
Derivatives -of vector functions. 


Recall that if x - is a point of R" and if f(5)  is

a scalar function of -x, then the derivative of f (if it 


exists) is the vector 


For some purposes, it will be convenient to denote the derivative 


of f by a -row matrix rather than by a vector. When we do this, 


we usually denote the derivative by Df rather than ?f. Thus 


If we use this notation,.the definition of the derivative 


takes the following form: 


where ( ) - 0 as -h -> -0. Here the dot denotes matrix 

multiplication, so we must write h- as a column matrix in 

order for the formula to work; 



è his is the formula that will generalize to vector functions 

i 

Definition. Let S be a sybset of R ~ .  If 


- k f : S -> R , then - f(5) is called a vector function - -  of a 

vector variable. In scalar form, we can write -f(5) out in the 


form 


Said differently, -f consists of "k real-valued functions of 

n variables." Suppose now that -f is defined in an open ball 

about the point -a. We say that -f is differentiable at -a if 

each of the functions fl(x), ...,fk(~) is differentiable at -a

! (in the sense already defined) . Furthermore, we define the 
derivative of - f at - a to be the matrix 

That is, Df(=) is the matrix whose 1-O t h 
 row is the derivative 


th Dfi (=) of the i- coordinate function of -f. 
Said differently, - the' derivative 'Df (5) - of'. . -f at - -a 

is. the k by n matrix whose entry in row i and column j is 



it is  o f t e n  c a l l e d  t h e  Jacobian matr ix  of -f ( 5 ) .  Another

no ta t ion  f o r  t h i s  mat r ix  i s  t h e  no ta t ion  

With t h i s  no ta t ion ,  many of  t h e  formulas w e  proved f o r  a 

s c a l a r  funct ion  f (5) hold without change f o r  a  vec tor  funct ion  

-f ( 5 ) .  W e  cons ider  some of them here:  

Theorem 1. - The funct ion  - f (5)  - i s  d i f f e r e n t i a b l e  - a t  - a 

-- i f  and only - i f  

where - g ( & )  -> 0 a s  h -> 0 .
_I - -

\ 
(Here -f, 5, and -E a r e  w r i t t e n  a s  column mat r i ces . )  

Proof: Both s i d e s  of  t h i s  equat ion rep resen t  column 

t h  matr ices .  I f  w e  cons ider  t h e  I- e n t r i e s  of these  matrices, 

we have t h e  following equat ion:  

NOW -f is d i f f e r e n t i a b l e  a t  -a i f  and only i f  each funct ion  

is. And f i  is d i f f e r e n t i a b l e  a t  -a i f  and only i ff i  

Ei (&) -> 0 a s  -h -> -0. But Ei (h)- -> 0 a s  h- -> -0, f o r  

each i, i f  and only if -E (h)  - -> -0 a s  h - -> -0.



Theorem 2.  -I f  1 - -f ( x )  -is  d i f f e r e n t i a b l e  -a t  -a ,  -then  -f 

-i s  continuous -a t  a .  

Proof. I f  -f i s  d i f f e r e n t i a b l e  a t  -a ,  then s o  i s  each

funct ion  f i .  Then i n  p a r t i c u l a r ,  f i  i s  continuous a t  -a ,

whence - f i s  continuous a t  - a .  

-The genera l  cha in  -r u l e .  

Before cons ider ing  t h e  genera l  chain r u l e ,  l e t  us t ake  t h e  

chain  r u l e  w e  have a l r eady  proved and reformulate  it i n  t e r m s  of  

matr ices .  

A s s u m e  t h a t  f (5) = f ( x l , . .  ., x ) is a s c a l a r  funct ion  n

def ined  i n  an open b a l l  about -a ,  and t h a t  -x ( t)= (xl ( t),..., 
x n ( t ) )  is  a  parametrized curve passing through -a .  L e t  

-x ( t O ) = -a .  I f  f  (x)  - i s  d i f f e r e n t i a b l e  a t  -a ,  and i f  -x ( t )  i s  

) d i f f e r e n t i a b l e  a t  to, and we have shown t h a t  t h e  composite 

f ( ~ ( t ) )is  d i f f e r e n t i a b l e  a t  to, and i t s  d e r i v a t i v e  i s  given 

by t h e  equat ion 

when t = t O .  

W e  can r e w r i t e  t h i s  formula i n  s c a l a r  form a s  follows: 

o r  w e  can r e w r i t e  it i n  t h e  following matr ix  form: 



Recal l ing  t h e  d e f i n i t i o n  of  t h e  Jacobian matr ix  Df, - we s e e

t h a t  t h e  l a t t e r  formula can be w r i t t e n  i n  t h e  form 

(Note t h a t  t h e  matr ix  Df i s  a row matr ix ,  while t h e  matr ix  

DX 
d 


is by i t s  d e f i n i t i o n  a column matr ix . )  

This i s  t h e  form of t h e  chain r u l e  t h a t  w e  f i n d  e s p e c i a l l y  

u s e f u l ,  f o r  it is  t h e  formula t h a t  genera l i zes  t o  higher  dimen- 

s ions .  

