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Notes on double integrals.

(Read 11.1-11.5 of Apostol.)
Just as for the case of a single integral, we have the
following condition for the existence of a double integral:

Theorem 1 (Riemann condition). Suppose £ 1is defined on

Q = [a,b] X [c,d]. Then £ 1is integrable on Q if and only if

given any € > 0, there are step functions s and t with

s <f<t on Q, such that

e Il,e <

Let A be a number. If these step functions s and t satisfy

the further condition that

The proof is almost identical with the corresponding proof
for the single integral.

Using this condition, one can readily prove the three
basic properties--linearity, additivity, and comparison--for the

integral JJ f. We state them as follows:
Q

Theorem 2. (a) Suppose f and g are integrable on Q.

Then so is cf(x) + dg(x); furthermore,
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(b) Let Q be subdivided into two rectangles Q

Q5. Then £ 1is integrable over Q if and only if it is

integrable over both Ql and QZ; furthermore,

Iloe= 1,

(¢) If £

N
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and

g on Q, and if f and g are integrable

over Q, then

I

N

Ilq =

To prove this theorem, one first verifies these results

for step functions (see 11.3), and then uses the Riemann condi-

tion to prove them for general integrable functions. The proofs

are very similar to those given for the single integral.
We give one of the proofs as an illustration. For

example, consider the formula

yeeeo =l [l

where f and g are integrable. We choose step functions
Sy tl’ t2 such that I
SfE<t and S, S g <ty

S1

on Q, and such that
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ij (tl - sl) < g/2 and JIQ (t2 - 52) < g/2.

We then find a single partition of Q relative to which all of
sl, Sy tl, t2 are step functions; then sy + Sy and tl + t2
are also step functions relative to this partition. Furthermore,

one adds the earlier inequalities to obtain

Sy + Sy < f +g< tl + t2.
Finally, we compute
JJ (t,+t,) - (s,+s,) = j[ (t,~s,) + JJ (th=s,) < €;
0 1 -2 172 0 171 0 2 72

this computationiuses the fact that linearity has already been
proved for step functions. Thus JJ (f + g) exists. To
Q

calculate this integral, we note that

Jom=llge=tly
Josa<llgo=ll e

by definition. Then

jJQ’(sl+sz) < JJQ»f + jJQ g < JJQ (£y+ty) s

here again we use the linearity of the double integral for step

functions. It follows from the second half of the Riemann
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condition that ij (f + g) must equal the number

s Jf e o

Up to this point, the development of the double integral
has been remarkably similar to the development of the single
integral. Now things begin to change. We have the following
basic questions to answer:

(1) Under what conditions does JJ f exist?
Q

(2) 1If JJ f exists, how can one evaluate it?

(3) 1Is thege a version of the substitution rule for double
integrals?

(4) What are the applications of the double integral?
We shall deal with questions (1), (2), and (4) now, postponing
question (3) until the next unit.

Let us tackle question (2) first. How can one evaluate
the integral if one knows it exists? The answer is that such
integrals can almost always be evaluated by repeated one-dimen-
sional integration} More precisely, one has the following theorem:

Theorem 3 (Fubini theorem). Let £ be defined and bounded

on a rectangle Q = [a,b] x [c,d], and assume that f is

integrable on Q. For each fixed vy in [c,d], assume that the

one-dimensional integral

b
A(y) = f f(x,y)dx
a

d
exists. Then the integral J "A(y)dy exists, and furthermore,

o]
d b ' ' ’
[' J f(x,y)dx| dy = JI f(x,y)dx dy. -
c |a Q |




D5

d
Proof. We need to show that j A(y)dy exists and equals

‘ c
the double integral Jf £.
-’ |
Choose step functions s(x,y) and tix,y), defined on

