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The inverse of a matrix

We now consider the problem of the existence of multiplicatiave
inverses for matrices. At this point, we must take the non-commutativity
of matrix multiplication into account.Fcr it is perfectly possible, given
a matrix A, that there exists a matrix B such that A°B equals an
identity matrix, without it following that B.A equals an identity matrix.

Consider the following example:

Example 6. Let A and B be the matrices

1 1 2 0 O
A = B =
0o 1 3 3 -2
-1 1
Then A.B = I2 , but B.A # I3 , as you can check.

Definition. Let A bea k by n matrix. A matrix B of size n

by Kk 1is called an inverse for A 1if both of the following equations hold:

A.-B = I and B.-A = I
K n

We shall prove that if k # n, then it is impossible for both these
equations to hold. Thus only square matrices can have inverses.

We also show that if the matrices are square and one of these equations

holds, then the other equation holds as well!

Theorem 13. ILet A be a matrix of size k by n. Then A has
an inverse if and only if k = n = rank A. If A has an inverse, that

inverse is unique.



B26

‘Proof. Step 1. If Bisan n by k matrix, we say B 1is a

right inverse for A if A.B = I, « We say B is a left inverse for A if

ORI k&jA&a,‘(ﬁ-ﬂmW.

Iet r Dbe the rank of A. We show that if A "has a right inverse,

then r = k; ard if A has a left inverse, then r = n. [ﬁfhe "only if" part

"of the theorem follows.

First, suppose B 1is a right inverse for A . Then A.B = I, - It
follows that the system of equations A.X = C has a solution for arbitrary
C, for the vector X = B.C 1is one such solution, as you can check.

Theorem 6 then implies that r must equal k.

Second, suppose B is a left inverse for A. Then B-A = In . It
follows that the system of equations A.X = 0 has only the trivial solution,
for the equation A.X =0 implies that B.(A-X) = 0, whence X =0 .
Now the dimension of the solution space of the system A.X =0 is n~r ;

it follows that n - r = 0.

-~

Step 2. Now let A be an n by n matrix of rank n. We show there

is a matrix B such that A.B = In .

Because the rows of A are independent, the system of equations
A.X = C has a solution for arbitrary C. In particular, it has a solution
when C 1is one of the unit coordinate vectors Ei in Vn.' Let us choose

Bi s¢ that

for i=1,...,n. Then if B is the n by n matrix whose successive

columns are Bl""’Bn , the product A.B equals the matrix whose successive

columns are E -+E i that is, A.B = I

l’oc
Step 3. We show that if A and B are n by n matrices and

n '

A.B = In , then B.A = In' ‘ The "if" part of the theorem follows.
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Let us note that if we apply Step 1 to the case of a square mat;ix
of size n by n , it says that if such a matrix has either a right
inverse or a left inverse, then its rank must be n.

Now the equation A.B = In says that A has a right inverse and that
B has a left inverse. Hence both A and B must have rank n. Applying

Step 2 to the matrix B, we see that there is a matrix C such that

B.C = In . Now we compute
“A.(B.C) = (A.B).C ,
A‘In = In-C r
A =

The equation B.C = In now becomes B-A = In , as desired.

Step 4. The computation we just made shows that if a matrix has

an inverse, that inverse is unique. Indeed, we just showed that if

B has an left inverse A and a right inverse C, then A =C.[Q

Let us state the result proved in Step 3 as a separate theorem:

Theorem 14. If A and B are n by n matrices such that

A-B=1I , themn BA=1_ . O

We now have a theoretical criterion for the existence

1

of A”". But how can one find A~l in practice? For

instance, how does one compute B = A~! if A is a given
nonsingular 3 by 3 matrix? By Theorem 14, it will suffice

to find a matrix

by; byy byy
B = |by; by, by,

b3; by, ba;



sucp that A * B = 13. But this problem is just the problem of

solving three systems of lirear equations

P11 1 By2 O] bis] [0
A+ by = {0 and A - byl = 1] anda A . byy| = {0
P31 0 P3pl °J byl L1
Thus the Gauss-Jordan algorithm applies.~ An efficient way
to apply this ngorithm to the computation cf A-l is out-
lined on p. 612 of Apostol, which you should read now.
There is also a formula for A~ that involves
determinants. It is given in the next section.
Remark . It remains to consider the question whether the existence

of the inverse of a matrix has any practical significance, or whether it is
of theoretical interest only. 1In fact, the problem of finding the inverse
of a matrix in an efficient and accurate way is of great importance in
engineering. One way to explain this is to note that often.in a real-life
situation, one has a fixed matrix A, and one wishes to solve the system
A.X = C repeatedly, for many different values of C. Rather than solving
each one of these systems separately, it is much more efficient to find
the inverse of A, for then the solution X = A_l-C can be computed by

simple matrix multiplication.



Exercises
1. Give conditions on a,b,c,d,e,f such that the matrix
a

B = c
e

oo

is a right inverse to the matrix A of Example 6. Find two right inverses for A.
2. et A bea k by n matrix with k< n. Show that A has
no left inverse. Show that if A has a right inverse, then that right inverse
is not unique.
3. et B bean n by k matrix with k< n. Show that B has

no right inverse. Show that if B has a left inverse, then that left

inverse is not unique.



Determinants

The determinant is a function that assigns, to each square matrix
A, awreal number. It has certain properties that are expressed in the
following theorem:

Theorem 15. There exists a function that assigns, to each n by
n matrix A, a real number that we denote by det A. It has the following
properties:

(1) If B is £he matrix obtained from A by exchanging rows
i and j of A, then det B = - det A.

(2) If B 1is the matrix obtained form A by replacing row i of A
by itself plus a scalar multiple of row j (where i # j), then det B = det A .

(3) If B 1is the matrix obtained from A by multiplying row i
of A by the scalar c, then det B = c-det A .

