matrices, then the rows of A-B are (by the definition of matrix 


multiplication) the row matrices A .B,...,A;B . Now exchanging rows1 


i and j of A, namely Aj arid A has the effect of exchanging rows 
j' 

i and j of A.B. Thus this operation changes the value of f by a 

factor of -1. Similarly, replacing the ithrow Ai of A by Ai + FAI 
has the effect on A-B of replacing its ith row Ai.B by 


( A ~t CA.).B = A~.Bt c A , - B
3 3 

= (row i of A . B )  + c(row j of A-B) .  

Hence it leaves the value of f unchanged. Finally, replacing the ith row 

Ai of A by cAi h s  the effect on A.B of replacing the ith row Ai.B 

by 


(cAi)-B = c (Ai-B) = c (row i of A-B). 

Hence it multiplies the value of f by c. 


The determinant function has many further properties, which we shall 


not explore here. (One reference book on determinants runs to four volumes!) 


We shall derive just one additional result, concerning the inverse matrix. 




-Exercises -
1. Suppose that f satisfies Lhe elementary row properties of 

the determinant function. suppose also tha t  x, y, z are numberssuch tha t  

mrnpute the value o f  f for each of  the following matrices: 

2. L e t  f be the Function of Esercise 1. Calculate f(In). Express 


E i n  terms of the determinant function. 


4 

7 .  	 Compute the determinant of the following matrix, using Gauss- 

Jordan elimination. 

4 .  	 Determine whether the following sets o f  vectors are l inearly  

independent, using determinants ., 

(a) 	Al = ( l , - l , O ) r  % = ( O f l f - l l r  A3. = ( 2 t 3 f - 1 ) 9  

(b)  	 q = ( 1 , - 1 . 2 , 1 ) ,  A.2 = ( - l t2 , -1 ,O)  f A 3  = ( 3 t - l t l t Q )  t 


A4 =. (1 ,0 ,0 ,1 )  


(c) 	P, = ( ~ . O , O ~ , O , ~ ) ,42 = ( I ~ ~ ~ o ~ o ~ o )  
A3 = ( I ~ O ~ ' ~ ~ O , ~ ) ,

A4 = ( l . l f O , l t l ) )  A5 = (1,010,010) . 

(dl q = (1,-11, A2 = ( O t l ) ,  A3 = ( l f l ) .  




4 

1 

-A formula for A-

i ' j  

We know that an n by n matrix A has an inverse if and only if 

it has rank n, and we bow that A has rank n if and only if 

det A # 0. Now we derive a formula for the inverse that involves determinants 

directly. 

We begin with a lema about the evaluation of determinants. 

Lemma -- 18. Given the row matrix [ a  ... an] , let us define a 
function f of (n-1) by (n-1) mtrtrices B by- the formula 

f(B) = det 

,I 
where B1 consists of the first j-1 columns of B, arid B 

2 
cc~nsists 

of the remainder of B. Then 

Proof. You can readily check that f satisfies properties (1)-( 3) 

of the determinant function. Hence- f(B)= f(I ) -det B. n- 1 W compute 

f(In) = det 

n-j 

where the large zeros stand for zero matrices of the appropriate size. 

A sequence of .j-1 interchanges of adjacent rows gives us the equation 



One can apply elementary operations to this matrix, without changing the 


value of the determinant, to replace all of the entries al,...,aj-l,aj+l,...,a
n 


by zeros. Then the resulting matrix is in diagonal form. We conclude that 


Corollary Consider an n by n mtrix of the form 


where Bl,...,B4 are matrices of appropriate size. Then 

det A = (-1) 

Proof. A sequence of i-1 interchanges of adjacent rows wilt king 

the matrix A to the form given in the preceding lma. a 

Definition. In general, if A is an n by n matrix, then the 


matrix of size (n-1) by (n-1) obtained by deleting the ith row and 


the j th column of A is called the (i,j)-minor of A, and is denoted Ai j.  

I 

me preceding corollary can then be restated as follows: [ 



Corollary 20. If all the entries in the jth column of A are zero except 

i+j for the entry ai j  in row i, then det A = (-1) aij-detAij .  