Let us now cons ider  a composite of vec to r  funct ions  of 

v e c t o r  va r i ab les .  For t h e  remainder of t h i s  s e c t i o n ,  we assume 

t h e  following: 

Suppose - f - is  def ined  -- on an open -- b a l l  i n  R" about  -a ,  

t a k i n g  va lues  & Rk, wi th- -f (5) = -b. Suppose p -is  def ined  

-- i n  an open - b a l l  about h ,  t ak ing  values - i n  RP. - L e t  

- F (5)  = 9(f(x)) denote - t h e  composite funct ion.  



We s h a l l  w r i t e  these  funct ions  a s  

-f(5)= f ( x l ~ g e - r x n )  and -g ( x )  = ~ ( y l r . . . , y k ) .  

I f  - f and - g a r e  d i f f e r e n t i a b l e  a t  - a and - b 

r e s p e c t i v e l y ,  it i s  easy t o  see  t h a t  t h e  p a r t i a l  d e r i v a t i v e s  of 

-~ ( 5 )e x i s t  a t  - t h  a ,  and t o  c a l c u l a t e  them. A f t e r  a l l ,  t h e  i-

coordina te  funct ion  of  -F ( x )- i s  given by t h e  equat ion 

~f we s e t  each of  t h e  v a r i a b l e s  xQ , except  f o r  t h e  s i n g l e  

v a r i a b l e  x equal  t o  t h e  cons tan t  aQ,  then both s i d e s  a r e  
j * 

funct ions  of x  alone.  The chain  r u l e  a l ready proved then  
i j 


g ives  us t h e  formula 

Thus 

= [i-th row of Dz] • 



domains, --then  t h e  composite - F (5)  = q (f(5 )) - i s  cont inuous ly

d i f f e r e n t i a b l e  --on i t s  domain, -and

This  theorem i s  adequate f o r  a l l  t h e  cha in- ru le  app l i ca -

t i o n s  w e  s h a l l  make. 

-Note: The ma t r ix  form of t h e  cha in  r u l e  i s  n i c e  and n e a t ,  and

it is  u s e f u l  f o r  t h e o r e t i c a l p u r p o s e s .  I n  p r a c t i c a l  s i t u a t i o n s ,  

one u s u a l l y  uses  t h e  s c a l a r  formula ( * )  when one c a l c u l a t e s  par- 

t i a l  d e r i v a t i v e s  o f  a composite func t ion ,  however. 

The fo l lowing  proof is  inc luded  s o l e l y  f o r  completeness ; we 

1-

shall not need to use it: 


Theorem 4.  -- L e t  - f - and - g -- be a s  above. - I f  f - is 


d i f f e r e n t i a b l e  - - - - -  a t  a and g i s  d i f f e r e n t i a b l e  - a t  - b ,  - t hen  


I is  d i f f e r e n t i a b l e  -- a t  -a ,  -and

DF(5) = Dg(b) Df - ( a ) .  - 

Proof.  W e  know t h a t  

I where El(k) -> 0 a s  -k -> -0. L e t  us set  -k  = - - -f  (a+h) - -f ( g )

i n  t h i s  formula, Then 



Thus the  Jacobian matr ix  of -F s a t i s f i e s  t h e  matr ix  equat ion 

his i s  our  genera l ized  vers ion  of t h e  chain r u l e .  

There i s ,  however, a problem here.  W e  have j u s t  shown t h a t  

if - f and - g a r e  d i f f e r e n t i a b l e ,  then t h e  p a r t i a l  d e r i v a t i v e s  

of t h e  composite funct ion  -F e x i s t .  But we know t h a t  t h e  mere 

ex i s t ence  of t h e  p a r t i a l  d e r i v a t i v e s  of  t h e  funct ion  i s  n o t  Fi 

enough t o  guarantee t h a t  Fi is  d i f f e r e n t i a b l e .  One needs t o  

g ive  a separa te  proof t h a t  i f  both -f and CJ a r e  d i f f e r e n t i a b l e ,  

then  s o  i s  t h e  composite g(x) = f(p(x)). (See Theorem 4 

following. ) 

One can avoid g iv ing  a  sepa ra te  proof t h a t  -F i s  ,I 
d i f f e r e n t i a b l e  by assuming a  s t r o n g e r  hypothesis ,  namely t h a t  

both - f and - g a r e  cont inuous ly  d i f f e r e n t i a b l e .  I n  t h i s  case ,  

t h e  p a r t i a l s  of - f and - g a r e  continuous on t h e i r  r e s p e c t i v e  

domains; then  t h e  formula 

which w e  have proved, shows t h a t  D.F is  a l s o  a continuous
3 i 

funct ion  of -x. Then by our  b a s i c  theorem, Fi i s  d i f f e r e n t i a b l e  

f o r  each if s o  t h a t  -F i s  d i f f e r e n t i a b l e ,  by d e f i n i t i o n .  

W e  summarize t h e s e  f a c t s  a s  follows: 

Theorem 3 .  - - -  Let  f be def ined  ----- on an open b a l l  i n  R' 

about a ,  t ak ing  va lues  i n  Rk; -l e t  f ( a )  - = b.- - - -Let g be 

def ined  -- i n  an open - b a l l  about b, t ak ing  va lues  - i n  RP. - If - f 

-and p are cont inuously d i f f e r e n t i a b l e  -on t h e i r  r e spec t ive  



- - £ (a)- I1 . 