(4) If I is the identity matrix, then det I =1.

We: are going to assume this theorem for the time being, and explore
some of its consequences. We will show, among other things, that these
four properties characterize the determinant function completely. Later
we shall construct a function satisfying these properties.

First we shall explore some conseguences of the first three of these
properties. We shall call properties (1)-(3) 1listed in Theorem 15 the

elementary row properties of the determinant function.

Theorem 16. Let. £ be a function that assigns, to each n by n
matrix A, a real number. Suppose f satisfies the elementary row

properties of the determinant function. Then for every n by n matrix A,

(*) Cf(A) = f(In)-det A .
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This theorem says that any function £ that satisfies properties
(1), (2), and (3) of Theorem 15 is a scalar multiple of the determinant
function. It also says that if f satisfies property (4) as well, then
f must equal the determinant function. Said differently, there is at
most one function that satisfies all four conditions.

" Proof. Step 1. First we show that if the rows of A are dependent,
then f(A) = 0 and det A = 0. Equation (*) then holds trivially in this case.

Let us aéply elementary row operations to A to bring it to echelon
form B. We need only the first two elementary row operations to do this,
and they change the values of £ and of the determinant function by at
most a sign. Thérefore it suffices to prove that £(B) = 0 and det B = 0.
The last row of B 1is the zero row, since A has rank less than n. If
we multiply this row by the scalar c, we leave the matrix unchanged, and
hence we leave the values of £ and det wuchanged. On the other hand,
this operation multiplies these values by c. Since c¢ is arbitrary, we
conclude that £(B) = 0 ard det B = O.

Step 2. Now let us consider the case where the rows of A are
independent. Again, we apply elementary row operations to A. Hcwever,
we will do it very carefully, so that the values of f and det do not
change.

As usual, we begin with the first column. If all

entries are zero, nothing remains to be done with this column.

We move on to consider columns 2,...,n and begin the process again.
Otherwise, we find a non-zero entry in the first column.

If necessary, we exchange rows to bring this entry up to the

upper left-hand corner; this changes the sign of both the func-

tions £ and det, so we then multiply this row by -1 to
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change the signs back. Then we add multiples of the first row

to each of the remaining rows so as to make ail the remaining
entries in the first column into zeros. By the preceding theorem
and its corollary, this does not change the values of either £

or det.
Then we repeat the process, working with the second

column and with rows 2,...,n. Tﬁe operations we apply will
not affect the zeros we already have in column 1.

Since the rows of the original matrix were independent, then we do
not have a zero row at the bottom when we finish, and the "stairsteps"

of the echelon form go over just one step at a time.
In this case, we have brought the matrix to a form where all of

the entries below the main diagonal are zero. (This is what is

called upper triangular form.) Furthermore, all the diagonal

entries are non-zero. Since the values of £ and det remain
the same if we replace A by this new matrix B, it now suf-

fices to prove our formula for a matrix of the form

- .
by by e+ by,
0 b.. ... b
B = 22 2ny
0 0 . by,

where the diagonal entries are non-zero.
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Step 3. We show that our formula holds for the matrix B. To do
this we continue the Gauss-Jordan elimihation process. By adding a multiple
of the last row to the rows above it, then adding multiples of the next-
to-last row to the rows lying above it, and so on, we can bring the matrix to
the form where all the non-diagonal entriesbvaniéh. This form is called

diagonal form, The values of both f and det remain the same if we replace

B by this new matrix C. So now it suffices to prove our

formula for a matrix of the form

sand ) —

b, O 0 ... 0
0 b 0 ... O

c = 22 .
0 ‘0o 0 ... b |

- . nn
(Note that thé diagonal entries of B remain unchanged when
we apply'thé Gauss-Jordan process to eliminate all the
non-zero entries above tﬁe diagonal. Thus the diagonal
entries of C are the same as those of B.)

Wer multiply'the first row of C by 1/b11. This action multiplies the
values of both f and det by a factor of 1/bll' Then we multiply the

second row by 1/b22, the third by 1/b and so on. By this process,

33’

we transform the matrix C into the identity matrix In' We conclude that

f(In) (l/bll)...(l/bnn) £(C) , and
detIn = (1AH1L..U/gm)detC.
Since det I,= 1 by hypothesis, it follows from the second equation that

b .

det C = b11 b22 «ee B
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Then it follows from the first equation that
£(c) = f(In)- det C,

as desired. B!

Be:sides proving the determinant function unique, this theorem also
tells_us one way to compute determinants. One applies this version
of the Gauss-Jordan algorithm to reduce the matrix to
echelon form. If the matrix that results has a zero row, then the
determinant is zero. Otherwise, the matrix that results is in upper triangular

form with non-zero diagonal entries, and the determinant is the product
of the diagonal entries. ‘ § {z

e A

AT BOME UL RHE AT UMnn, YL RS ATe 2ers )

The proof of this theorem tells us something else: If the rows of
A are not independent, then det A = 0, while if they are independent,

then det A # 0. We state this result as a theorem:

Theorem 16. Ilet A bean n by n matrix. Then A has rank n

if and only if det A #0 . U

Arn n by n matrix A for which det A # 0 1is said to be non-singular .
This theorem tells us that A has rank n if and only if A 1is non-singular.

Now we prove a totally unexpected result:
Theorem 17. Let A ard B be n by n matrices. Then
det (A:B) = (det A)-(det B) .
Proof. This theorem is almost impossible to prove by direct computation.
Try the case n = 2 if you doubt me ! Instead, we proceed in another direction:

Iet B bea fixed n by n matrix. Let us define a function £ of

n by n matrices by the formula

£(A) = det(A-B).
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We shall prove that f satisfies the elementary row properties of the

determinant function. From this it follows that

£(A)

f(In)- det A,

which means that

det(A.B) = det(In-B)- det A

detB'detAr
and the theorem is proved.

