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Derivatives of vector functions.

Recall that if x is a point of R" and if £(x) is

a scalar function of x, then the derivative of f (if it

exists) is the vector

Ve = (D f,...,D_f)

1 n

(0f/3x

Lre-r3E/0x) .

For some purposes, it will be convenient to denote the derivative

of f by a row matrix rather than by a vector. When we do this,

we usually denote the derivative by Df rather than VE. Thus
Df(a) = [le(g) D2f(§) ‘e an(g)].

If we use this notation, .the definition of the derivative

takes the following form:
f(ath) - £(a) = Df(a) h + e(h)lhl,

where ¢e(h) —> 0 as h —> 0. Here the dot denotes matrix
multiplication, so we must write h as a column matrix in

order for the formula to work;
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This is the formula that will generalize to vector functions
£.

Definition. Let S be a subset of R®. If

f : S —> Rk, then £(xX) is called a vector function of a

vector variable. In scalar form, we can write £(x) out in the

form

f(x) = (fl(xl,...,xn),...,fk(xl,...,xn)).

Said differently, f consists of "k real-valued functions of
n variables." Suppose now that £ 1is defined in an open ball

about the point a. We say that £ is differentiable at a if

each of the functions £1(x) ... £ (X) is differentiable at a

(in the sense already defined). Furthermore, we define the

derivative of £ at a to be the matrix

[ D, £; (a) Dy (@) ... anl(g)T
Plfz(i) szz(g) oo anz(i)
Df(a) = .

[D1f(@  Dpfy(a) ... Dify(a)]

That is, Df(a) is the matrix whose 188 row is the derivative
Dfi(g) of the iEE coordinate function of f£.
Said differently,_the derivative ‘Df(a) _ of~ " £ at "a

is the k by n matrix whose entry in row i and column 3j is

Djfi(g) = afi/axj;
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it is often called the Jacobian matrix of £(x). Another

notation for this matrix is the notation

a(fl,...,fk)
a(xl”'f’xn)

With this notation, many of the formulas we proved for a
scalar function £(x) hold without change for a vector function
f(x). We consider some of them here:

Theorem 1. The function £(x) 1is differentiable at

o

if and only if

f(ath) - £(a) = Df(a) +h + E(h) Inl,
where E(h) —> ¢ as h —> 9.
(Here £, h, and E are written as column matrices.)

Proof: Both sides of this eéquation represent column
matrices., If we consider the iEE entries of these matrices,

we have the following equation:
fi(§+§) - fi(g) = Dfi(g)' h + Ei(E)HE“-

Now f is differentiable at a2 1if and only if each function

fi is. And fi is differentiable at 2 1if and only if

Ei(g) —> 0 as h —> 0. But Ei(g) —> 0 as h —> 0, for

each i, if and only if E(h) —> 0 as h —> 0. O
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Theorem 2. If f£(x) is differentiable at a, then ¢

is continuous at a.

Proof. If £ 1is differentiable at a, then so is each
function fi' Then in particular, fi is continuous at a,
whence f 1is continuous at a.

The general chain rule.

Before considering the general chain rule, let us take the

chain rule we have already proved and reformulate it in terms of

matrices.

Assume that f(x) = f(xl,...,xn) is a scalar function
defined in an open ball about a, and that x(t) = (xl(t),...,
xn(t)) is a parametrized curve passing through a. Let
§(t0) = a. If £(x) is differentiable at a, and if x(t) |is

differentiable at t and we have shown that the composite

o’

f(§(t)) is differentiable at t and its derivative is given

OI
by the equation

L ofx(e) = Tex(e)) « x' (¢)

when t = to.

We can rewrite this formula in scalar form as follows:

dx dx

d vy 2 0 K1 g 9%,
dt £(x(t)) = axl et + axn de '

or we can rewrite it in the following matrix form:
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dxl/dt

Fx(e) = [%’i— -~ N

1 n
: ‘dxn/dt

Q‘lna
ot

Recalling the definition of the Jacobian matrix Df, we see

that the latter formula can be written in the form

£(x(t)) = DE(x(t)) - Dx(t).

QJIQJ
t

(Note that the matrix Df is a row matrix, while the matrix
Dx is by its definition a column matrix.)

This is the form of the chain rule that we find especially
useful, for it is the formula that generalizes to higher dimen-
sions.