Now w e  know t h a t  

- - -  f (a+h) - f (a) = Df (5).- h + E2 (h)- ll - hll , 

where E2 (h) -> -0 a s  -h -> -0. Plugging t h i s  i n t o  ( * * )  , we 

get t h e  equat ion 

+ El ( f (a+h)- - - - -f ( a ) ) l l f ( a+h)- - - - - -£ (a)ll - . 

Thus 

-F(g+h) - -F ( 5 )  = Dz(b) Df (5) h- + E3(h)llhll,- -

where 

W e  must show t h a t  E3 -> -0 a s  h -> -0. The f i r s t  term i s  

easy ,  s i n c e  D g  (b) i s  cons tan t  and <gZ(h)- -> -0 a s  h -> 0. 

Furthermore, as -h -> -0, t h e  express ion  - - -f (a+h) - -f (a)
approaches -0 ( s i n c e  -f i s  cont inuous) ,  so t h a t  



E (f(g+h) - - -f(5)) --> -0. We need finally to show .that the -1 

expression 


is bounded as h - -> - 0. Then we will be finished. Now 

Il.f(a+h) - - - - - f(a)ll - - - - h-11 211 I1 Df -(a) - -,I &,I + E2(2)11

C I1 Df - (a) - - ull + it g2 (&) I1 , 

where - u is a unit vector. Now E2(h) - -> - 0 as h -> - 0, 

and it is easy to see that I1 Df (a) - ull C nk max 1 D.f . (a)1 
1 3 -

.
(Exercise!) Hence the expression ll - f(a+h) - - - - f (a) - ll/nh - U is 

bounded, and we are finished. 

Differentiating inverse functions. 

Recall that if f(x) is a differentiable real-valued 

function of a single real variable x, and if f ' ( x )  > 0 

for a g x g b, then f is strictly increasing, so it has an 

inverse g. '~urthermore, g is differentiable and its deriva- 

tive satisfies the formula 

Part, but not all, of this theorem generalizes to vector 

functions. We shall show that -if -f has an inverse -g, and 



-if -g is differentiable, then there is a formula for Dg 

analogcus to this one. Specifically, we prove the following: 

Theorem 5. Let S - be subset of R". Suppose - that 

- f : A - > R  - and -- that - f(a) = - b. - -  Suppose also that - f -- has. an 

inverse -g.

- - -  ~f f is differentiable - at - a, -- and if - g - is differen- 


tiable - at b, - - then 


Proof. Because -g is inverse to f ,  the equation 

-g (f(5)) = 5 holds for all -x in S. Now both -f and q are 

differentiable and so is the composite function, -g(f ( 5 ) ) .  Thus 

we can use the chain rule to compute 

Dq(b) ~f(a) = D (identity) = In. 

Since the matrices involved are n by n, this equation implies 


that 


Remark 1. This theorem shows that in order for the 

differentiable function -f to have a differentiable inverse, 

it is necessary that the Jacobian matrix Df(a) have rank n. 

Roughly speaking, this condition is also sufficient for -f to 

have an inverse. 



More precisely, one has the following result, which 

1 

is the famous "Inverse Function Theorem" of Analysis: 


Suppose -f is defined and continuously differentiable 


in an open ball of Rn about -a, taking values in R". If 

Df (a) has rank n, then there is some (probably smaller) open 

ball B about - a, such that - f carries B in a 1-1 fashion 

onto an open set C in Rn. Furthermore, the inverse function 

-g : C -> B is continuously differentiable, and 

Remark 2. For a function of a single variable, y = f(x), 

the rule for the derivative of the inverse function x = g(y) 

is often written in the form 

This formula is easy to remember; the Leibnitz notation for 


derivatives "does the work for you". It is tempting to think 


that a similar result should hold for a function of several 


variables. --- It does not. 


For example, suppose 


-f(x,y) = (u,v) 

is a differentiable transformation from the x - y plane to 

the u - v plane. And suppose it has an inverse; given by 



Our theorem tells us that if -f(=) = b, then 


~q(2)= [D~(~)I-'* 


If we write out these matrices in Leibnitz notation, we obtain 


the equation 


Now the formula for the inverse of a matrix gives (in the case 


1 of a 2 by 2 matrix) the formula 


. npplying this formula, we obtain the equation 

This means, for example, that 




Thus the simplistic idea that ax/av "should be" the 


reciprocal of av/ax is very far from the truth. The Leibnitz 


notation simply doesn't "do the work for you" in dimensions 


greater than 1. Matrix notation does.. 


Implicit differentiation. 

Suppose g is a function from R~~~ to R": let us 

write it in the form 

Let -c be a point of R", and consider the equation 

This equation represents a system of n equations in n + k 
unknowns. In general, we would expect to be able to solve this 

system for -n of the unknowns in terms of the others. For

instance, in the present case we would expect to be able to 

solve this system for -x in terms of y. We would also expect 

the resulting function -x = ~ ( y )to be differentiable. 

Assuming this expectation to be correct, one can then 

calculate the derivative of the resulting function 2 by using 

the chain rule, One understands best how this is done by work- 

ing through a number of examples. Apostol works several in 

sections 9.6 and 9.7. At. this point, you should read 9.6 and Ekamples 1,2,3, 

and 6 of 9.7. 



\ A natural question to ask now is the following: 
1 to what extent 

ourassumptions are correct, that the given equation determines -x

as a function of y . WE'discuss that questeon now. 