~ t ~ e  n w r  (- 1) i+j that appears in this corollary is also 
det Aij 

given a special name. It is called the (i,j)-cofactor of A. Note that 

the signs (-l)itj follows the pattern 


Nc;wwe derive our formula for A - ~ .  

Tl~eorern21. k t  A be an n by n matrix with det A # 0. 

1 If A * B = I then n' 

= (-l)jci det A .  ./det A .  bi j 3 1
(That is, the entry of B in row i and column j equals the ( j,i)-

cofactor of A,  divided by det A.  This theorem says that you can compute 

B by computing det A and the determinants of n2 different (n-1) by 

(n-1) matrices. This is certainly not a practical procedure except in 

low dimensions !) 

Proof. k t  X denote the jth col- of B. Then xi -
- 'ij. 

Because A-B = I the column matrix X satisfies the equation n' 

e ere E is the .column matrix consisting of zeros except for an entry 
j 

of 1 in row j.) Furthermore, if Ri denote the ith mlumn of A, then , 

I 



because A - In = A , 	we1 have the equation 

~ - ( i ~ ~  column of In) = A.Ei = A , .
1 


Now we introduce a couple of weird matrices for reasons that will become 


clear. Using the two preceding equations, we put them together to get 


the following matrix equation: 


It turns out that when we take determinants of both sides of this equation, 


we get exactly the equation of our theorem! First, we show that 


det [El ... Ei-l X Ei+l ... En] = xi . 
Written out in full, this equation states that 

det 


If x. = 0, this equation holds because the matrix has a zero row. If 
1 

xi # 0, we can by elementary operations replace all the ectries above 

and beneath xi in 	its column by zeros. The resulting matrix will k 


in diagonal form, and its determinant will be xi. 


TFus the determinant of the left side of sqxation ( * )  equals (det A) .xi, 

which equals (det A)*bij. We now compute the determinant of the right 

side of equation ( * ) .  Corollary 20 

applies, because the 	ith column of this matrix consistsof zeros except for 


an entry of 1 in row j . Thus the right side of ( * )  equals (-l)jti times 

the determinant of the matrix obtained by deleting raw j and column i. 


This is exactly the same matrix as we would obtain by deleting rcw j and 


column i of A. Hence the right side of ( * )  equals (-l)jti det R . . ,
J 1 



and our theorem is proved. a 


-Rc;mark 1. If A is a matrix with general entry ai  in 

row i and colrmn j , then the transpose of A (denoted is the matrix 

whose entry In row i and column j is a , ,  
J 1 

. 
Thus i f  A has size K by n, then A'= has sire n by k; it 

can be pictured as the mtrix obtained by flipping A around the line 

y = -x. For example, 

Of murse,i£ A is square, then the transpose of A has the same dimensions 

as A. 

Using this terminology, the theorem just proved says that the inverse of 

A can be computed by the following four-step process: 

(1) 	 Fcrm the matrix whose entry in row i and column j is the 


(This is called the matrix zf minor determinants.) 

nr*r det *ij. 


( 2 )  	 Prefix the sign (-1) to the entry in row i and column j, for 

each entry of the matrix. (Thisis called the matrix -of cofactors.) 

(5) 	Transpose the resulting matrix. 


( 4 )  	Divide each entry of the matrix by det A. 

In short, this theorem says that 


A-1 = -(cof A ) ~ ~ . 

det A 


This formula for A ' ~  is used for rornputational purposes only for 2 by 2 


or 3 by 3 matrices; the work simply gets too great otherwise. But it is 


important for theoretical purposes. For instance, if the entries of A 




are contin~ous functions of a parameter t, this theorem tells us that 

the e ~ t r i e sof A-' are also continuous functions of t, provided det A 

is never zero. 

R ~ m r k2. This formula does have one practical consequence of great 

importance. It tells us that i f  deb A is small as cunpared with the entries 

of A, then a small change in the.entries of A is likely to result in a 

large change in the ccmputed entries of A-I.This means, in an engineering problem , 

that a small error in calculating A (even round-off error) may result in a 

gross error in the calculated value of A-l.A matrix for which d e t  A is 

relatively small is saidtobeill-conditioned. If such a'mtrix arises in practice, 

one usually tries to refomlate the problem to avoid dealing with such a matrix. 