First, let us note that if A .,An are the rows of A, considered

l,o-

as row matrices, then the rows of A.B are (by the definition of matrix

multiplication) the row matrices Al-B,...,An-B . Now exchanging rows

i and j of A, namely Aj ard Aj' has the effect of exchanging rows
i and j of A-B. Thus this operation changes the value of £ by a
factor of -1. Similarly, replacing the ith row A, of A by A+ cAj

has the effect on A.B of replacing its ith row Ai-B by

(Ai + C-Aj)'B = Ai'B + C AJ-'B
= (row i of A.B) + c{row j of A-B).
Hence it leaves the value of f unchanged. Finally, replacing the ith row

Ai of A by cAi hés the effect on A:-B of replacing the ith row Ai-B
by

(cAi)- B = c (Ai-B) = ¢ (row i of A-B).
Hence it multiplies the value of £ by c. a

The determinant function has many further properties, which we shall

not explore here. (One reference book on determinants runs to four volumes! )

We shall derive just one additional result, concerning the inverse matrix.
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Exercises

1. Suppose that f satisfies the elementary row properties of

the determinant function. Suppose also that x, y, z are numberssuch that

X'y 2
£ 3 0 2 =1,
1 1 1

Compute the value of £ for each of the following matrices:

2x 2y 2z x Y 2 x-1 y-1 2z-1
(a) ) (b) . ' (<)

3/2 0 1l 3x+3 3y 32z2+2 1 1 1

3 3 3 x+2 y+2 z+2 4 1 3

2. Let f be the function of Exercise 1. Calculate f(In). Express

f in terms of the determinant function.

3. Compute the determinant of the following matrix, using Gauss-

Jordan elimination.

0 1 1 -1

1 2 1 3
2 -1 4
0 1 0

4. Determine whether the followinq sets of vectors are linearly

independent, using determinants.

(a) A

(b)

(1,-1,0), AZ = (0,1,-1), A3, = (2,3,-1).

=

(1,-1,2,1), A‘2 = (-1,2,-1,0), A3 = (3,-1,1,0),

= (1,0,0,1).

o
n

-
il

(c) (1,0,0,0,1), A_z = (1,1,0,0,0), A3 = (1100.110'1-)'
= (1,1,0,1,1), A= (1,0,0,0,0) .

(d)

e
N

(1,-1), AZ = (0,1), A3 = (1,1).
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A formula for A

We: know phat an n by n matrix A has an inverse if and only if
it has rank n, and we‘know that A has rank n 1if and only if
det A # 0. Now we derive a formula for the inverse that involves determinants
directly.

We begin with a lemma about the evaluation of determinants.

Lemma 18.  Given the row matrix [a; ... a ] / let us define a

function £ of (n-1) by (n-1) matrices B by the formula

ves A
| o

[@ R

£(B) = det B

O oo

where B, ccnsists of the first j-1 columns of B) ard B censists

2
of the remainder of B. Then

£(B) = (-1)3*1 aj-det B.

Proof. You can readily check that £ satisfies properties (1)-(3)

of the determinant function. Hence £(B) = f(In_l)-det B. We compute
ay .. aj es @
£(1) = det I R I)
“n j-1 1.
<) 0 In—j

where the large zeros stand for zero matrices of the appropriate size.

A sequence of - j-1 interchanges of adjacent rows gives us the equation
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O oo

£(1) = (-1)9Yaet| 2, ...

One can apply elementary operations to this matrix, without changing the

value of the determinant, to replace all of the entries al""'aj-l’aj+l""'an
by zeros. Then the resulting matrix is in diagonal form. We conclude that

(1) = ey = e O

Corollary 19. Consider an n by n metrix of the form

— 0 ]
s || s, (
O -
A = ail aij eee ain b Ao U
0
I O
where Bl""'B4 are matrices of appropriate size. Then
L B B
det A = (-1)*a, . -det 12
13 B3 B4

Proof. A sequence of 1i-1 inﬁerchanges of adjacent rows will bring

the matrix A to the form given in the preceding lemma. [

Definition. In general, if A is an n by n matrix, then the
matrix of size (n-1) by (n-1) oktained by deleting the ith row and
the jth colum of A 1s called the (i,j)-minor of A, and is denoted Ajj'

Tre preceding corollary can then be restated as follows: (
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Corollary 20. If all the entries in the jth column of A 3ré zero except

for the entry aij in row i, then det A = (-1)l+J aij-det Ai"

]

The number (-1)'"7 det Aij that appears in this corollary is also

given a special name. It is called the (i,j)-cofactor of A. Note that

i+j

the signs (-1) follows the pattern

New we derive our formula for A .

Theorem 21. Let A be an n by n matrix with det A # 0.
If A:‘B = In' then
= (_pyJti
bij = (-1) det Aji/det A.
(Trat is, the entry of B 1in row i and column j equals the (j,1)-

cofactor of A, divided by det A. This theorem says that you can compute

2

B by computing det A and the determinants of n° different (n-1) by

(n-1) matrices. This is certainly not a practical procedure except in

low dimensions!)

th colum of B. Then X, = b,..

Proof. Let X denote the j i i

Because A-B = I, the column matrix X satisfies the equation

A-X (;*! corlum of 1)=E, .

]
(Here Ej is the -column matrix consisting of zeros except for an entry

th

of 1 in row j.) Furthermore, if A denote the i~ column of A, then
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because A~In = A , we have the equation

.th
i

A-( column of In) = A-E, = A,.