Q, such that s(x,y) < f(x,y) < t(x,y), and

[ on [] e

Q Q
This we can do because JIQ f exists. For convenience, choose
s and t so they are constant on the partition lines. (This
does not affect their double integrals.) Then the one-dimen-
sional integral

b
j s(x,y)dx
a

exists. [For, given fixed y in [c,d], the function s{x,y)
is either constant (if y is a partition point) or a step
function of x; hence it is integrable.] Now I claim that the

b
function S(y) = f s(x,y)dx 1is a step function cn the interval
a

¢ <y < d. For there are partitions Xgreeer Xy and yo,...;yn
of [a,b] and [c,d], respectively, such that s(x,y) is
constant on each open rectangle (xi_l,xi)vx (yj_l,yj). Let vy
and y be any two points of the interval (yj_l,yj). Then
s(x,¥) = s(x,y) holds for all x. (This is immediate if x is
in (xi_l,xi); if x 1is a partition point, it follows from
the fact that s is constant on the partition lines.) There-

fore
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b ~ b }
J s(x,7)dx = f s (x,7)dx.
a a

so it is a step func-

Hence S(y) is constant on (yj_l,yj),

tion.
A similar argument shows that the function

b
- T(y) = [ t(x,y)dx
- a

is a step function for c <y < 4.

Now since s < £ < t for all (x,¥), we have

b b b
f s(x,y)dx < [ f(x,y)dx g_f t(x,y)dx,
a a a

by the comparison theorem. (The middle inteéral exists by

hypothesis.) That is, for all y in [ec,d],

S(y) < A(y) < T(y).

Thus S and T are step functions lying beneath and above &,

respectively. Furthermore

[I s = fd S(y)dy and fj t = fd T(y)dy,
9 c c

Q

(see p. 356), so that
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4 4
f T (y)dy - f S(y)dy < .
C C

d

It follows that f

A(y)dy exists, by the Riemann condition.
c .

Now that we know A(y) 1is integrable, we can conclude

from an earlier inequality that

d d

A(y)dy < J T(y)dy;

d ‘ .
J S(y)dy <f
c

(o} c

that is,

[l o< [ awmar <[ -

But it is also true that

[e<lfe<]] =

by definition. Since the integrals of s and t are less than
d

€ apart, we conclude that f
c

A(y)dy and “;; f are within £
of each other. Because ¢ 1ig arbitrary, they must be equal.[j

With this theorem at hand, one can proceed to calculate
some specific double integrals. Several examples are worked out
in 11.7 and 11.8 of Apostol.

Now let us turn to the first of our basic questions, the
one concerning the existence of the double integral. We readily

prove the following:



Theorem 4. The integral fj f exists if f is
0 =R=-5tsS 1L

continuous on the rectanéle Q.

Proof. All one needs is the small-span theorem of p- C.Z-cl~
Given €', choose a partition of Q such that the span
of £ on each subrectangle of the partition is less than ¢'.

If Qij is a subrectangle, let

min £(x) on Qi t.. = max £(x) on Q...

Sij 3’ ij i3

L) - L < '. ¢ > o ) O i
Then tlJ slJ € Use the numbers le and tlJ to obtain

step functions s and t with s < £< t on Q. One then has
JI (t - s) <eg'(d=-c¢c)(b - a).
Q

This number equals ¢ if we begin the proof by setting
e' = ¢/(d-c) (b=a). O
In practice, this existence theorem is not nearly strong
enough for our purposes, either theoretical or practical. We
shall derive a theorem that is much stronger and more useful.
First, we need some definitions:

Definition. If Q = [a,b] x [c,d] 1is a rectangle, we

define the area of Q by the equation

area Q' = II 1.
Q

Of course, since 1 1is a step function, we can calculate

this integral directly as the product (d-c) (b-a).
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Additivity of ff implies that if we subdivide Q into

two rectangles Ql and QZ' then
area Q = area Ql + area QZ’

Applying this formula repeatedly, we see that if one has a parti-

tion of Q, then

area Q = Z.

. a .
i,3 rea Ql

jl

where the summation extends over all subrectangles of the partition.
It now follows that if A and Q are rectangles and

A CQ, then area A < area Q.

Définition. Let D be a subset of the plane. Then D is

said to have content zero if for every ¢ > 0, there is a finite

set of rectangles whose union contains D and the sum of whose
areas does not exceed ¢. |

Examples.

(1) A finite set has content zero.

(2) A horizontal line segment has content zero.

(3) A vertical line segment has content zero.