( 



a L 3  

Exercises 


\ 
I 	 use the formula f o r  A to find the inverses of the follow-

ing matrices , assuming the usual definition of the deter-,inant in LOW 
dirnens ions. 

(b) c 0 c : d n , a s s m F n g  ace f O .

2.  	L e t  A ba a square matrix all of whose entries are integers. 

show that i f  dat A = 21,  then all the entries of A-' are 

integers. 

3 .  Consider the matrices A,B ,C,D,E  of p. A.23.  Which of these 

matrices have inverses? 

4. Consider the following matrix function! 

For what values of t does A-' exist? Give a formula for A-Iin term 

5 .  Show that the conclusion of Theorem20 holds if A has an entry 

in row i and calm j, =d all the other entries in row i equal 0. 
Or ail 



'b. Theorem L e t  A, B I  C be matricas of .size lc by k, and 

m by I(, and m b l  mr respectively. 

\ 

rB Then 

d z] = (det A )  (det (2).

(Here 0 is the zero matrix of appropriate size.) 

Prwf. k t  B and C ke fixed. Fcr each k by k matrix 

A, define 

(a )  Show f satisfies the elementary row properties of the determinant 

function. 

(b) U s e  Exercise 5 to show that f( I ~ )= det C. 

( c )  Cctrrplete the proof. 



\ Ccnstruction of the determinant when n 5 3.

, T'i~e actual definition of the determinant function is t're least interesting 

part of this entire discussion. The situation is similar to the situation 

with respect to the functions sin x, cos x, and ex. You trill recall that 
0 

their actual definitions (as limits of Pbrseries) were not nearly as interesting 
as the properties we derived from simple basic assumptions about them. 

We first consider the case where n< 3, which isdoubtless familiar 

to you. This case is in fact all we shall need for our applications to calculus. 

We begin with a lema: 

Lemma 21. Let f ( A )  be a real-valued function of n by n matrices. 

Suppose that: 

( i )  Exchanging any two rows of A changes the mlue of f by a factor 

of -1. 

( i i )  For each i, £ is linear as a function of t h e  ith row. 

Then f satisfies the elementary row properties of the determinant function. 

Proof. By hypothesis, f satisfies the first elementary row property. 

We check the other tu'0. 

Let A,, ...,A, be the rows of A. To say that E is linear 

as a function of row f alone is to say tha t  (when f is written as a,function 

of the rows of A): 

= A ) ( * )  f(A ,,..., cx + dY, ... ,An) cf(A1,...,X,. .., n + dE(A1,...,Y,...,A,,). 

where cX + dY and X and Y appear in the ith component. 

The special case d = 0 tells us that multiplying the ith row 

of A by c has the effect of multiplying the mlue of f by c. 



We now consider the third type of elementary operation. 

Suppose that B is the matrix obtained by replacing row i of A 5 y  

itself plus c times row j. We then compute (assuming j > i for 

convenience in notation), 

The second term vanishes, since two rows are the same. (Exchanging them does 

not change the matrix, but by Step 1 it changes the value of f by a factor 

of -1.)(J 

Definition. We define 


det [a] = a. 


det I 1 L

bl b2 1 = a l b ~- a2bl.  

q,eorem22. The preceding definitions satisfy the four conditions 

of the determinant f unction. 

-Proof. The fact that the determinant of the identity matrix is 1 

follows by direct computation. . It then suffices to check that (i) and (ii) 

of the preceding theorem hold . 
Irl the 2 by 2 case, exchanging rows leads to the determinant bla2- b2al , 

which is the negative of what is given. 



In the 3 by 3 case, the fact that exchanging the last two rows changes the 

sign of the determinant follows from the.2 by 2 case. The fact t h a t  exchanging 

the first two rows also changes the sign follows similarly if we rewrite the 

formula defining. the determinant in the form 

Finally, exchanging rows 1 and 3 can be accomplished by three exchanges of 

adjacent rows [ namely, (A,B,C) --> (A,C,B)-9 (C,A,B) -3 (C,B,A) 1, so it changes 

the sign of the determinant. 