Let us now consider a composite of vector functions of
vector variables. For the remainder of this section, we assume
the following:

Suppose £ 1is defined 92 an open ball in R"  about a,.

taking values in RK, with f(a) = b. Suppose g is defined

in an open ball about b, taking values in RP. Let

F(x) = g(f(x)) denote the composite function.
n e
R R et
& ¥
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We shall write these functions as

£(x) = £(xy,..0px))  and  g(y) = G(Yyreery,).

If £ and g are differentiable at a and b

respectively, it is easy to see that the partial derivatives of

F(x) exist at a, and to calculate them. After all, the iEE

coordinate function of F(x) 1is given by the equation
Fi(x) =g, (£(x)).

If we set each of the variables Xy + except for the single
variable Xj' equal to the constant a8,, then both sides are
functions of x. alone. The chain rule already proved then

J
gives us the formula

o aFi agi afl agi af2 agi afk
( — = + + oo 4+ ——= 2
axj Byl axj 8y2 Byz ayk ij |

Thus
Djfl
DjfZ

DyFy = [Py9;  Dpg;  +++ D9yl ) .
[P35
th

= [iEE row of Dg] * | j=— column| .

of Dg
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domains, then the composite F(x) = g(f(x)) 1is continuously

differentiable on its domain, and

DF (x) = Dg(f(x)) +« Df(x).
This theorem is adequate for all the chain-rule applica-
tions we shall make.
Note: The matrix form of the chain rule is nice and neat, and
it is useful for theoretical purposes. In practical situations,
one usually uses the scalar formula (*) when one calculates par-'
tial derivatives of a composite function, however.
The following proof is included solely for completeness ; we

shall not nead to use it:.
Theorem 4. Let f and g be as above. If f is

differentiable at a and g 1is differentiable at b, then

F(x) = g(£(x))

is differentiable at a, and

DF(a) = Dg(b) - Df(a).
Proof. We know that
g(b+k) - g(k) = Dg(b) « k +,§1(E)H§H,

where E;(k) —> 0 as k —> 0. Let us set k = f(a+th) - £(a)

in this formula. Then
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Thus the Jacobian matrix of F satisfies the matrix equation

This is our generalized version of the chain rule.

There is, however, a problem here. We have just shown that
if g‘vand g are differentiable, then the partiai derivatives
of the composite function F exist. But we know that the mere
existence of the partial derivatives of the function F. is not
enough to guarantee that Fi is differentiable. One needs to
give a separate proof that if both £ and g are differentiable,
‘then so is the composite F(x) = £(g(x)). (See Theorem 4
following.)

One can avoid giving a separate proof that F is

differentiable by assuming a stronger hypothesis, namely that

both f and g are continuously differentiable. 1In this case,

the partials of £ and g are continuous on their respective

domains; then the formula

k
D.F, (x) = Zﬂ;l Dgg; (£(x)) * Dyfp (x),

J 1=
which we have proved, shows that DjFi is also a continuous
function of X. Then by our basic theorem, Fi is differentiable
for each i, so that F is differentiable, by definition.
We summarize these facts as follows:

Theorem 3. Let £ be defined on an open ball in R?

about a, taking values in Rk; let f(a) = b. Let g be

defined in an open ball about b, taking values in RP. If

|Hh

and g are continuously differentiable on their respective
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(**) g(f(a+h)) - g(f£(a)) = Dg(b) * (£(ath) - f£(a))
+ E, (E(a+h) - £f(a))|£(a+h) - f(a)ll.
Now we know that
f(ath) - £(a) = Df(a) «h + E, (h)lhl,

where E,(h) —> 0 as h —> 0. Plugging this into (**), we

get the equation
g(f(ath) - g(f(a)) = Dg(b) + Df(a) * h + Dg(b) - gz(g)ugu

+ By (£(ath) -

1 (a))ll£(a+th) - £(a)ll.

Thus
F(ath) - E(a) = Dg(b) * Df(a) « h + E5(h)lhl,
where
E3z(h) = Dg(b) * E, (h) + E;(£(a+h) - £(a))l £(a+h) - £(a)ll
Il
We must show that E, —> 0 as h —> 0. The first term is

3
easy, since Dg(b) is constant and \EZ(E) —> 0 as h —> 0.

Furthermore, as h —> 0, the expression f(at+h) - f£(a)

approaches 0 (since £ is continubus), so that
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E;(£(ath) - £(a)) —> 0. We need finally to show that the

expression
Il £(a+h) - £(a)il /i hll

is bounded as h —> 0. Then we will be finished. Now

[+h
V)]

+
=
|
[+
|
1=

= [IDf(a) -

E
|

B+ Ep (I

=2

< ID£(a) -« ul + IE, ()N,

where u 1is a unit vector. Now EZ(Q) —> 0 as h —> 0,
and it is easy to see that |[IDf(a) * ul < nk max]Difj(g)l.
(Exercise!) Hence the expression If(a+h) - £(a)l/lnl  is

bounded, and we are finished. O

Differentiating inverse functions.