(4) A subset of‘a set of content zero has content zero.

(5) A finite union of sets of content zero has content zero.

(6) The graph of a continuous function

Y = ¢(x); as<xs<b

has content zero.
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(7) The graph of a continuous function

has content zero.

Most of these statements are trivial to prove; only the
last two require some care. TLet us prove (6). Let e' > 0.
Given the continuous function ¢, 1let us use the small-

span theorem for functions of a single variable to choose a

,3=<¢(X)

partition a = X < X < ... < Xn = b of [a,b] such that the

span of ¢ on each subinterval is less than €'. Consider the

rectangles
Ai = [xi‘l'xi] X [¢(xi_l) - E'r¢(xi_l) + e']

for i=1,...,n. They cover the graph of ¢, Dbecause
[¢(x) - ¢(xi_l)| < &' whenever x is in the interval [xi_l,xi].

The total area of the rectangles A,

i ©€quals

) (x;-%x; _1)2e' = 2¢'(b - a).
i=1
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This number equals € if we begin the proof by setting

e' = ¢/2(b-a).

We now prove an elementary fact about sets of content zero:

Lemma 5. Let Q be a rectangle. Let D be a subset of

Q that has content zero. Given e > 0, there is a partition of

Q such that those subrectangles of the partition that contain

points of D have total area less than «.

Note that this lemma does not state merely that D 1is
contained in the union of finitely many subrectangles of the par-
tition having total area less than €, but that the sum of the
areas of all the subrectangles that contain points of D is less
than €. The following figure illustrates the distinction; D
is contained ih the union of two subrectangles, but there are

seven subrectangles that contain points of D.

N ' | N

id——_- v

D .
Proof. First, choose finitely many rectangles
Al,...,An of total area less than €/2 whose union contains D.
"Expand" each one slightly. That is, for each i, choose a
rectangle Ai whose interior contains Ai’ such that the area of

Ai is no more than twice that of Ai' Then the union of the
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sets Int Ai contains D, and the rectangles Ai have total
area less than €. Of course, the rectangle Ai‘ may extend
outside Q, so let A! denote the rectangle that is the
intersection of Ai and Q. Thgn the rectangles A; also
have total area less than «¢.

Now use the end points of the component intervals of the
rectangles A{ to define a partition P of the rectangle Q.

See the figure.

! | |
_1._._-‘

I
= T,

A, T

1
Q | . \.-A:I

We show that this is our desired partition.

Note that by construction, the rectangle Aﬁ is partitioned
by P, so that it is a union 6f subrectangles Qij of P.

Now if a subrectangle Qij contains a pqint of D, then
it contains a point of 1Int Ai for some k, so that it actually

lies in Ai and hence in Aﬂ. Suppose we let B denote the union

of all the subrectangles Qij that contain points of D; and let
A Dbe the union of the rectangles Ai,...,Ag. Then B C A,
z”’_A

3

===

0
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It follows that

.. S
area Q; ) area Q

,.C J
Qlj B Qich

3

Now on the other hand, by additivity of area for rectangles,

Q.. = area A'.
" 1] k
QijCAk

It follows that

n
) Q.. < ] area A".
Q;5a T k=1 K

This last inequality is in general strict, because some sub-
rectangles Qij belong to more than one rectangle Aﬁ, so
their areas are counted more than once in the sum on the right
side of the inequality.

It follows that

) area Q;5 < &,

as desired. O

Now we prove our basic theorem on existence of the double
integral IJ £.
: Q

Theorem 6. If ¢ ig bounded on Q, and ig continuous

on 'Q except on a set of content zero, then JJ f exists.
2 Satept 0 SaLSTS
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Proof. Step 1. We prove a preliminary result:
Suppose that given ¢ > 0, there exist functions g and h that are integrable over Q, such
that
g(x) < f(x) < h(x) for xin Q

fgr-flgee

We prove this result as follows: Because h and g are integrable, we can find step

and

Then f is integrable over Q.

functions 8> 89» by tq such that

slgggtl and s25h$t2,

”Q tl—”Q 5, < ¢ and ”Q tz-”Q oy < €.