1 1

Now we introduce a couple of weird matrices for reasons that will become
clear. Using the two preceding equations, we put them together to get

the following matrix equation:

(*) A -(E .E. X E

1B i1 0 By R T S e T SR
It turns out that when we take determinants of both sides of this equation,

we get exactly the equation of our theorem! First, we show that

det [El cse Ei—]. X E1+l e e En] = xi

Written out in full, this equation states that

— x,
r, 1 O

i-1 .
det 0 ... 0}ix,10...0 = X..
i i

() . I
n-i
- % —

If X, = 0, this equation holds because the matrix has a zero row. If
X5 # 0, we can by elementary operations replace all the entries above

and beneath X4 in its column by zeros. The resulting matrix will be

in diagonal form, and its determinant will be X, .

Trus the determinant of the left side of equation (*) equals (det A)-xi,
which equals (det A)-bij. We now compute the determinant of the right
side of equation (*). Corollary 20
applies, because the ith column of this matrix consistsof zeros except for
an entry of 1 in row j. Thus the right side of (*) equals (-1)'].+i times
the determinant of the matrix obtained by deleting row j and column i.
This is exactly the same matrix as we would oktain by deleting rcw j and

colutn i of A. Hence the right side of (*) equals (—1)”1 det Aji'
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and our theorem is proved. )

Remark 1. If A is a matrix with general entry aij in

row i and column j + then the transpose of A (denoted Atr) is the matrix
whose entry in row { and column j is a4

tr

Thus {f A has size k by n, then- A has size n by k; it

can be pictured as the matrix obtained by flipping A around the line

1 2% 1 3 s
3 4| T2 4 s|.

5 6

Y ~-X. For example,

Of course,if A 1is square, then the transpose of A has the same dimensions
as A.

Using this terminology, the theorem just proved says that the inverse of
A can be computed by the following four-step process:

(1) Fcrm the matrix whose entry in row i and column j is the

number det Aij' (This is called the matrix of minor determinants.)

(Z) Prefix the sign (—1)1+J to the entry in row i and column j, for
each entry of the matrix. (This is called the matrix of cofactors. )
() Transpose the resulting matrix.

(4) Divide each entry of the matrix by det A.

In short, this theorem says that

-1 _ 1
det A

This formula for A_1 is used for computational purpcses only for 2 by 2

A (cof A)tr.

or 3 by 3 matrices; the work simply gets too great otherwise. But it is

important for theoretical purposes. For instance, if the entries of A
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are continuous functions of a parameter t, this theorem tells us that

the entries of A—1 are also continuous functions of t, provided det A

is never zero.

Remark 2. This formula does have one practical consequence of great
importance. It tells us that if det A is small as compared with the entries

of A, then a small change in the entries of A is likely to result in a

1

large change in the computed entries of A ~. This means, in an engineering problem ,

that a small error in calculating A (even round-off error) may result in a
gross error in the calculated value of A'l. A matrix for which det A is

relatively small is saidtobeill-conditioned, If such a matrix arises in practice,

one usually tries to reformulate the problem to avoid dealing with such a matrix.

(



Exercises

1. Use the formula for A-,l to find the inverses of the follow-

ing matrices , assuming the uswval definition of the determinant in low

dimensions.
a b
(a) [; . é} » assuning ad - be # 0 -,

a 0
(b) J]O e d|, assuming ace ¢ 0 ,
0 0 e
1 2 3
(e) |3 2 1
111

2. Let A be a square matrix all of whose entries are integers.
Show that if det A = ¢1, then all the entries of A™l are

integers.

3. Consider the matrices A,B,C,D,E of p. A.2}. Which of these
matrices have inverses?

4. Consider the following matrix function:

t tz t3
AGt) = 0 1 ¢
2 0 t

1

For what values of t does A'l exist? Give a formula for A~ in terms

of t.
S. Show that the conclusion of Theorem20 holds if A has an entry

of a;inrow i and colum j, and all the other entries in row i equal O.

i



*y. Theorem Let A, B, C be matrices of size k by %k, and

m by x, and m by m, respecéively. Then

A 0
det = (det A) (det C).
\B C

(Here 0 is thé zero matrix of appropriate size.)

Proof. lLet B and C be fixed. Fcr each k by k matrix

A, define
A

£(A) =det

.
B E_.

(a) Show f satisfies the elementary row properties of the determinant
function.

(b) Use Exercise 5 to show that f(Ik) = det C.

{c) Complete the proof.
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Ccnstruction of the determinant when n < 3.

The actual definition of the determinant function is tke least intéresting
part of this entire discussion. The situation is simiiar to the situation
with respect to the functions sin x, cos x, and eX. You will recall that
their actual definitions (as limits of Q%er series) were not nearly as interesting
as the properties we derived from simple basic assumptions about them.

We first consider the case where n< 3, which isdoubtless familiar

to you. This case is in fact all we shall need for our applications to calculus.

We begin with a lemma:

Lerma 21. Let £(A) be a'real—valued function of n by n matrices.
Suppose that:

(i) Exchanging any two rows of A changes‘the value of f by a factor

of -1.

(ii) For each i, £ 1is linear as a function of the ith row.
Then f satisfies the elementary row proverties of the determinant function.

Proof. By hypothesis, f satisfies the first elementary row property.
We check the other two.

Let Ajr... Ay be the rows of A. To say that f 1is linear

as a function of row i alone is to say that (when £ is written as a function

of the rows of A):

(*) £(a

TARRX: cX + dy, ... ,An) = Cf(Al""'X""'An) + df(Al,...,Y,...,An),

where <X + dY and X and Y appear in the ith component .

. . .th
The special case d = 0 tells us that multiplying the i7" row

of A by ¢ has the effect of multiplying the value of £ by c.
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We now consider the third type of elémentary operation.
Suppose that B is the matrix obtained by replacing row i of A by
itself plus c times row j. We then compute (assuming j > i for

convenience in notation),

£(8) = f(Al,...,Ai+cAJ.,...,TAJ.,...,An)
A ;th ;tn
= EA A A e A) ¢ G E( A A A ).
T.tn (in Cin Tin
i j i j

The second term vanishes, since two rows are the same. (Exchanging them does
not change the matrix, but by Step 1 it changes the value of f by a factor

of -1.) [

Definition. We define

det ]:a] = a.