Recall that if f(x) 1is a differentiable real-valued
function of a single real variable x,  and if f'(x) > 0
for a< x<b, then f is strictly increasing, so it has an

inverse g. 'Furthermore, g 1is differentiable and its deriva-

tive satisfies the formula

g' (£(x)) = Fregy -

Part, but not all, of this theorem generalizes to vector

functions. We shall show that if f has an inverse g, and
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if g 1is differentiable, then there is a formula for Dg
analogcus to this one. Specifically, we prove the following:

Theorem 5. Let S be a subset of R". Suppose that

g : A —> Rn and thaE

f(a) = b. Suppose also that £f has an
inverse g.

If f 1is differentiable at a, and if g 1is differen-

tiable at b, then

Proof. Because g 1is inverse to £, the equation

(£(x)) = x holds for all x in S. Now both £f and g are

Q

differentiable‘and so is the composite function g(£(x)). Thus

we can use the chain rule to compute

Dg(b) - Df(a) = D(identity) = I_.
Since the matrices involved are n by n, this equation implies

that

Dg(b) = [DE(a)]1™t. O

Remark 1. This theorem shows that in order for the
differentiable function £ to have a differentiable inverse,

it is necessary that the Jacobian matrix Df(a) have rank n.

Roughly speaking, this condition is also sufficient for £ to

have an inverse.
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More precisely, one has the following result, which
is the famous "Inverse Function Theorem" of Analysis:

Suppose f is defined and continuously differentiable
in an open ball of R" about a, taking values in R". If
Df (a) has rank n, then there is some (probably smaller) open
ball B about a, such that f carries B in a 1-1 fashion
onto an open set C in R, Furthermore, the inverse function
g : C —> B 1is continuously differentiable, and
Dg (£(x)) = [DE(x)]1 1.

Remark 2. For a function of a single variable, vy = f(x),

the rule for the derivative of the inverse function x = g(y)

is often written in the form

This formula is easy to remember; the Leibnitz notation for
derivatives "does the work for you". It is tempting to think
that a similar result should hold for a function of several

variables. It does not.

For example, suppose

f(x,y) = (u,v)

is a differentiable transformation from the x - y plane to

the u - v plane. And suppose it has an inverse; given by
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(x,y) = g(u,v).

Our theorem tells us that if f(a) = b, then

Dg(b) = [DE(a)] L.

If we write out these matrices in Leibnitz notation, we obtain

the equation

IxX/3u IX/dV du/9x du/dy
dy/du dy/ov 3v/dx av/dy

Now the formula for the inverse of a matrix gives (in the case

of a 2 by 2 matrix) the formula

a b —l l - d -b

" Applying this formula, we obtain the equation

Ix/du ax/av 1 av/dy =-3u/dy

dy/du dy/av - g2 ¥ _ 28 o¥ -3v/dx du/dx

This means, for example, that

— — - — —
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Thus the simplistic idea that 3x/9%v "should be" the
reciprocal of 3v/3x is very far from the truth. The Leibnitz
notation simply doesn't "do the work for ydu" in dimensions

greater than i, Matrix notation does.

Implicit differentiation.

Suppose F 1is a function from Rn+k to R"; let us
write it in the form
E(.}i'l) = F"(xl'.”'xn'yl""’yk)'

Let ¢ be a point of Rn, and consider the equation
F(x,y) = ¢c.

This equation represents a system of n equations in n + k
unknowns. In general, we would expect to be able to solve this
systembfor n of the unknowns in terms of the others. For
instance, in the present case we would expect to be able to
solve this system for x in terms of y. We would also expect
the resulting function x = g(y) to be differentiable.
Assuming this expectation to be correct, one can then
calculate the derivative of the resulting function g by using
the chain rule. One understands best how this is done by work-
ing through a number of examples. Apostél works several in
sections 9.6 and 9.7. At this point, you should read 9.6 and Examples 1,2,3,

and 6 of 9.7.
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A natural question to ask now is the following: to what extent
ouy assumptions are correct, that the given equation determines X
as a function of y . We discuss that question now.