Consider the step functions 81 and t,. We know that

and such that

s, <g<fChty
50 8 18 beneath f, and t,, is above f. Furthermore, because the integral of g is between

the integrals of s, and of t;, we know that

I e[ s<e

| e Ya
Similarly, ” t,—[[ h<e

Q 7Q

If we add these inequalities and the inequality
” h - [ g < ¢

Q Q

we have

[galgs <

Since ¢ is arbitrary, the Riemann condition is satisfied, so f is integrable over Q.
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Step 2. Now we prove the theorem. Let D be a set of zero content containing the
discontinuities of f. Choose M so that |f(x)| < M for x in Q; then given € > 0, set ¢’ =
€/2M. Choose a partition P of Q such that those subrectangles that contain points of D

have total area less than e’. (Here we use the preceding lemma.)

D

T
» -
T
Tt

I

LQL_‘,

Now we define functions g and h such that g < £ < h on Q. If Qij is one of the

subrectangles that does not contain a point of D, set
g(x) = £(x) = h(x)
forx € Qi i Do this for each such subrectangle. Then for any other x in Q, set
g(x)=-M and h(x)=M.
Then g<f<honQ.

Now g is integrable over each subrectangle Qij, that does not contain a pdint of D,
since it equals the continuous function f there. And g is integrable over each sub-
rectangle Qi j that does contain a point of D, because it is a step function on such a
subrectangle. (It is constant on the interior of Q; j.) The additivity property of the
integral now implies that g is integrable over Q.

Similarly, h is integrable over Q. Using additivity, we compute the integral

”Q (h—g) = }: ”Q (h—g) =2M 2 (area Q; j that contain points of D)

1)
< 2Me’ = e.
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Thus the conditions of Step 1 hold, and f is integrable over Q. o

Theorem 7. Suppose f is bounded on Q, and f equals 0 except on a set D of content

zero. Then ” f exists and equals zero

Q
Proof. We apply Step 2 of the preceding proof to the function f.

Choose M so that |f(x)] < M for x in Q; given € > 0, set ¢/ = ¢/2M. Choose a
partition P such that those subrectangles that contain points of D have total area less
than €’.

Define functions g and h as follows: If Q j is one of the subrectangles that does not
gontain a point of D, set g(x) = f(x) = 0 and h(x) = f(x) = 0 on Q; i Do this for each
such subrectangle. For any other x in Q, set

g(x) =-M and h(x)=M.
Theng<f<honQ.
Now g and h are step functions on Q, because they are constant on the interior of

each subrectangle Q; § We compute
” h=M (2 (area Q.. that contain points of D))
Q !
< 2Me’ = €/2.
Similarly,
” g > —-Me’ = —¢/2.
Q
Hence ” (h—g) < ¢, so that fis integrable over Q. Furthermore,

-e/2<”Q gS”Q fg”Q h < €/2.

Since e is arbitrary, ” f=0. o

s, and if g is a bounded function that equals f except on a

Corollary 8 ” fed

set o_f content zero, then J g exists and equals ” f.
Q
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Proof. We write g = f + (g-f). Now f is integrable

by hypothesis, and g - f is integrable by the preceding

corollary. Then g 1is integrable and

”Qg= HQ f*fo (g-£) =”Q £.0

Double integrals extended over more general regions.

(Read section 11.12 of Apostol.) 1In this section,
Apostol defines ffs f for a function f defined on a bounded
set S, Dbut then he quickly restricts himself to the special
case where S is a region of Types I or II. We discuss here
the general case. |

First, we prove the following basic existence theorem:

Theorem 9. Let S be a bounded set in the plane. If
Brended on S and

Bd S has content zero, and if £ lslcontlnuous at each point

of Int S, then ffs f exists.

Proof, Let Q be a rectangle containing S, As usual,
let £ equal f on S, and let f equal 0 outside S, Then
?J is continuous at each poxnt X9 of the interior of S (because
it equals f 1in an open ball about X0 and f 1is continuous
at xo). The function f. is also continuous at each point X1
of the exterior of_ S, because it equals zero on an open ball

about Xqe The only points where ?' can fail to be continuous

are points of the boundary of S, and this set, by assumption,

has content zero. Hence fﬁq ?' exists, C]
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Note: Adjoining or deleting boundary points of §
changes the value of f only on a set of content zero, so that

value of ffs f remains unchanged. Thus ffs £ £,

- ffInt S
for instance.