[(a a
det ' ’ = a.b, - a5sb

Lbl b2 172 271,

4 %2 3 _ _
b. b b, b
det bl b2 b3 = al. det 2 73| _ a, det 13 +a3. det
: C, Cy oy c3—
[C1 2 ©3

Theorem 22.  The preceding definitions satisfy the four conditions
of the determinant function.
Proof. The fact that the determinant of the identity matrix is 1
follows by direct ccmputation. - It then suffices to check that (i) and (ii)
of the precéding theorem hold .
In the 2 by 2 case, exchanging rows leads to the determinant blaz- b2a1 '

which is the negative of what is given.

o'
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In the 3 by 3 case, the fact that exchanging the last two rows changes the
sign of Ehe determinant follows from the 2 by 2 case. The fact that exchanging
the first two rows also changes the sign follows similarly if we rewrite the

formula defining the determinant in the form

a, a a, a a, a

det| 1 2-c3 - det| ! 3~cé + det| 2 3 =
’ b
P P b1 Py P2 B3

Finally, exchanging rows 1 and 3 can be accomplished by three exchanges of
adjacent rows [ namely, (A,B,C) -5 (a,C,B) -» (C,A,B) -5 (C,B,A) ], so it changes

the sign of the determinant.

To check (ii) is easy. Consider the 3 by 3 case, for example. We

know that any function of the form

f(X) = [a b c].X = ax; + bx, + cxq
is linear, where X 1is a vector in V3 . The function
Xp %X X3
f(X) = det b1 b2 b3
1 %2 ©3

hes this form, where the coefficients a, b, and ¢ involve the constants
bi and cj . Hence f 1is linear as a function of the first row.
The "row-exchange property" then implies that f is linear as a function

of each of the other rows. O



Exercise

*1.

(a) Show that det I
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Let us define

a a a a
1 2 3 4 _
b. b. b. b by by b by b3 by
1 2 3 4 _
= a,-det |c c c - a,-det}|c c c
c c c c 1 3 4 2 1 4
1 2 3 4 4, d, d 4, 4, 4
cl1 d2 d3 d4 2 4 1 3 ft_
b1 b, b b1 b
+ a3-det c1 c c - a4-det_ c1 c3 .
d1 d, d d1 d d3
4 = 1.

. (b) Show that exchaiing any two of the last three rows changes the sign of the

determinant.

(c) Shavthat exchanging the first two rows changes the sign. [Hint: Write the

expression as a sum of terms involving det [?i aj]‘ 1
b

iP5

(d) Show that exchanging any two rows changes the sign.

(e) Show that det 1is linear as a function of the first row.

(f) Conclude that det is linear as a function of the ifl' row.

(g) Conclude that this formula satisfies all the properties of the determinant

function.



i

Construction of the Determinant Functiony Suppose we take the posi-
tive integers 1, 2, ..., k and write them down in some arbitrary order,
say ji, Ja ..., jx. This new ordering is called a permutation of these
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integers. For each integer j; in this ordering, let us count how many

integers follow it in this ordering, but precede it in the natural ordering
1,2, ...,k This number is called the number of inversions caused by the
integer 7;. If we determine this number for each integer j; in the ordering
and add the results together, the number we get is called the total number
of inversions which occur in this ordering. If the number is odd, we say
the permutation is an odd permutation; if the number is even, we say it is
an even permutation.

For example, consider the following reordering of the integers between
1 and 6:

2,5, 1,3, 6, 4.

If we count up the inversions, we see that the integer 2 causes one inver-
sion, 5 causes three inversions, 1 and 3 cause no inversions, 6 causes one
inversion, and 4 causes none. The sum is five, so the permutation is odd.

If a permutation is odd, we say the sign of that permutation is —; if
it is even, we say its sign is +. A useful fact about the sign of a permuta-
tion is the following:

Theorem Q?Jf we 1nterchange two adjacent elements of a per-
mutation, we change the sign of the permutation.

Proof. Let us suppose the elements j; and j;y; of the permutation
Juy « <oy JiyJiery - -+, Ji are the two we interchange, obtaining the permu-
tation

jh LEERES !j!'-!—lyji') CEERR )jk-

The number of inversions caused by the integers jy, . . ., ji_y clearly is
the same in the new permutation as in the old one, and so is the number
of inversions caused by jis, . . ., &. It remains to compare the number of
inversions caused by j;41 and by j; in the two permutations.

Case I: j; precedes jii1 in the natural ordering 1, . . ., k. In this case,
the number of inversions caused by j; is the same in both permutations,
but the number of inversions caused by 7;;: is one larger in the second
permutation than in the first, for j; follows j;;; in the second permutation,
but not in the first. Hence the total number of inversions is increased by
one.

Case 11: j; follows j.y1 in the natural ordering 1, ..., k. In this case,
the number of inversion caused by j;y is the same in both permutations,
but the number of inversions caused by j; is one less in the second permu-
tation than in the first.

In either case the total number of inversions changes by one, so that the
sign of the permutation changes. O



ExampLe. If we interchange the second and third elements of the
permutation considered in the previous example, we obtain 2, 1, 5, 3, 6, 4,
in which the total number of inversions is four, so the permutation is even.

Definition. Consider a k by k matrix
 STRREIRN 1 21

A =
Try * * * Gkk

Pick out one entry from each row of A; do this in such a way that these
entries all lie in different columns of A. Take the product of these entries,

Q15,025,0355 ° * * Ckjyy

and prefix a + sign according as the permutation ji, . . ., jx is even or
odd. (Note that we arrange the entries in the order of the rows they come
from, and then we compute the sign of the resulting permutation of the
column indices.)