First let us consider the problem discussed on p. 294 of the text.
It involves an equation of the form

F(x,y,z) =0,

where F is continuously differentiable. Assuming that one can in theory
solve this equation for z as a function of x and Y, say z = f£(x,y),

Apostol derives equations for the partials of this unknown function:

S e QF . - 2F
£ I X £ 2
= (xy) = — and S L A A
% 2F oY JF
9z oz

Here the functions on the right side of these equations ére evaluated
at the point (x,y,f(x,vy)). |

Note that it was necessary to assume that JF/dz # 0 , in order
to carry out these calculations. It is a remarkable fact that the condition
3F/9z # 0 is also sufficient to justify the assumptions we made in carrying
them out. This is a consequence of a famous theorem of Analysis called the
Implicit Function Theorem. Orie consequence of this theorem is the following:
If one has a point (xo,yo,zo) that satisfies the équation F(x,y,z) =0,
and if 9F/%z # 0 at this point, then there exists a unique differentiable
function £(x,y), defined in an open set B about (xo,yo) , such that
‘f(xb,yo) =z, and such that

| F(x,y,£(x,y)) = 0

for all (x,y) 1in B.. Of course, once one knows that f exists and
is differentiable, one can find iﬁs partials by implicit differentiation,

as explained in the text.
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(————— Example 1. Let F(x,y,z) = x2 + YZ + 22 + 1 . The equation
F(x,y,2) = 0 cannot be solved for z in terms of x and y; for in
fact there is no point that satisfies the equation.
Example 2. Let F(x,y,z) = x2 + y2 + 22 - 4. The equation
F(x,y,2z) = 0 is satisfied by the point a = (0,2,0). But OF/dz = 0
at the point a, so the implicit function theorem does not apply. This
fact is hardly surprising, since it is clear from the picture thaﬁ z
is no; determined as a function of (x,y) in an open set about the point .
(xgr75) = (0,2).
,2 However, the point b = (1,1,42)
,((;l)¥3) satisfies the equation also, and ?F/dz # O
QF(O,?ﬂ) at this point. The implicit function theorem
» 3  implies that there is a function £(x,y)
defined in a neighborhood of (xo,yo) = (1,1)
such that £(1,1) = 45' and‘ f satisfies the
equation F(x,y,z) =0 identically.
Noﬁe that £ is not uniquely determined unless we specify its value at
(xo,yo). There are two functions £ defined in a neighborhood of (1,1)
that satisfy the equation f(x,y,z) = 0, namely,

z = [4- X% - y2]

[N

L
anrd z = - [4 - x2 - yz]2

Howevér, only one of them satisfies the condition £(1,1) = 2 .

Note that at the point a = (0,2,0) we do have the condition
JF/dy # 0.  Then the implicit function theorem implies that y is
determined as a function of (x,z) near this point. The picture makes this

fact clear.

e —————
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Now let us consider the more general situation discussed on p. 296

of the text.

(*)

We have two equations

F(XIYIZIW)

G(XIYIZIW) =

"o
o

|
o

where F and G are continuously differentiable. (We have inserted

an extra variable to make things more interesting.)

functions x = X(z,w)

ard y = Y(z,w)

Assuming there are

that satisfy these equations for

all points in an open set in the (z,w) plane, we have the identities

F(X,Y,z,w) =0

and

G(X’Y,ZIW) = O 14

whence (differentiating with respect to 2z),

OF 9X . OF oY 9F _ ,
X Iz Ay 9z oz !
3G oX , 9G¥ 96 _
9X 0z dy 9z oz :
These are linear equations for 9X/Jdz and oY/dz ; we can solve them if the

coefficient matrix

2F/dx IF/dy

3G/ox

is non-singular.

can write the solution in the form

2X/9z
dY/oz

2G/dy

e—

_ (‘aF,G

OX,Y

One can use Cramer's rule, as in the text, or one

10z

9G/dz

The functions on the right side of this equation are evaluated at the point

(X(z,w) /Y(z,w) 1ZW) ,

of z and w alone.

so that both sides of the equation are functions
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You can check that one obtains an equation for the other partials
of X and Y if one replaces z by w throughout.

All this is discussed in the text. But now let us note that in
order to carry out these calculations, it was necessary to assume that the
matrix JF,G/dx,y was non-singular. Again , it is a remarkable fact
that this condition is also sufficient to justify the assumpﬁions we have
made. Specifically, the Implicit Function Theorem tells us that if
(xo,yo,zo,wo) is a‘point satisfying the equations (*), and if the matrix
dF,G/9d x,y 1is non-singular at this point, then there do exist unique
differentiable functions X (z,w) and Y(z,w) defined in an open set about
(z5:Wy) + such that

X(zo,wo) = X and Y(ZO’WO) =Yg
and such that F and G vanish identically when X and Y are substituted
for x and y. Thus under this assumption all our calculations are
justified.