Fjrst let us consider the problem discussed on p. 294 of the text. 

It involves an equation of the form 

where F is continuously differentiable. Assuming that one can in theory 

solve this equation for z as; a function of x and y, say z = f(x,y). 

Apostol derives equations for the partials of this unlmown function: 

-3 F -
-a 

3~
f 
(x1y) -- -- a x and - -J f - -3.L

a x  -a F 3~ -a F 
a z a z 

Here the functions on the right side of these equations are evaluated 

at the point (x,y,f (x,y) ) . 
j 

Note that it was necessary to assume that )F/dz # 0 , in order 

to carry out these calculations. It is a remarkable fact that the condition 

aF/?z # 0 is also sufficient to justify the assumptions we made in carrying 

them out. This is a consequence of a fsrnous theorem of Analysis called the 

Implicit Function Theorem. Orie consequence of this theorem is the following: 

If one has a point (xO,yO,zO) that satisfies the equation F(x,y,z) = 0 , 
and if a F b z  # 0 at this point, then there exists a unique differentiable 

function f(x.y), defined in an open set B about (xO,yO) . such that 
f(xo,yo) = zO and such that 

F!x,ytf (xty) = 0 

for all (x,y) in B. Of course, once one hows that f exists and 

is differentiable, one can find its partials by implicit differentiation, 

as explained in the text.
I 



< 
E5(.am~le 1. Let F(x,y,z) = x2 + y2 + z2 + 1 . The equation 


F(x, y,z) = 0 cannot be solved for z in terms of, x and y; for in 


fact there is no point that satisfies the equation. 


Exam~Qe2. Let F(xfyfz)= x2 + y2 + z 2 - 4. The equation 

F(x,y,z) = 0 is satisfied by the point a = (0,2,0). But 3F/hz = 0 

at the point a, so the implicit function theorem does not apply. This 

fact is hardly surprising, since it is clear from the picture that z 

is not determined as a function of (x.y) in an open set about the point. 

( X ~ I Y ~ '  = (OI2). 

Hc;wever, the point b = (l,l,6) 

satisfies the equation also, and )F/~Z # 0 

Q : ( o , ~ , o )at this pint. The implicit function theorem 

3 implies that there is a function f(x,y) 

defined in a neighborhood of (xO,yO)= (1,l) 
Y 

such that f(l,l) ~= and f satisfies the 

equation F(x,y, z) = 0 identically. 

h-ote that f is not uniquely determined unless we specify its value at 

(xO.yO). There are two functions f defined in a neighborhood of (1,l) 

that satisfy the equation f(x,y,z) = 0, namely, 

z = [ 4 - x2 - y2 ]4  and z = - [4- x 2 - y2]5 . 
However, only one of them satisfies the condition f(1,1) = fi. 

Note that at the point a = (0,2,0) we do have the condition 

JF/Jy # 0. Then the implicit function theorem implies that y is 

determined as a function of (x,z) near this point. The picture makes this 

fact clear. ,L 



',
I 

Nc~w let us consider the more general situation discussed on p. 296 

of the text. We have two equations 

where F acd G are continuously differentiable. (We have inserted 

an extra variable to make things more interesting.) Assuming there are 

functions x = X(z,w) arrd y = Y(z,w) that satisfy these equations for 

all points in an open set in the (zfw) plane, we have the identities 

F(X,Y,z,w) = 0 and G(X,Y,Z,W) = o , 

whence (differentiating with respect to z), 

These are linear equations for JX/Jz and a~/az; we can solve them if the 

coefficient matrix 

is non-singular. One can use Cramerls rule, as in the text, or one 


can write the solution in the form 


The functions on the right side of this equation are evaluated at the point 

,I (~(z,w),~(z,w),z,w),so that both sides of the equation are functions 

of z and w alone. 



You can check that one obtains an equation for the other partials 

I 

of X and Y if one replaces z by w throughout. 


All this is discussed in the text. But now let us note that in 

order to carry out these calculations, it was necessary to assume that the 

matrix & F,G/$ x, y was non-singular . Again , it is a remarkable fact 

that this condition is also sufficient to justify the assumptions we have 

made. Specifically, the Implicit Function Theorem tells us that if 

( X ~ , ~ ~ , Z ~ , W ~ ) 
is a point satisfying the equations (*),  and if the matrix 

a F,G/ d x, y is non-singular at this point, then there do exist unique 

differentiable functions X(Z,W) and Y(z,w) defined in an open set about 

(zOIwO), such that 

X(zo.wo) = xo and YizoIwo)= yo . 
and such that F and G vanish identically when X and Y are substituted 

I for x and y. Thus under this assumption all our calculations are 

r
justified. 

E3mple 3, Consider the equations 

I 
The points ( x ~ , ~ ~ ~ z ~ ~ w ~ )= (1.2t-lrO) ar;d (xl I Y ~ , ~ ~ I ~ ~ )  
= (1,5121-2) 

satisfy these equations, as you can check. WE calculate 

At the point (x~,~~,z~,w~), this matrix equals [ y ] ,  whichis


I non-singular. Therefore, there exist unique functions x = X(z,w) 

I and y = Y(Z ,w) . defined in a neighborhood of (zo,w0) = (-1.0) that 



I satisfy these equations identically, such that X(-1,O) = 1 and Y(-1,O) = 2. 