If we write down all possible such expressions and add them together,
the number we get is defined to be the determinant of A.

ReMArRk. We apply this definition to the general 2 by 2 matrix, and

obtain the formuls

Q11 Q12
det [ = @11029 — Q12C21.
12 1Y

If we apply it to a 3 by 3 matrix, we find that

an Qa2 a3 + aneas; — a1102:032
det| as1 @2 a2z | = — @12821G33 + @12G2303
@31 Q32 Q33 + a130891032 — A13022031.

The formula for the determinant of a 4 by 4 matrix involves 24 terms,
and for a 5 by 5 matrix it involves 120 terms; we will not write down these

formulas. The reader will readily believe that the definition we have -

given is not very useful for computational purposes!

The definition is, however, very convenient for theoretical purposes.

B50
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Theorem 24. The determinant of the identity matrix is 1.

e

Proof. Every term in the expansion of det In has a factor

of zero in it except for the term 8198550+ By 7 and this term equals 1.[Q

7

Theorem 25 If A' is obtained from A by interchanging rows
i and i+1, then det A' = - det A.

Proof. Note that each temm

in the expansion of det A’ also appears in the expansion of det A, because
we make all possible choices of one entry from each row and column when
we write down this expansion. The only thing we have to do is to compare
what signs this term has when it appears in the two expansions.

Let ayy, « - - @i @is1.404, © * - @15 be a term in the expansion of det A.
If we look at the corresponding term in the expansion of det A’, we see
that we have the same factors, but they are arranged differently. For to
compute the sign of this term, we agreed to arrange the entries in the
order of the rows they came from, and then to take the sign of the cor-
responding permutation of the column indices. Thus in the expansion of
det A’, this term will appear as

Qg 0 Rig1,50 @i, 0 Qrgye

The permutation of the column indices here is the same as above except
that elements j; and j;;y have been interchanged By Theorem 8.4, this
means that this term appears in the expansion of det A’ with the sxgn
opposite to its sign in the expansion of det A.

Since this result holds for each term in the expansion of det A’, we have
det A’ = —det A. . O

Theorem 264 The function det 1is linear as a function of the ith Yow.

Proof. Suppose we take the constant matrix A, and repléce its ith
row by the row vector [x1 .o xk] . When we take the determinant of this
new matrix, each term in the expression equals a constant times xJ. , for

some j. (This happens because in foﬁning this term, we picked out exactly one

entry from each row of A.) Thus this function is a linear combination

of the components Xy that is, it has the form

[;1 ck-l X » for some constants c, . O



Exercises

1. Use Theoren125ﬁ‘to show ‘that exchanging any two rows of A
changes the sign of the determinant.

2, 1 i ! , ® CICN ) . i initi
Consider the term al_]1 a2j2 aka in the definition of

the determinant. (The integers jl' jz, ...,jk are distinct.) Suppose
we arrange the factors in this term in the order of their column indices,

obtaining an expression of the form

a, pa e.oQ .
ill 122 1kk

Show that the sign of the permuation il,iz,...,ik equals the sign of the
permutation jl,jz,...,jk .

Ccnclude that det Atr = det A in general.

3. Iet A bean n by n matrix, with general entry aij in
row i and column j. Let m be a fixed index. Show that
n
det A = ZZ:: a_, ° (--l)m+j det A ., .
j=1 mj mj

Here Amj denotes , as usual, the (m,j)-minor of A. This formula is
called the"formula for expanding det A according to the cofactors of
the mth row." [Hint: Write the mth row as the sum of n vectors, each
of which has a single non-zero component. Then use the fact that the

th

determinant function is linear as a function of the m~ row.]
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The cross-product in V

3

are vectors in V.,

If A= (al, ay a3) and B = (bl’ b2, b3) | 3

we define their cross product to be the vector

a a a a a a—
AXB = «m4;2b3,-th£lb3 chtbl 21
2 P3 1 P3 1 22

We shall describe the geometric significance of this product shortly.

But first, we prove some properties of the cross product:

Theorem 27. Fcr all vectors A, B in V we have

3[
(a) BxA = -~ AxB.

1]

(b) A%(B + C) AXB + AxC,

(B + C)XA BXA + CXA .

1]

(c¢) (cA)x B c(AxB) = AXx{(cB) .

(d) A%B is orthogonal to both A and B.

() 1axBl* = (at®-uBl® - (a-3)%.

Proof. (a) follows because exdianging two rows of a determinant
changes the sign; and (b) and (c) follows because the determinant is linear

as a function of each row separately. To prove (d), we note that if

C = (cl, Cpr c3) , ‘then

€1 S C3
C-(AXB) = de a; a2, a5 ,
1 Py b3

by definition of the determinant. It follows that A-(AXB) = B:(AxB) =0
because the determinant vanishes if two rows are equal. The only proof
that requires some work is (e). For this, we recall that

2 2 2 )2 2 2 2

(a+b)"=a"+b " +2ab, and (a + Db+ c = a“ +b° + c” + 2ab + 2ac + 2bc .

Equatioi (e) can be written in the form
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2 2 ' 2 2
(a2b3 - a3b2) + (alb3 - a3b1) v+ (alb2 - azbl) + (alb1 + a2b2 + a3b3) =

(ai + ag + ag) (b? + b

2

2
2+b3)

We first take the squared terms on the left side and show they equal
the right side. Then we take the "mixed" terms on the left side and show
they equal zero. The squared terms on the left side are

(a,0,)° + (agby)? 2 2

b, D%+ (ap)? e ()2 + (apy)? + (ap)? + (ap)? + (ap,)? + (a

which equals the right side,
3 2
i (aibj) .
i,j =1
The mixed terms on the left side are

-2a,biazb, - 2a,biagh, - 2abab + 2a;basb, + 2abiagbs + 2ajbasby = 0. 1

In the process of proving the previous theorem, we proved also
the following:

Theorem 28. Given A, B, C , we have A.(BxC) = (AxB)-C.