To check (ii) is easy. Consider the 3 by 3 case, for example. We 

how that any function o f  the form 

E(X) = [ a b c ] - X  = axl +bw + a
2 3 

is linear, where X is a vector in V The function 
3 

f ( X )  = d e t  

has this form, where the coefficients a, b, and c involve the constants 

bi and c Hence f is linear as a function of the first row. 
j *  


The "row-exchange propertyw then implies that E is linear as a function 


of each of the other rows. 0 



Exercise 


*l. Let us define 


det 


(a) Show that det Iq = 1. 

(b) Show that excha 7 'ng any two of the last three rows changes the sign of the

determinant. 


(c) Shwthat exchanging the first two rows changes the sign. [Hint: Write the 

expression as a sum of terms involving det pi 
(d) 

Pi 
'j7. I 
bjJ 


Show that exchanging any two rows changes the sign. 


(e) Show that det is linear as a function of the first row. 

(f) Conclude that det is linear as a function of the ith row. 


(g) Conclude that this formula satisfies all the properties of the determinant 


function. 




Construction of fhe Determinant unction^^ Suppose we take the posi- 
tive integers 1, 2, . . . , k and write them down in some arbitrary order, 
say jl, j z ,  . . . , j h .  This new ordering is called a permutation of these 
integers. For each integer ji in this ordering, let us count how many 
integers follow it in this ordering, but precede it in the natural ordering 
1, 2, . . . , k. This number is called the number of inaersions caused by  the 
integer j;. If we determine this ilumber for each integer ji in the ordering 
and add the results together, the number we get is called the total number 
of inversions which occur in this ordering. If the number is odd, we say 
the permutation is an odd permutation; if the number is even, we say it is 
an even permutalion. 

For example, consider the following reordering of the integers between 
1 and 6: 

2, 5 ,  1, 3, 6, 4. 

If me count up the inversions, we see that the integer 2 causes one inver- 
sion, 5 causes three inversions, 1 and 3 cause no inversions, 6 causes one 
inversion, and 4 causes none. The sum is five, so the permutation is odd. 

Xf a permutation is odd, me say the sign of that permutation is -; if 
it is even, we say its sign is +. A useful fact about the sign of a permuta-
tion is the following: 

Theorem 22.If we interchange two adjacent elements of a per-
mutation, we %hange the sign of the permutation. 

ProoJ. Let us suppose the elements ji and ji+1 of the permutation 
jl, . . .' , ji, ji+l, . . . , j k  are the two we interchange, obtaining the permu- 
tation 

j ~ ,. . . ) j+l,j ~ ,. . . , jk. 
The number of inversions caused by the integen j l ,  . . . , ji-1 clearly is 
the same in the new permutation as in the old one, and so is the number 
of inversions caused by ji+t, . . . , js. I t  remains to compate the number of 
inversions caused by ji+land by ji in the two permutations. 

Case I: j r  precedes j,-+lin the natural ordering 1, . . . , k. I n  this case, 
the number of inversions caused by j i is the same in both permutations, 
but the number of inversions caused by ji+lia one larger in the second 
permutation than in the first, for ji followsj4+*in the second permutation, 
but  not in the first. Hence the total number of inversions is increased by 
one. 

Case 11: ji  follows j s+ l  in the natural ordering 1, . . . , k. I n  this case, 
the number of inversion caused by jiclis the same in both permutations, 
but  the number of inversions caused by ji is one less in the second permu- 
tation than in the first. 

I n  either case the total number of inversions changes by one, 80 tha t  the 
sign of the permutation changes. U 



EXAMPLE.If we interchange the second and third elements of the 
permutation considered in the previous example, we obtain 2, 1,5, 3, 6, 4, 
in which the total number of inversions is four, so the permutation is even. 

Definition. Consider a k by k matrix 

Pick out one entry from each row of A ;  do this in such a way that these 
entries all lie in different columns of A .  Take the product of these entries, 

and prefix a + sign according as the permutation jl, . . . , jk is even or 
odd. (Note that we arrange the entries in the order of the rows they come 
from, and then"we compute the sign of the resulting permutation of the 
column indices.) 

If we write down all possible such expressions and add them together, 
the number we get is defined to be the determinant of A .  