—
Example 3, Consider the equations

F(x,Y,2,wW) 3xzz + 6wy2 -2z + 1 0.,

Xz - 4y/z - 3w - 7 0.

I}
1}

G(XIYrZIW)

. _ = Lo _
The points (xolyorzo,wo) = (1,2,-1,0) ard (xlrylrzl,wl) = (1,%,2,-2)

satisfy these equations, as you can check. We calculate

oxz 12wy
aF;G/bX’Y = :
' z -4/z
-6 0
At the point (X.,Y~rZ~/W.), this matrix equals , which is
0’¥0"%0""0 4 4

non-singular. Therefore, there exist unique functions x

X(z,w)

and y = Y(z,w) . defined in a neighborhood of (zo,wo) = (fl,O) that
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satisfy these equations identically, such that X(-1,0) = 1 ard Y(-1,0) = 2.
Since we know the values of X and Y at the point (-1,0), we

can find the values of their partial derivatives at this point also. Indeed,

dX/dz [ 6Xz 12wy | 71 X2 - 2
0Y/dz z -4/z X + 4Y/z2
— -1 -
o 6 0 . a 1 4
-1 4 9 24 | 55

On the other hand, at the point (Xl'yl’zl'wl) = (1,%,2,-2) the

matrix JF,G/Ix,y equals

which is singular. Therefore we do not expect to be able to solve for x
and y in terms of z and Ww near this point. However, at this point,
we have k
6xz 6y 12 3/2}
BF,G/ ox,w = = .
z -3 2 -3
Therefore, the implicit function theorem implies that we can solve for x

and w in terms of y and 2z near this point.

Exercises
1. Given the continuously differentiable scalar field £(x,y),

2.3 : . = > >
let &(t) = £(t°,t” + 1). Find ¢'(1), given that Y£(1,2) =51 - § .
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2. Find the point on the surface z = xy nearest the point (2,2,0).

3. A rectangular box, open at the top, is to hold 256 cubic inches.

Find the dimensions that minimize surface area.

4, Find parametric equations for the tangent line to the curve of

intersection of the surfaces

x2 + y2 + 222 = 13,

at the point (2,1,2).

5. Let f be a scalar function of 3 wvariables. Define

2

F(t) = £(3t2,2t+1,3-t5).

Express F'(l) in terms of the first order partials of

f at the point (3,3,2).
Express F"(l) in terms of the first and second order

partials of f at the point (3,3,2).

6. Let £ : Rz — Rz and let g : Rz —_— Rs. Suppose that
f£(0,0) = (1,2) £(1,2) = (0,0).
3(0:0) = (1’332) 1(1:2) = (_1:0’1)-

Suppose that

-1 2] _ (-1 3]
0£00,0) = [T5 3 ve(L2) = [I;
1 -1 11
Dg(0,0) = |0 1 Dg(1,2) = |0 1
1 1 2 1
a) If h(x) = £(£(x)), find Dh(0,0).
b) If £ has an inverse k : R> — R%, find Dk(0,0).



7. Ccnsider the‘functions of Example 3. Find the partials
DX/ ard JY/w at the point (zgrwg) = (-1, 0).

8. Fcr the functions F and G of Example 3, compute Q(E,G)/a(x,y)
at the point (1,%,2,-2,). Given the equations F =0, G =0, for which
pairs of variables is it possible to solve in terms of the other two near

this point?
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The second-derivative test for extrema of a function of

two variables.

Theorem. Suppose that f(xl,xz) has continuous second-

order partial derivatives in a ball B about a. Suppose that

D,£ and D,f vanish at a. Let

1 2 —_—
A = Dl'lf(g), B = Dl'zf(g), C = Dzlzf(g).

(a) If B? - AC >0, then f has a saddle point at a.

(b) If B2 - ac < 0 and A > 0, then £f has a relative
minimum at a.

(c) If 82 - AC< 0 and A< 0, then £ has a relative
maximum at a. |

(d) 1If B2 - AC = 0, the test is inconclusive.

Proof. Step 1. We first prove a version of Taylor's theorem

with remainder for functions of two variables:

Suppose f(xl,xz) has continuous second-order partials in a
ball B centered at a. Let v be a fixed vector; say

v = (h,k). Then

f(atty) = £(a) + [D £(a)*h + D,f(a) k]t

(*)
» 2

£(a")hk + t
(a )h Dy, 2

f(a )h* +

£(a") k2
1,1t (@ 2Dy (a ) k“}5-

*
where a is some point on the line segment from a to a + tv.