SSnce we know the values of X and Y at the point (-l,O), we 


can find the values of their partial derivatives at this point also. Indeed, 


I 
Om the other hand, at the point (xl,yl,zl,wl)= (1,f ,2,-2) the 

matrix hF,G/bx,y equals 

I which is singular. Therefore we do not expect to be able to solve for x 

and y in terms of z -d w nc.ar this point. However, at this point, 

< 

we have 


I 1 
Therefore, the implicit function theorem implies that we can solve for x 

and w in terms of y and z near this point. 

Exercises 


1. Given the continuously differentiable scalar field f (x, , 
2 3 let +(t) = f(t ,t + 1). Find ( 1 ,  given that -9 Vf(1,2) = 5i - * 

y ) 

J . 



2. Find the point on the surface z = xy nearest the point (2,2,0). 

3. A rectangular box, open at the top, is to hold 256 cubic inches. 


Find the dimensions that minimize surface area. 


4. Find parametric equations for the tangent line to the curve of 


intersection of the surfaces 


at the point (2,1,2). 

5. Let f b e  a s c a l a r  f u n c t i o n  o f  3 v a r i a b l e s .  D e f i n e  

E x p r e s s  F 8 ( 1 )  i n  terms o f  t h e  f i r s t  o r d e r  p a r t i a l s  o f  


f a t  t h e  p o i n t  ( 3 , 3 , 2 ) .  


E x p r e s s  F " ( 1 )  i n  terms o f  t h e  f i r s t  a n d  s e c o n d  o r d e r  


p a r t i a l s  o f  f a t  t h e  p o i n t  ( 3 , 3 , 2 ) .  


2 6. Let f : R ---r R' a n d  l e t  g : R~ - 3 R . S u p p o s e  t h a t  


f ( 0 , O )  = ( 1 , 2 )  -f ( 1 , 2 )  = ( 0 ' 0 ) .  


g ( O , O )  = ( 1 , 3 , 2 )  d l J )  = ( - 1 , O p l ) - 


Suppose t h a t  

a)  I f  h ( 4 )  =g(f(x)), f i n d  D h ( 0 , O ) .  
2 2 

b) If f has an i n v e r s e  : R - R , f i n d  D k ( 0 , O ) .



7. Ccnsider the functions of Example 3. Find the partials 

JX/& m d  3 ~ / & at the point =( Z ~ , W ~ )(-1 , 0 ) .  

8. Fcr the functions F and G of Example 3, compute ~ ( F , G ) / . ~ ( x , ~ )  

at the point 1 , 2 - 2 )  Given the equations F = 0,  G = 0 ,  fcr which 

pairs of variables is it possible to solve in terms of the other two near 

this point? 



The second-derivative t e s t  f o r  extrema of a funct ion  of 

two va r i ab les .  

Theorem. Suppose -t h a t  f ( x l , x 2 )  -has continuous second- 

order  p a r t i a l  d e r i v a t i v e s  - - -  i n  a  b a l l  B about a .  Suppose - t h a t  

Dlf -and D2f vanish -a t  a .  -Let 

A = D1llf(a)l B = DlI2f(a), C = D212f(=) .  

( a )  -I f  B2  - AC > 0, - then f - -  has a sadd le  po in t  - a t  a .  

(b) If B~ - AC < 0 - and A > 0, then f - -  has a r e l a t i v e  

(c) - I f  B 2  - AC < 0 - and A < 0 ,  - then  f - -  has a  r e l a t i v e  

maximum -a t  a .

(d)  If B L  - AC = O I  --- t h e  t e s t  i s  inconclusive.  

Proof. S tep  1. W e  f i r s t  prove a ve r s ion  of Tay lo r ' s  theorem 

wi th  remainder f o r  func t ions  of two var iab les :  

Suppose f  (xl ,  x2)  has continuous second-order p a r t i a l s  i n  a  

b a l l  B centered  a t  - a .  Let  v  - be a f ixed  vec to r ;  say 

-v = ( h l k ) .  Then 

* 
where - a is  some p o i n t  on t h e  l i n e  segment from - a t o  - a + tv. - 

W e  d e r i v e  t h i s  formula from t h e  s ing le -va r i ab le  form of 

Taylor '  s theorem. L e t  g (t)= f  (=+tv) - , i.e .  ,



L e t  F ( t v )  - denote t h e  l e f t  s i d e  of  t h i s  equat ion.  W e

w i l l  be concerned about t h e  s ign  of F ( t v )  when t i s  smal l ,  

because t h a t  s i g n  w i l l  depend on whether f  has  a  l o c a l  maxi- 

mum o r  a l o c a l  minimum a t  -a ,  o r  n e i t h e r .  

S tep  3 ,  From now on, l e t  -v = (h ,k)  be a u n i t  vec to r .  

Consider t h e  q u a d r a t i c  funct ion  

W e  s h a l l  determine what va lues  Q t akes  a s  -v v a r i e s  over  t h e  

u n i t  c i r c l e .  