REMARK.We apply this definition to the general 2 by 2 matrix, and 
obtain the formula 

If we apply i t  to a 3 by 3 matrix, we find that 

The formula for the determinant of a 4 by 4 matrix involves 24 terms, 
and for a 5 by 5 matrix it involves 120 terms; we will not write down these 
formulas. The reader will readily believe that the definition we have 
given is not very useful for computational purposes! 

The definition is, however, very convenient for theoretical purposes. 



Theorem 24. The determinant of the identity matrix is 1. 

. ,,:!, -" 

Proof. Every term in the expansion of det In has a factor . 

of zero in it except for the term alla22...alck, and this term equals 1. 

/ 

Theorem $5. If A '  is obtained from A by interchanging rows 

i and i+l, then det A '  = - det A. 

Proof. Note that each term 


in the expansion of det A' also appears in the expansion of det A, because 
we make all possible choices of one eritry from each row and column when 
we write down this expansion. The only thing we have to do is to compare 
what signs 

-
this term has when i t  appears in the two expansions. 

Let a~r, - . ni j ra i f l , j ,+ ,. . . nkjk be a term in the expansion of det A .  
If we look a t  the correspondi~ig term in the expansion of det  A', we see 
that we have the same factors, but they are arranged diflerenlly. For to 
compute the sign of this term, we agreed to arrange the entries in the 
order of the row8 they came from, and then to take the sign of the cor- 
respondiilg permutation of the column indices. Thus in the expansion of 
det A', this term mill appear as  

l'lie permutation of the columr~ indices here is the same as above except 
that  eleme~lts ji and j i+ l  have been interchanged. By Theorem 8.4, this 
means that this term appears in the expansion of det A' with the sign 
opposite to its sign ill the expansion of det A .  

Since this result holds for each term in the expansion of det A', we have 
det A' = - det A.  - . 0 

Theorem 26'. The function det is linear as a function of the ith 	row. 


-- th

Proof. Suppose we take the constant matrix A, and replace its i 


row by the row vector [xl ... A\] . When we take the determinant of this 
new matrix, each term in the expression equals a constant times x , for 

j 

some j. (This happens because in forming this term, we picked out exactly one 


entry from each row of A . )  Thus this function is a linear combination 

of th2 components xi; that is, it has the form 

LC, .... cl. x , for some constants c 
k 	 i ' 

a



Exercises 


1, Use Theorem2s.' to show that exchanging two rows of A 


changes the sign of the determinant. 


2. Consider the term in the definition of
all; a2j2"' %jk 

the determinant. (The integers j l ,  j2, . . . , jk are distinct.) Suppose 

we arrange the factors in this term in the order of their column indices, 

obtaining an expression of the form 

Show that the sign of the perm-tion il,i2,...,ik equals the sign of the 

permutation jl,j2,...,jk 

Ccnclude that det = det A in general. 

3.' k t  A be an n by n matrix, with general entry aij in 

row i and column j. Let m be a fixed index. Show that 

Here A denotes , as usual, the (m,j)-minor of A. This formula is 
mj 


called theMformula for expanding det A according to the cofactors o f  

the nth row. [Hint: Write the mth row as the sum of n vectors, each 

of which has a single non-zero component. Then use the fact that the 

determinant function is linear as a function of the mth row. 1 



-Tl~ecross-product 2 V3 

If A = (alI a2' a 3 )  and B = (blI bZI b ) are vectors in 3 v3' 

we define their cross product r2 be the vector 


al a2A X B  = (det a.] , - det 2) det[bl bd) 
2 3 

We shall describe the geometric significance of this product shortly. 


But first, we prove some properties of the cross product: 


Theorem 27. Fc'r all vectors A, B in V3, we have 


( a )  B%A = - A x B .  

(11) Ar(B + C) = AXB + A X C  , 

( E i + C ) X A  = BkA + C % A .  


( c )  (CA)X B = C ( A X B )  = AX(CB) . 
(d) A X B  is orthogonal to both A and B. 