We derive this formula from the single-variable form of

Taylor's theorem. Let g(t) = f(a+tv), i.e.,
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Let F(tv) denote the left side of this equation. We
will be concerned about the sign of F(tv) when> t is small,
because that sign will depend on whether f has a local maxi-
mum or a local minimum at a, or neither. -

Step 3. From now on, let v = (h,k) be a unit vector.
Consider the guadratic function

Q(v) = Q(h,k) = Ah? + 2Bhk + CkZ.

We shall determine what values Q takes as v varies over the
unit circle.
Case 1. 1If B2 - AC < 0, then we show that Q(v) has

the same sign as A,v for all unit vectors z.v

. Proof. When v = (1,0), then Q(v) = A; thus Q(v)
has the same sign as A 1in this case. Consider the continuous
function Q(cos t, sin t). As t ranges over the interval
[0,2m], the vector (cos t, sin t) fanges over all unit vectors
in V2. If this function takes on a value whose sign is differ-

ent from that of A, then by the intermediate-value theorem,

there must be a tO such that Q(cos to’ sin to) = 0. That is,
Q(h k) = 0

for some unit vector (ho,ko). Now if hO # 0, this means that

the number ko/ho is a real root of the equation

A + 2Bx + sz = 0.
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g(t) = f(ai + th, a., + tk).

2

We know that g(t) g(0) + g'(0)-t + g"(c)-t2/2! where ¢ is

between 0 and t. Calculating the derivatives of g gives

g'(t) = le(al+th,a2+tk)°h + sz(al+th,a2+tk)'k,
" — 2 . 2
g"(t) = (Dl,lf)h + (Dl,zf)hk + (Dz’lf)kh + (Dz,zf)k ’
from which formula (*) follows. Here g* = a + cv, where c is

between 0 and t.
Step 2. In the present case, the first partials of £

vanish at a, so that
2 2,.2
f(attv) - £(a) ~ {Ah® + 2Bhk + Ck“}t/2.

The only reason this is an approximation rather than an equality‘
is that the second partials are evaluated at the unknown point 5*
instead of at a. This matter will be disposed of by using
elementary epsilonics. Formally, we have the equation '

2 4 2Bhk + Ck?}

Zf(a+ty) - £(a)] = {an
t

(**)

+ [0y £(a")-aln? + 2(D; ,f(a")-BInk + (0, £ (%) ~C12.

' *
Note that the last three terms are small if a is close to

a, because the second partials are continuous.



But this equation has a real root only if 82 - AC > 0.

Similarly, if ko # 0, the number ho/kO is a real root of the

equation

AX2+2BX+C=O;

2

agaih we conclude that B® - AC > 0. Thus in either case we are

led to a contradiction.

2

Case 2. If B" - AC > 0, then we show that Q(v) takes

on both positive and negative values.

2

Proof. If A # 0, the equation Ax® + Bx + C = 0 has

two distinct real roots. Thus the equation. y = sz + 2Bx + C
represents a parabola that crosses the x-axis at two distinct
points. On the other hand, if A = 0, then B # 0 (since

B2 - AC > 0); in this case the equation y = sz + 2Bx + C
represents a line with non-zero slope. It follows that in

either case, there is a number ko for which
Ax~ + 2on + Cc<o,
and a number Xy for which

sz + 2Bx

1 1 + C > 0.

Let (ho,ko) be a unit vector with ho/ko = X and let (hl,kl)

o

be a unit vector with hl/kl = Xy. Then Q(ho,ko) < 0 and
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Step 4. We prove part (a) of the theorem. Assume

2 .
B® - AC > 0. Let v be a unit vector for which Q(ZO) > 0.

—O
Examining formula (**), we see that the expression
2[f(a+tv) - f(i)]/tz‘ approaches
+0 Q(v,) as t —> 0. Let

X =a+ tv and let t —> 0.

(3

Then X approaches a along the
straight line from a to a+yv,, and the expression
£(x) - £(a) 'approaches zero through positive values. On the
other hand, if vy is a poiﬁt at which Q(Xl) < 0, then the
same Argument shows that aé X approaches a along the straight
line from a to a + v,, the expression £(x) - f£(a) approaches

0 through negative values.

We conclude that £ has a saddle point at a.

Step 5. We prove parts (b) and (c) of the theorem.