Case 1. I f  B~ - AC < 0 ,  then  w e  show t h a t  Q (v) has 

t h e  same s i g n  a s  A ,  f o r  a l l  u n i t  vec to r s  v. 
Proof.  When -v =  ( 1 , 0 ) ,  then  Q(v) = A ;  thus  Q(v) 

has t h e  same s i g n  a s  A i n  t h i s  case .  ~ o n i i d e r  t h e  continuous 

funct ion  Q ( c o s  t ,  s i n  t ) .  A s  t ranges over  t h e  i n t e r v a l  

[ O  ,21~1, t h e  v e c t o r  (cos t ,  s i n  t) ranges over  a l l  u n i t  vec to r s  

i n  V2. I f  t h i s  funct ion  t a k e s  on a  va lue  whose s i g n  is  d i f f e r -

e n t  from t h a t  of  A, then by t h e  intermediate-value theorem, 

t h e r e  must be a to such t h a t  Q ( c o s  to, s i n  to)= 0. That is ,  

f o r  some u n i t  v e c t o r  (ho,ko). Now i f  ho # 0, t h i s  means t h a t  

t h e  number ko/ho i s  a real r o o t  o f  t h e  equat ion  



g ( t )  = f ( a l  + t h ,  a 2  + t k ) .  

2We know t h a t  g ( t )  = g ( 0 )  + g l ( 0 ) - t + g W ( c ) * t/2! where c is  

between 0 and t. Ca lcu la t ing  the d e r i v a t i v e s  o f  g g ive s  

* 
from which formula ( * )  fol lows.  Here -a = -a + cv,- where c i s  

between 0 and t. 

S t ep  2. I n  t h e  p r e sen t  case,  +&e f i r s t  p a r t i a l s  of  f 

vanish a t  so  t h a t  

The on ly  reason this approximation r a t h e r  than e q u a l i t y  
* 

i s  t h a t  t h e  second p a r t i a l s  a r e  evaluated  a t  the unknown p o i n t  -a 

i n s t e a d  of  a t  -a ,  This  matter w i l l  be disposed of  by using

elementary eps i l on i c s .  Formally, 	w e  have t h e  equat ion 

f (a*)- -A] h2 + 2 [Dl. Zf (=*) -B]hk + 	 [ D ~2f (a*)  -c] k2.+ 	ED1.l -
* 

Note t h a t  t h e  l a s t  three terms a r e  s m a l l  i f  -a i s  c l o s e  to  

i -a , because t h e  second p a r t i a l s  are continuous. 



~ u tthi,s equation has a real root only if B~ \ - AC > 0. 

Similarly, if ko Z 0, the number ho/ko is a real root of the 

equation 

again we conclude that B~ - AC > 0. Thus in either case we are 

led to a contradiction. 

Case 2. If B~ - AC > 0, then we show that Q (v) takes 

on both positive and negative values. 

2 Proof. If A # 0, the equation Ax + Bx + C = 0 has 

2 two distinct real roots. Thus the equation. y = Ax + 2Bx + C 

represents a parabola that crosses the x-axis at two distinct 

1 points. On the other hand, if A = 0, then B # 0 (since 

B2 - AC > 2 
0 ) ;  in this case the equation y = Ax + 2Bx + C 

represents a line with non-zero slope. It follows that in 

either case, there is a number xo for which 

and a number xl for which 


-Let (ho,ko) be a unit vector with ho/ko - xo and let (hl,kl) 

be a unit vector with hl/kl = xl. Then Q(ho,k,) < 0 and 



i 

Step 4 .  W e  prove p a r t  (a )  of t he  theorem. Assume 

B~ - AC > 0. L e t  % be a u n i t  vector  f o r  which Q(&) > 0.  

Examining formula ( * * ) ,  w e  see 	t h a t  the  expression 

2 [f(a+tv)- - - f (a)I /tL approaches 

Q(vo) a s  t -> 0. L e t  

a 	 -x = -a + t v- and l e t  t -> 0. 
L 

Then -x approaches -a along the  

s t r a i g h t  l i n e  from -a t o  -a + G, and t h e  expression 

f (5) - f (2) approaches zero through p o s i t i v e  values. On t h e  

o t h e r  hand, i f  vl i s  a po in t  a t  which Q(vl) < 0, then t h e  

same argument shows t h a t  a s  -x approaches -a along t h e  s t r a i g h t  

l i n e  from -a t o  5 + vl, the expression f (5) - f (5) approaches 

-0 through negative values.  

W e  conclude t h a t  f has  a saddle  p o i n t  a t  -a .  

S tep  5. W e  prove p a r t s  (b) and (c) o f  theorem. 

Examining equation (**) once again. W e  know t h a t  ( Q ( x )  1 > 0 

f o r  a l l  u n i t  vec tors  v. Then I Q  (1) has a p o s i t i v e  minimum I 
m, a s  -v ranges over  a l l  u n i t  vectors .  (Apply t h e  extreme- 

value theorem t o  t he  continuous funct ion [Q(COS t, s i n  t)1 ,  f o r  

0 < t G 2r.) Now choose 6 small  enough t h a t  each of the t h r e e  

square-bracketed expressions on t h e  r i g h t  s i d e  of (**) is less 
* 

than  m/3 whenever -a i s  wi th in  6 of  -a .  Here w e  use continu-
* 

i t y  of the second-order p a r t i a l s ,  I f  0 < t < 6 ,  then -a i s  on 

t h e  l i n e  from -a t o  -a + 6v;- s ince  v- is a u n i t  vec tor ,  then 

the r i g h t  s i d e . 0 5  (*) has  t h e  same s i g n  a s  A whenever 0 < t < 6. 