Proof. (a) follows becauseexhanging two rows of a determinant 

ck-anges the sign; ar:d (b) and (c) follows because the determinant is linear 

as a function of each row separately. To prove ( d ) ,  Lie note that if 

C = (cII c2, c3) , then 
fcl '31 

by definition of the determinant. It;follows that A-(AxB) = B - ( A X B )  = 0 

because the determinant vanishes if two rows are equal. The only proof 

that requires some work is (e). For this, we recall that 

(a + bl2 = a2 + b2 + 2ab, and (a + b + c12 = a2 + b2 + c2 c 2ab + 2ac + 2bc . 
Equatiori (e )  can be written in the form 



We first take the squared terms on the left side and show they equal 


the right side. Then we take the "mixed" terms on the left side and show 


they equal zero. The squared terms on the left side are 


which equals the right side, 
x3 2(a,b.) .
i,j = 1 1 3  

The mixed terms on the left side are 


In the process of proving the previous theorem, we proved also 


the following: 

Theorem 2.8:. Given A, B, C , we have A- (BxC) = (AxB).C. 

--Proof. This fbllows from the fact that 

&finition. The ordered 3-tuple of independent vectors (A,B,C) 

of vectors of V3 is called a positive triple if 

A-(B% C) > 0. Otherwise, it is called a neqative triple. A positive 

triple is sometimes said to be a riqht-handed triple, and a negative one 

is said to be left-handed. 



The reason for this.terminology is the following: (1) the triple 

(i,i,&) is a positive triple, since i - ( d x k ) = det I3 = 1 , and 

(2) if we draw the vectors i,i, and & in V3 in the usual way, 

and if one curls the fingers of one's right hand in the direction from the 

first to the second, then one's thumb points in the direction of the 

third. 

n 


&" 
1 >

j-
Furthermore, if one now moves the vectors around in V perhaps changing their 
3' 

lengths and the angles between them, but never lettinq them become dependent, 


=d if one moves one's right hand around correspondingly, then the 


fingers still correspond. to the new triple (A,B,C) in the same way, and 


this new triple is still a positive triple, since the determinant cannot 


have changed sign while the vectors moved around.(Since they did not become 


dependent, the determinant did not vanish.) 


Theorem .29. Let A and B be vectors in V If A: and: B3' 

are dependent, then AXB = -0. Otherwise, AXB is the unique vector 

orthogonal to both A and B having length llA ll IlBll sin €3 (where 8 

is the angle between A and B), such that the triple (A,B,A%B) 

forms a positive (i.e.,right-handed) triple. 



ProoF. We know that A X B  is orthogonal to both A and B. \v'e 

also have 

I I~xaU2 = ~ I A C - I I B ~ ?- (A.B) 2 

= \ ( A [ \ ~ .~ ~ (1  1- 2 
ros 1 €I~ 1 = 1 ~ 1 1  ~ ( B A ~ ,  ~  s i n 2 e  . 

Finally, i f  C = A X B ,  then ( A , B , C )  is a positive t r iple,  since 



Polar coordinates 

Let A = (a,b) be a point of V2 different from Q. We wish to define what we mean 

by a "polar angle" for A. The idea is that it should be the angle between the vector A 

and the unit vector i = (1,O). But we also wish to choose it so its value reflects whether 

A lies in the upper or lower hdf-plane. So we make the following definition: 

Definition. Given A = (a,b) # Q. We define the number 

(*I 8 = * arcos (Aei/llAII) 

to  be a polar annle for A, where the sign in this equation is specified to be + if b > 0, 

and to be -if b < 0.Any number of the form 2mn + 0 is also defined to be a polar angle 

for A. 

If b = 0, the sign in this equation is not determined, but that does not matter. For 

if A = (a,O) where a > 0, then arccos (A-i/llAII) = arccos 1 = 0, SO the sign does not 

matter. And if A = (-a,O) where a > 0, then arccos (A.L/IIAII) = arccos (-1) = T. Since 

the two numbers + T and - T differ by a multiple of 27, the sign does not matter, for 

since one is a polar angle for A, so is the other. 

Note: The polar angle B for A is uniauely determined if we require -n < f? < T. 
But that is a rather artificial restriction. 

2 2 Theorem. ' I 2
A = (a,b) # Q a ~ o i n t  of V2. Lgt r = (a +b ) = IIAll; l a  8 

-a polar annle for A. Then 

A = (r cos 8, r sin 8). 