Examining equation (**) once again. We know that IQ(X)l >0

for all unit vectors v. Then lb(z)[ has a positive minimum

m, as Vv ranges over all unit vectors. (Apply the extreme-

value theorem to the continuous function [Q(cos t, sin t)|, for

0 St < 2m.) Now choose S small enough that each of the three
square-bracketed expressions on the right side of (**) is less

than m/3 whenever g* is within § of a. Here we use continu-
ity of the second-order partials. If 0 < t < §, then 3* is on
the line from a to a + 6v; since v is a unit vector, then
the right side of (*) has the same sign as A whenever 0 < t < ¢.

If A > 0, this means that £f(x) - f(a) > 0 whenever
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0 < ]5—31 < 3, so f has a relative minimum at g.‘ If a<o,
then f£(x) - f(a) < 0 whenever 0 < |x-a| < §, so f has a rela-

tive maximum at a.
Por examples illustrating (d), see the exercises. [
Exercises

1. Show that the function x4 + y4 has a relative minimum

at the origin, while the function x4 - y4 has a saddle point
there. Conclude that the second-derivative test is inconclusive

if B% - AC

0.

2; Use Taylor's theorem to derive the second derivative
test for maxima and minima of a function f(x) of a single vari-
able. If f'(a) = £"(a) = 0 and £f"' (a) # 0, what can YOu say
about the existence of a relative ﬁaximum or minimum at £ at a?

3. Suppose f(x) has continuous derivatives of orders

a. Suppose

l,...,n+l near x

£'(a) £"(a) = ses = f(n)(a) = 0.

and f(n+l)(a) # 0. What can you say about the ekistence of a rela-
tive maximum or minimum of £ at a? Prove your answer correct.

4. (a) Suppose f(xl,xz) has continuous third-order
partials near a. Derive a third-order version of formula (*) of
the preceding theorem.

(b) Derive the general version of Taylor's theorem for
functions of two variables.

[The following "operator notation" is convenient

(th+kD2)fl§=i = hD,f(a) + kD,f(a),

171
n

2 _ .2 2 '
(th+kD2) f‘ﬁ?i = h"D.D,f(a) + thDlsz(g) + h D2D2f(i),

and similarly far (th+kD2)
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The extreme—value theorem and the small-span theorem.

The proofs of the extreme-value theorem and small-span
theorem for rectangles giveﬁ in Apostol arcsufficienfly con-
densed to cause some students difficulty. Here are the details.
We shall prove the theorems only for Rz, but the proofs go

through without difficulty in rR”

A rectangle Q in Rz is the Cartesian product of two

closed intervals [a,b] and [c,d];

Q = [a,b] x [c,d] = {(x,y) l a¢< x<b and ¢ ¢y ¢ d}.

The intervals [a,b] and [c,d] are called the component

intervals of Q. If

Pl = {xo,xl,...,xn}

is a partition of [a,b], and if

Py = {vgsvys--rvy}

is a partition of [c,d], then the cartesian product P, x P

1

is said to be a partition of Q. Since P1 partitions [a,b]

into n subintervals and P2 partitions [c,d] into m

2

subintervals, the partition P = P1 X P2 partitions Q 1into
mn subrectangles, namely the rectangles

[x.

1_1'.xi] X [yj_l’yj].
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Theorem (small-span theorem). Let f be a scalar function that

is continuous on the rectangle
Q = [a’b] X [C:d]

in R”. Then, given e > 0, there is a partition of Q such

that f is bounded on every subrectangle of the partition and
such that

the s of f in every subrectangle of the partition

)
[r1]
t=]

'is less than

Proof. For purposes of this proof, let us use the
following terminology: 1If Qo is any rectangle contained in
Q, 1let us say that a partition of QO is "e-nice" if f is
bounded on every subrectaqgle R of the partition and if the
span of f in every subrectangle of the partition is less than
€. We recall that the gpan of f in the set S is defined by
the equétion

spang f = sup{f(x)ll X € S} - inf{f(x) | x e s}.
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Recall also that if 54 is a subset of S, then

span f ¢ span_, f.

S S

1

To begin, we note the following elementary fact: Suppose

A = [agibgl x [cgidg]
is any rectangle contained in Q. Let us bisect the first com-
ponent interval [ao,bo] of Qo into two subintervals
I1 = [ao,p] and I2 = [p,bo], where p 1is the midpoint of
[ao,bo]. Similarly, let us bisect [co,doj into two subinter-
vals Jl and Jz. Then Q0 is written as the union of the
four rectahgles

I1 x J1 and I2 x J1 and I1 x Jz and I2 leZ.