I f  A > 0, t h i s  means t h a t  f (x)- - f (a)- > 0 whenever 
) 



0 < Ix-a - - 1 < 6 ,  so f h a s  a r e l a t i v e  minimum a t  a. If  A < 0,  

I then  f (51 - f ( a )  - < 0 whenever 0 < Ix-a1 - - < 6 ,  s o  f h a s  a rela-

t i v e  maximum a t  -a .
Ear examples illustrating ( d ) ,  see the exercises. a 
Exerc ises  

1. Show t h a t  t h e  f u n c t i o n  x4 + y4 has a r e l a t i v e  minimum 

4 a t  the o r i g i n ,  whi le  t h e  f u n c t i o n  x - y4 has  a s a d d l e  p o i n t  

t h e r e .  Conclude t h a t  t h e  second-der iva t ive  test  is inconc lus ive  

2. U s e  Tay lo r ' s  theorem t o  d e r i v e  the second d e r i v a t i v e  

test  f o r  maxima and minima o f  a func t ion  f (x )  o f  a s i n g l e  v a r i -  

a b l e .  If f 1(a) = f" ( a )  = 0 and f"' ( a )  # 0, what can you say  

abou t  t h e  e x i s t e n c e  o f  a r e l a t i v e  maximum o r  minimum a t  f a t  a?  

3 .  Suppose f (x) has  cont inuous d e r i v a t i v e s  o f  o r d e r s  

! , . . . , n + l  near  x = a. Suppose 

and f("+l)(a)  # 0.  What can  you say  about  t h e  e x i s t e n c e  o f  a r e l a -

t i v e  maximum o r  minimum. o f  f a t  a ?  Prove your answer c o r r e c t .  

4 .  ( a )  Suppose f (xl, x2) h a s  cont inuous t h i r d - o r d e r  

p a r t i a l s  near  -a.  Derive a th i rd -o rde r  ve r s ion  o f  formula ( * )  of  

the preceding theorem. 

(b) Derive t h e  genera l  ve r s ion  o f  Tay lo r ' s  theorem f o r  

f u n c t i o n s  o f  two v a r i a b l e s .  

[The fo l lowing "opera to r  n o t a t i o n "  i s  convenient  . 

(hDl+kD2) f Ix=a = h ~ ~ f  (a)  + k ~ ~ f-- - - (a),

2 (hDl+kD2) f 1 -- x=a - 
2 2= h DIDlf (a) + 2hkD1D2f (5) + h DZD2f (5), 

and s i m i l a r l y  f ~ r  (hDl+kD2) 1 
I 



The extreme-value theorem and the small-span theorem. 


The proofs of the extreme-value theorem and small-span 


theorem for rectangles given in Apostol at~sufficiently con- 


densed to cause some students difficulty. Here are the details. 


We shall prove the theorems only for R', but the proofs go 


through without difficulty in R ~ .  


A rectangle Q in R~ is the Cartesian product of two 


closed intervals [a,b] and [c,dl; 


Q = [a,b] x [c,d] = {(x,y) I a ( x ( b and c 5 y ( d). 
! 

The intervals [a,b] and [c,d] are called the comuonent 

intervals of Q. If 

P1 = {X~'X~'* .'xn] 

is a partition of [a,b], and if 

P2 = { Y ~ J Y ~ S * . . , Y ~ ~  

is a partition of [c,dJS then the cartesian product P1 x P2 

is said to be a partition of Q. Since P1 partitions [a,b] 

into n subintervals and P2 partitions [c,d] into m 

subintervals, the partition P = P x P2 partitions Q into 1 

mn subrectangles, namely the rectangles 



Theorem (small-s~an theorem). Let f be 2 scalar function that 


-is continuous on the rectangle 

Q = [a,bl x [c,dl 


- 2in R . Then, given 6 > 0 ,  there is q partition of Q such 

-that f is bounded on every subrectanale of the partition and 

--- such that the span of f in every subrectangle of the partition 


---is less than 
6 0  

Proof. For purposes of this proof, let us use the 

following terminology: If Qo is any rectangle contained in 

Q, let us say that a partition of P o  is tt6-nice" if f is 

bounded on every subrectangle R of the partition and if the 

. span of f in every subrectangle of the partition is less than 

r. We recall that the span of f in the set S is defined by 


the equation 




R e c a l l  a l s o  t h a t  i f  S1 is  a s u b s e t  o f  S ,  t h e n  

s p a n  f s p a n S  f .  
1 

To b e g i n ,  w e  n o t e  t h e  f o l l o w i n g  e l e m e n t a r y  f a c t :  S u p p o s e  

-Q o  - [ a o , b o I  x [ c o , d 0 I  

i s  a n y  r e c t a n g l e  c o n t a i n e d  i n  Q .  L e t  u s  b i s e c t  t h e  f i r s t  com-

p o n e n t  i n t e r v a l  [ a o , b o ]  o f  Po i n t o  two  s u b i n t e r v a l s  

I1 = [ a o , p J  a n d  I2 = [ p , b o ] ,  w h e r e  p is  t h e  m i d p o i n t  o f  