Proof. If A = (a,O) with a > 0, then r = a and 0 = 0 + 2ms; hence 

r cos 8 = a and r sin 0 = 0. 

If A = (-a,O) with a > 0, then r = a and 0 = a +2m7r, so that 

r cos 0 =  -a and r sin B =  0. 

Finally, suppose A = (a,b) with b f 0. Then A.C/I(AII = a/r, so that 

0 = 2ma e arccos(a/r). 

Then 

a/r = cos(*(&2rn~))= cos 0, or a = r cos 0. 

Furthermore, 

- 2 2 2 2b2 = r2 a2 = r (l-cos 8) = r sin 8, 

so 

b = *r sin 8. 

We show that in fact b = r sin 8. For if b > 0,then 0 = 2ma + arccos(a/r), so that 

and sin 19 is positive. Because b, r, and sin 0 are all positive, we must have b = r sin B 

rather than b = -r sin 8. 

On the other hand, if b < 0, then 0= 2m7r - arccos(a/r), so that 

2mn-a< B < 2 m a  

and sin 0 is negative. Since r is positive, and b and sin 8 are negative, we must have 

b = r sin 0 rather than b = -r sin 8. o 

(~ lane tarvMotion ( 

In the text, Apostol shows how Kepler's three (empirical) laws of planetary motion 

can be deduced from the following two laws: 

(1) Newton's second law of motion: F = ma. 

(2) Newton's law of universal gravitation: 



Here m, M are the masses of the two objects, r is the distance between them, and G is a 

universal constant. 

Here we show (essentially) the reverse-how Newton's laws can be deduced from 

Kepler's. " . , . k m L M  
More precisely, suppose a planet xy plane with the 

origin. Newton's laws tell us that the acceleration of P is given by the equation 

That is, Newton's laws tell us that there is a number A such that 

! != -7" r ,  X

r 

and that X is the same for all pIanets in the solar system. (One needs to consider other 

systems to see that A involves the mass of the sun.) 

This is what we shall prove. We use the formula for acceleration in polar 

coordinates (Apostol, p. 542): 

We also use some facts about area that we shall not actually prove until Units VI and 

VII of this course. 

Theorem. S u ~ ~ o s e  a la net P moves in the xy plane with the sun at the orign. 

(a) Ke~ler 's  second law im~lies  that the acceleration is radial. 

(b) Ke~ler's first and second laws imply that 

A~ 
-a,=--

2 4 ,
I 




\I 
where Xp ~ a number that mav depend on the particular planet P. 

(c) Keder's three laws i m ~ l v  that X p  is the same for d la nets. 

Proof. 	 (a) We use the following formula for the area swept out by the radial 

vector as the planet moves from polar 

angIe Q1 to polar angle 02: 

Here it is assumed the curve is specified by giving r as a function of 0. 

Now in our present case both 0 and r are functions of time t. Hence the area swept 

out as time goes from to to t is (by the substitution rule) given by 

dA 1 2 dB Differentiating, we have = I ,which is constant by Kepler's second law. That 

is, 

(*I 
for some K. 


Differentiating, we have 


The left side of this equation is just the transverse component (the po component) of a! 

Hence a is radial. 

(b) To apply Kepler's first law, we need the equation of an ellipse with focus at 

the origin. 

We put the other focus at  (a,O), and use 
, - ,  

the fact that an ellipse is the locus of all 

points (x,y) the sum of whose distances 

from (0,O) and (a,O) is a constant b > a. 



The algebra is routine: 

or r + Jr2 - 2a(r cos 0) + a'= b, 

r2 -2a(r cos 8) + 2 a2 = (b-r)2 = b -2br + 2 r , 
2br - 2 2 2ar cos 0 = b -a , 

C b2 - a2r = - , where c = -26-. and e 1 e cos 0 = a/b. 
+ i 

e 

(The numberhis called the eccentricity of the ellipse, by the way.) Now we compute the 

radial component of acceleration, which is 

Differentiating (**), we compute 
-1 


(1-e cos 0) 
Simplifying, 

dr = a1(-1)r 2(e sin e)=dB 

Then using (*) from p. B60, we have 
dr = $e1 sin 6')K. 