Now if each of these rectangles has a partition that is eg-
nice, then we can put fhese partitions together to get a parti-
tion of QO that is eo—nice; The figure indicates the proof;

each of the subrectangles of the new partition is contained in a

subrectangle of one of the old partitions.
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Now we prove the theorem. We suppose the theorem is

false and derive a contradiction. That is, we assume that for

some €9 > 0, the rectangle Q has no partition that is €9~
nice.

Let us bisect each of the component intervals of Q,
writing Q as the union of four rectgngles. Not all of these

smaller rectangles have partitions that are eo—nice, for if
they did, then Q would have such a partition. Let Q1 be one
of these smaller rectangles, chosen so that Q1 does not have a
partition that is eo—nice.

Now we repeat the process. Bisect each component inter-
val of Q, into four smaller rectangles. At least one of these
smaller rectangles has no part;tion thaf is eo—nice; let Qz
denote one such.

Continuing similarly, we obtain a sequence of rectangles

Q, Q Q

10 Qe
none of which have partitions that are eo—nice.' Consider'the
left-hand end points of the first component interval of each of
these rectangles. Let s be their least upper bound. Simiiar—
ly, consider the left-hand end points of the second component
interval of each of these rectangles, and let At be their least
upper bound. Then the point (s,t) belongs to all of the rec-

tangles Q,Q,,Q

1 Qg0 -
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Now we use the fact that f is continuous at the point
(s,t). We choose a ball of radius r centered at (s,t) such
that the span of f in this ball is less than €g- Because the
rectangles Qm become arbitrarily small as m increases, énd
because they all contain the point (s,t), we can choose m
large enough that Qm lies within this ball.

Now we have a contradiction. Since Qm is contaiped in
the ball of radius r centered at (s,t), the span of f in
Qm is less than €o: But this implies that there is a parti-
tion of Qm that is eo—nice, namely the trivial partition!
Thus we have reached a contradiction. O

Corollary. Let f be a scalar function that is continu-

— — —————————— e————————— —— <o

ous on the rectangle Q. Then f lg bounded on Q.
Proo

f. Set e =1, and choose a partition of Q that

is e-nice. This partition divides Q into a certain number of
subrectangles, say Rl""’Rmn' ‘Now f 1is bounded on each of
these subrectangles, by hypothesis; say
[f(x)]| ¢ Mi for x e Ri'
Then if M = max{Ml,...,an}, we have
| E| ¢ M
for all x € Q. o

Theorem (extreme-value theorem). Let f be a scalar

- function that is continuous on the rectangle Q. Then there are

points X and Xy of Q such that
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£(xg) ¢ £(x) ¢ £(x)

Proof. We know f is bounded on Q; let
M = sup{f(x) | x € Q}.

We wish to show there is a point x of Q such that

1
f(x;) = M.
Suppose there is no such a point. Then the function
M - f(x) 1is continuous and positive on Q, so that the func-
tion

g(x) = m
is also continuous and positive on Q. By the preceding corol-
lary g 1is bounded on Q; let C be a positive constant such

that g(x) ¢ C for x € Q. Then

1
M =T(x) ¢C , or

f(x) < M - (1/C)
for all x in Q. Then M - (1/C) 1is an upper bound for the
set of values of f(x) fof X in Q, contradicting the fact
that M is the least upper bound for this set.
A similar argument proves the existence of a point x
of Q such that

f(xy) = inf{f(x) | x e Q}. o
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Exercises on line integrals

1. Find the centroid of a homogeneous wire in shape of the

parabolic arc

y = X for -1 ¢ x ¢ 1.

[Use a table of integrals if you wish.]

2. Let
“yitxj
f(x,y) = ——
x“+y°
on the set S consisting of all (x,y) = 0.
(a)  Show that szl = lez on S.
(b) Compute the line integral f f - da from (a,0) to
Cc

(—a,O) when C is the upper half of the circle x2 + yz = az,

Compute it when C is the lower half of the same circle.

3. Let f be as in problem 2. Let U be the set of all

(x,y) with x > 0. Find a potential function for f that is

defined in U. Bty Sk

L er—

P(x 3\—_-. J‘_ﬂ&& tobere C & the
) —_ - oSV
C —
(1,0)
4. Let £ be a continuous vector field defined in the open, connected
—’
subset S of R'. Suppose that f = V<{>1 and _f_=~3<f32 in S. Show

that <P1 - <?2 is a constant function. [Hint: Apply Thoerem 10.3.]



MIT OpenCourseWare
http://ocw.mit.edu

18.024 Multivariable Calculus with Theory
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu
http://ocw.mit.edu/terms