[ a o , b o ] .  S i m i l a r l y ,  l e t  u s  b i s e c t  [ c o , d 0 ]  i n t o  two s u b i n t e r -  

v a l s  J1 a n d  J2.  Then Qo  i s  w r i t t e n  a s  t h e  u n i o n  o f  t h e  

f o u r  r e c t a n g l e s  
I 

I1 x J1 a n d  I2 x J1 a n d  I1 x J a n d  I2 x J2.2 

Now if e a c h  o f  t h e s e  r e c t a n g l e s  h a s  a p a r t i t i o n  t h a t  is eo-

n i c e ,  t h e n  w e  c a n  p u t  t h e s e  p a r t i t i o n s  t o g e t h e r  t o  g e t  a p a r t i -

t i o n  o f  Qo t h a t  i s  r o - n i c e .  The f i g u r e  i n d i c a t e s  t h e  p r o o f ;  

e a c h  of t h e  s u b r e c t a n g l e s  o f  t h e  n e w  p a r t i t i o n  i s  c o n t a i n e d  i n  a 

s u b r e c t a n g l e  o f  o n e  o f  t h e  o l d  p a r t i t i o n s .  



Now we prove the theorem. We suppose the theorem is 

false and derive a contradiction. That is, we assume that for 

some eo > 0, the rectangle Q has no partition that is ao-

nice. 

Let us bisect each of the component intervals of Q, 


writing Q as the union of four rectangles. Not all of these 


smaller rectangles have partitions that are so-nice, for if 


they did, then Q would have such a partition. Let Q1 be one 


of these smaller rectangles, chosen so that does not have a 
Q1 

partition that is nice. 

i 

Now we repeat the process. Bisect each component inter- 


val of Q1 into four smaller rectangles. At least one of these 


smaller rectangles has no partition that is eo-nice; let Q2 


denote one such. 


Continuing similarly, we obtain a sequence of rectangles 


none of which have partitions that are ro-nice.' Consider the 


left-hand end points of the first component interval of each of 


these rectangles. Let s be their least upper bound. Similar-


ly, consider the left-hand end points of the second component 


interval of each of these rectangles, and let t be their least 


upper bound. Then the point (s,t) belongs to all of the rec- 


I tangles Q, Q1, Q2,. .. . 



Now we use the fact that f is continuous at the point 

(s,t). We choose a ball of radius r centered at (s,t) such 

that the span of f in this ball is less than r o .  Because the 

rectangles become arbitrarily small as m increases, and Qm 

because they all contain the point ( s , t ) ,  we can choose m 

large enough that Qm lies within this ball. 

Now we have a contradiction. Since Qm is contained in 


the ball of radius r centered at (s,t), the span of f in 


is less than But this implies that there is a parti- 
Qm 


tion of Qm that is iO-nice, namely the trivial partition! 
1 

Thus we have reached a contradiction. O 

Corollary. Let f be a scalar function that continu-

---ous on the rectangle 9. Then . f & bounded 9.

Proof. Set i = 1, and choose a partition of Q that 

is a-nice. This partition divides Q into a certain number of 

subrectangles, say Rl,...,R >Now f is bounded on each of mn' 

these subrectangles, by hypothesis; say 

If(i)l S Mi for 1~ e Ri. 


Then if M = max{M1, ...,M } we have 
mn 


If(x)l I M 

for all y E Q. I3 

Theorem (extreme-value theorem). -Let f be a scalar 

function that continuous OJ the rectangle Q. Then there are 
) 

points xo and xl -of Q such that 



f(xo) I f(x)- -( f(x-1 
-- for all x E Q. 

Proof. We know f is bounded on Q; let 

M = sup{f(x) I x e  Q). 

We wish to show there is a point x1 of Q such that 

f(xl) = M. 

Suppose there is no such a point. Then the function 

M - f(x) is continuous and positive on Q, so that the func- 

tion 

is also continuous and positive on Q. By the preceding corol- 

lary g is bounded on Q; let C be a positive constant such 

that g(y)  < C for x e Q. Then 

-1 f ( x )  < C ,  - or

f(x) I M - (l/C) 

for all in Q. Then M - (1/C) is an upper bound for the 

set of values of f(5) for q in Q, contradicting the fact 

that M is the least upper bound for this set. 

A similar argument proves the existence of a point Xo 

of Q such that 

f(so) = inf{f(s)I x e Q). a 



! Exercises on line inteqrals 

1. Find the centroid of a homogeneous wire in shape of the 


parabolic arc 


y = x  for -1 s x 5 p. 
' 

[Use a table of integrals if you wish.] 


2. Let 


on the set S consisting of all ( x , y )  + 0. 

(a) Show that D2f1 = DlfZ on S. 

(b) Compute the line integral 2 da from ( a , O )  t o  

( - s , ~ )  2 2when C is the upper half of the circle x 2  + y = a . 
Compute it when C is the lower half of the same circle. 

3. Let f be as in problem 2. Let U be the set of all 

( x , y )  with x > 0.  Find a potential function for f that is 

defined in U. - - :  i - fi 

+ ( x , g ~ =  J - F ~ A  -T --. i * ~ n r ~ i t t e
C CLccrYc -

4. Letf be a continuous vector field defined in the open, connected 

subset s of R". Suppose that f = m d  =.a%in s. %OW 

that - *2 is a constant function. [~int:- Apply Thoerem 10.3. ] 

I 
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