Proof. This follows from the fact that

a; a a3 ¢, ¢ c3 O
cdet bl b b3 = de al a2 a
c1 c:2 c3 bl b b3

Definition. The ordered 3-tuple of independent vectors (A,B,C)
of vectors of V3 is called a positive triple if
A.-(BXC) » 0. Otherwise, it is called a negative triple. A positive
triple is sometimes said to be a right-handed triple, and a negative one

is saiid to be left-handed.

2
3P3)
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The reason for this. terminology is the following: (1) the triple
(i, §, k) 1is a positive triple, since 1i-(jxk) = det I3 =1 , and

(2) 1if we draw the vectors i, j, and k in V3 in the usual way,
and if one curls the fingers of one's right hand in the direction from the
first to the second, then one's thumb points in the direction of the

third.

2 P
S
7
Furthermore, if one now moves the vectors around in V3, perhaps changing their

lengths and the angles between them, but never letting them become dependent,

and if one moves one's right hand around correspondingly, then the

fingers still correspond to the new triple (A,B,C) in the same way, and
this new triple is still a positive triple, since the determinant cannot
have changed sign while the vectors moved around.(Since they did not become

dependent, the determinant did not vanish.)

T
N A

<

Theorem 29. Iet A and B be vectors in V3. If A" and: B

are dependent, then AXB = 0. Otherwise, AXB 1is the unique vector
orthogonal to both A and B having length IAlIl {iBll sin 6 (where ©
is the angle between A and B), such that the triple (A,B,AXB)

forms a positive (i.e.,right-handed) triple.



Proof. We know that AXB 1is orthogonal to both A and B. We

also have

iag?- 1sif - (a.p)?

A x 81

(A% - (BIZ (1 - cos?e ) = fal? BN sin%o .
Finally, if C = AXB, then (A,B,C) is a positive triple, since

A.(BXC) = (AXB).C = (AXB)-(AxB) = jaxB|Z >0 .
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Polar coordinates

Let A = (a,b) be a point of v, different from 0. We wish to define what we mean
by a "polar angle" for A. The idea is that it should be the angle between the vector A
and the unit vector i = (1,0). But we also wish to choose it so its value reflects whether
A lies in the upper or lower half—plane. So we make the following definition:

Definition. Given A = (a,b) # 0. We define the number
*) ‘ 0= + arcos (A-i/||Al]
to be a polar angle for A, where the sign in this equation is specified to be + if b > 0,
and to be —if b < 0. Any number of the form 2mn + 6 1is also defined to be-a polar angle
for A. |

A 3
L )Q: :-_'_T_-
A \ m
A

If b = 0, the sign in this equation is not determined, but that does not matter. For
if A = (a,0) where a > 0, then arccos (A-i/||A]]) = arccos 1 = 0, so the sign does not
matter. And if A = (—a,0) where a > 0, then arccos (A-i/||A||) = arccos (—1) = =. Since
the two numbers + 7 and — 7 differ by a multiple of 27, the sign does not matter, for
since one is a polar angle for A, so is the other.

Note: The polar angle 6 for A is uniquely determined if we require —7 < ¢ < 7.

But that is a rather artificial restriction.
9 .9 1/2
Theorem. Let A = (a,b) # 0 be a point o_fV2. Let r = (a“4+b°) = ||A]|; let 0 be
a polar angle for A. Then

A = (r cos 6, r sin 6).
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Proof. If A = (a,0) witha > 0, thenr = a and 6 = 0 + 2mm; hence
' rcos #=a and rsin §=0.
If A = (—a,0) with a > 0, then r = a and 0 = 7 +2m, so that
rcos  =—a and rsin §=0.
Finally, suppose A = (a,b) with b # 0. Then A-i/||A| = a/r, so that

0 = 2mm + arccos(a/r).

Then
afr = cos(+(6—2mm)) = cos 4, or a =r cos 6.
Furthermore,
b2=r2-a’= r2(1—cos20) =1 sin20,
50

b = #rsin 6.
We show that in fact b =rsin §. Forif b > 0, then # = 2m~ + arccos(a/r), so that
2mr< f<2mm+ 7
and sin ¢ is positive. Because b, r, and sin § are all positive, we must have b = r sin §
rather than b = —r sin 4.
On the other hand, if b < 0, then 0 = 2m7 — arccos(a/r), so that
2mr—71< 0 < 2m7
and sin @ is negative. Since r is positive, and b and sin # are negative, we must have
b = r sin #rather thanb = —rsin . o

lPlanetary Motion |

In the text, Apostol shows how Kepler’s three (empirical) laws of planetary motion

can be deduced from the following two laws:
(1) Newton’s second law of motion: E = ma.

(2) Newton’s law of universal gravitation:

mM
IEll = G A
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Here m, M are the masses of the two objects, r is the distance between them, and G is a
universal constant.

Here we show (essentially) the reverse—how Newton’s laws can be deduced from
Kepler’s. oTJo' st YL whow moaa 1 M

More precisely, suppose a planet P/moves in the xy plane with the sunlat the
origin. Newton’s laws tell us that the acceleration of P is given by the equation

§='IIHE= ﬁll"[_G I_n"l\2£]'u’r = —%uf
r T

That is, Newton’s laws tell us that there is a number A such that

A
A=——5 )
12’%

and that A is the same for all planets in the solar system. (One needs to consider other

systems to see that ) involves the mass of the sun.)
This is what we shall prove. We use the formula for acceleration in polar

coordinates (Apostol, p. 542):

2 2 2
_ [d°r d dr dd d
&= [gz*f{ag] ]léﬁ [%ﬂf“gt—g]ﬁe

\ ‘\
M \

/

We also use some facts about area that we shall not actually prove until Units VI and

VII of this course.