Differentiating again, we have 

, d2r 1 d0= - -(e cos O)zK, 
dt C 

d2r 1-Z = -&e cos 8) K,  using (*) to get rid of de/dt.
d t  

Similarly, 



[q 2 
- r = - r[K ] 7 using (*) again to get rid of dO/dt. 

Hence the radial component of acceleration is (adding these equations) 

K~ K~ K~ e cos e 1- 3 e  cos B)=--=-~[3 C + TIr r 

-5[ K' e cos 8 = +

C cOsr C 81

Thus, as desired, 

(c) To apply Keplerys third law, we need a formula for the area of an ellipse, 

which will be proved later, in Unit VII. It is 
ma'orArea = T( a axis) (minor axis) 

2 

The minor axis is easily determined to be 

given by: 

minor axis =4-
 =dm. 

It is also easy to see that 

major axis = b. 

Now we can apply Kepler's third law. Since area is being swept out at the constant 

rate ;K, we know that (since the period is the time it takes to sweep out the entire 

area), 
1
Area = (2K)(Period). 

Kepler's third law states that the following number is the same for all planets: 

(major axis)"(major axi s)3 



---2
4 r (major axia)l(minor A a w i ~ ) ~ / ~ ~
16 (major axi s)' 

r2lT i ni* 1 
= b major axis ;;Z 

Thus the constant Xp is the same for all planets. 

(1) L e t  L be  a l ine  in  V, with d i rec t ion vector A;  le t  P be  a point  not  on L. Show t h a t  the  

po in t  X on  t h e  l ine  L closest  to P sa t i s f ies  the condi t ion  t h a t  X-P is  pe rpend icu la r  to A.  

(2) F i n d  p a r a m e t r i c  equa t ions  f o r  t h e  cu rve  C consis t ing  of a l l  points  of V%equidis tant  

f r o m  t h e  po in t  	P = (0 , l )  a n d  t h e  l ine  y =-I. If  X is  a n y  po in t  of C, show t h a t  t h e  t a n g e n t  

3 
vec to r  to C' a t  X makes  equa l  angles  wi th  the  vector  X d  P a n d  t h e  vec to r  j. (Th i s  i s  t h e  

ref lec t ion p roper ty  of t h e  pa rabo la . )  

(3) Cons ide r  t h e  c u r v e  f ( t )  =(t,t 	cos ( d t ) )  f o r  0 c t I 1, 

= (0,O) f o r  t = 0. 

T h e n  f is cont inuous .  L e t  P be t h e  p a r t i t i o n  

P = {O,l /n , l / (n-1),...,1/3,1/2,1]. 

D r a w  a p ic tu re  of t h e  inscr ibed polygon x ( P ) in t h e  case  n = 5. Show t h a t  i n  gene ra l ,  x(P) 

h a s  l eng th  

I x(P) I 2 1 + 2(1/2 + 113 + ... + l / h  ). 

Conc lude  t h a t  f is no t  rectif iable.  



($) Let q be a fixed unit vector. A particle moves in Vn in such a way that its position 

r ( t ) -u  3 vector ~ ( t )  satisfies the equation = 5t for all t ,  and its velocity vector makes a

constant angle 0 with u, where 0 < 9 < 7r/2. 


2
(a) Show that ((I[(= 15t /cos 8.

(b) Compute the dot product . a ( t ) -~( t )in terms o f t  and 0. 

(9 A particle moves in i-space so as to trace out a curve of constant curvature K = 3. 

Its speed at time t is e2t. Find Ila(t)ll, and find the angle between q and 3 at  time t .  

(6) 	Consiaer the curve given in polar coordinates by the equaticn 

r = e- for  0 5 Q 52UM , where N is a positive integer. 

Find the length of this curve. h3at happens as M becomes 

a rb i t r a r i l y  large? 

( a )  	 Derive the following formula, vhich can be used t o  compute the 

cctrvature of a curve i n  R": 

(t) 	Find the cunature  of the curve ~ ( t )= ( l c t ,  3 t ,  Z t t2, 2 t  2 ) .
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