(a) Kepler’s second law implies that the acceleration is radial.
(b) Kepler’s first and second laws imply that

A
___P
&=——75l,
I
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where ’\P is a number that may depend on the particular planet P.

Proof. (a) We use the following formula for the area swept out by the radial

vector as the planet moves from polar
\ A={(e) angle 0, to polar angle 0,
T 02
2 _ 1.2
2, A= J 51° do.
/ 9,

Here it is assumed the curve is specified by giving r as a function of 6.
Now in our present case both § and r are functions of time t. Hence the area swept

out as time goes from tq to t is (by the substitution rule) given by

t
A(t) =J [% 240 q.
t

Differentiating, we have %—% = %r2 %_Q , which is constant bj' Kepler’s second law. That
is,
* dA _ 2d0_
(*) n=rm=K
for some K.
Differentiating, we have
2 .
drdfd , 2d%0 _
2r af aT 4+ r —-—2 = 0.

- dt
The left side of this equation is just the transverse component (the Ly component) of al

Hence a is radial.
(b) To apply Kepler’s first law, we need the equation of an ellipse with focus at
the origin. |

(va) We put the other focus at (a,0), and use
m the fact that an ellipse is the locus of all

(a,0) points (x,y) the sum of whose distances

from (0,0) and (a,0) is a constant b > a.
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The algebra is routine:

o+ v J(xa)? 4+ P =, | ’
or r+‘/12 — 2a(r cos 0) + a2=b,
- 2a(r cos ) + a = (b—r)2 =b% —2br + r2,
2br — 2ar cos 4 = b2 - az,
 (b%-a?y/2p
I = a y
1 - Ecos 9
c b2 — a.2

(**) I=m?)s——y, wherec:—-zb—— and e=a/b.

e
(The number is called the eccentricity of the ellipse, by the way.) Now we compute the
radial component of acceleration, which is : |
£5-04)
oIl
Differentiating (**), we compute

dr -1 . ad
= C|————(esin ) .
@ [(1—e cos 6) ( )ag]

Simplifying,
dr _ 1 2, . ~dl
a% =3 (-1)r%(e sin O3t
Then using (*) from p. B60, we have |
%% = %(e sin §)K.

Differentiating again, we have
2
d 1 dé
Et—% — E(e COs 0)a'fK,
or

(o
)
[ ]
)

e cos 6) [—I%]K, using (*) to get rid of d4/dt.

I

?'i,l

Similarly,
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d 2 K 2
- I[HT?] = - r[—g] using (*) again to get rid of dd/dt.
I :

Hence the radial component of acceleration is (adding these equations)

Lo cos 6.)K2 K2 K2[e cos 0 1]
C

—_ = - +_
I_Q 3 :7 c r
__ﬁe o8 0+1—e Ccos
- r2 c c

Thus, as desired,

(***) a=— gﬁr’ where Ap =

(c) To apply Kepler’s third law, we need a formula for the area of an ellipse,
which will be proved later, in Unit VII. It is

Area = T

(major axis) (minor axis)
2 2 ’

o The minor axis is easily determined to be

3‘/” given by:

\w minor axis = 2| b2/4—a2/4 =N b2—-a2.
It is also easy to see that

major axis = b.

Now we can apply Kepler’s third law. Since area is being swept out at the constant
rate %K, we know that (since the period is the time it takes to sweep out the entire
area),

Area = (%K)(Period).
Kepler’s third law states that the following number is the same for all planets:

(Period)?  _ 4(Area)?/K?
(major axis)® (major axi s)3
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4 7r2(major axis)z(minor axis)z/K2

(major axis)
(m i nor axigL2 1
(major axis) 2

Bl

Thus the constant ’\P is the same for all planets. o0

— PR JRESESSEESISS----A

cupPLEMENTARY EXERCISES FoR UNIT L
uprLe =

(1) Let L be a line in V, with direction vector A; let P be a point not on L. Show that the
point X on the line L closest to P satisfies the condition that X—=P is perpendicular to A.
(2) Find parametric equations for the curve C consisting of all points of Vz. equidistant
from the point P = (0,1) and the line y ==1. If X is any point of C, show that the tangent
vector to C at X makes equal angles with the vector X~ P and the vector? (This is the
reflection property of the parabola.)
(3) Consider the curve f(t) =(t,t cos (n/t)) for0 <t <1,

= (0,0) fort = 0.
Then f is continuous. Let P be the partition

P = {0,1/n,1/(n-1),...,1/3,1/2,1}.

Draw a picture of the inscribed polygon =n(P) in the case n = 5. Show that in general, n(P)
has length

|m(P)| 21+ 2172 + 1/3 + ... + 1/n).

Conclude that f is not rectifiable.



(4-) Let u be a fixed unit vector. A particle moves in Vn in such a way that its position

vector r(t) satisfies the equation r(t)-u = 5¢3 for all t, and its velocity vector makes a

constant angle 4 with u, where 0 < 8 < x/2.
(a) Show that ||yl = 15t2/cos 8.
(b) Compute the dot product a(t)-v(t) in terms of t and 4.
(57 A particle moves in 3—space so as to trace out a curve of constant curvature K = 3.
Its speed at time t is e2t. Find lla(t)|], and find the angle between v and a at time t.

QL) Consicer the curve given in polar coordinates by the equaticn
r=e9 for 0% 0¢<2rM , vwhere M
Find the length of this curve.
arbitrarily large?

is a positive integer.

What happens as M becomes

(’7) (z) Derive the following formula, which can be used to compute the
curvature of a curve in R':
L
(r2) KN = (ee)e — (@),
(k)

Find the curvature of the curve r(t)

= (1+t, 3t, 2+t2, 29,

B¢ 4
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