Let us remark on a more general existence theorem than
that stated in Theorem 9. If S 1is a boﬁnded set, and
if Bd S has content zero, and if f is continuous on Int S

1 ]
except on a set D of content zero, then ffs f exists. For

in this case the discontinuities of the extended function E
lie in the union of the sets Bd S and D, and this set has
content zero because both Bd S and D do.

There are more general existence theorems even than this,

but we shall not consider them.

Now we note that the basic properties of the double
integral hold also for this extended integral:

Theorem 10. Let S be a bounded set in the plane. One

has the following properties:

(a) Linearity.
” cf+dg=c”f+d”g;
s 8 s

the left side exists if the right side does.

(b)  Comparison. If f < g on the set S, then

[es]fe

S

provided both integrals exist.
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(c) Additivity. Let S =8, U SZ' If s, N S, has content

zero, then

provided the right side exists.

Proof. (a) Given £, g defined on S, let E, 5 equal
£, g, respectively, on S and equal 0 otherwise. Then
cf + da equals cf + dg on S and 0 otherwise. Let Q

be a rectangle containinq' S. We know that

from this linearity follows.

(b) Similarly, if £ < g, then £ < 5, from which we

conclude that

[[e=J[2< [[5- [«

S Q Q ] ‘
(c) Let Q be a rectangle containing S. Let fl
equal f on Sl’ and équal 0 elsewhere. Let f2 equal f
on S,, and equal 0 elsewhere. Let f3 equal £ on s,

and equal 0 elsewhere. Consider the function
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it equals £ on the set Sl N 52, and equals zero elsewhere.
Because S; N S, has content zero, fo £, exists and equals

Zero. Now

or

How can one evaluate ffs f when S 1is a general
region? The computation is easy when S is a regién of type
I or IT and £ is continuous on the interior of S; one
evaluates ffs f by iterated integration. This result is
proved on p. 367 of Apostol.

Using additivity, one can also evaluate ffs f for
many other régions as well. For example, to integrate a

continuous function f over the region S pictured, one can

50
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break it-up as indicated into two regions Sy and S, that
intersect in a set of content zero. Since S, is of type I

and S5 is of type II, we can compute the integrals ffs £
1
and ffs f by iterated integration. We add the results to

2
obtain ffs £.

Area.

We can now construct a rigorous theory of area. We
already have defined the area of the rectangle Q = [a,b] x [c,d]

by the equation

area Q = ff 1.
Q

We use this same equation for the general definition.

Definition. Let S be a bounded set in the plane. We say that S

is Jordan-measurable if Sf; 1 exists; in this case, we define

area S = JJ 1.
S

Note that if Bd S has content zero, then S 1is Jordan-measurable, by

by Theorem 9. The converse also holds; the proof is left as an exercise.

The area function has the following properties:

Jordan-
Theorem 11. Let S and T ggwreasurable sets in the

plane.

(1) (Monotonicity). If S C T, then area S < area T.

(2) (Positivity). Area S > 0, and equality holds if

and only if S has content zero.
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(3) (Additivity) If S N T is a set of content zero,

then S YU T is 'Jordan-measurable and

area(SVYT) = area S + area T.

(4) Area S = Area(Int S) = Area(SUBA S).

Proof. Let Q be a rectangle containing S and T.

" Let

1S(x) =1 for x € S

Define 1T similarly.

(1) If S 1is contained in T, then is(x) < lT(x).

Then by the comparison theorem,

Il
—_—
—

=

=

Il

L

H

o

[+

=

s [f e 0], 10 [

(2) Since 0 <1, we have by the comparison theorem,

0 = J[ 0 < Jj 1l = area S,
S S

L]

for all S. If S has content zero, then [[ 1= [ 45=0,
S Q

by Corollary 7.
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Conversely, suppose ffs 1 = 0. Then fo i = 0.
Given € > 0, there must be a step function -t > 18 defined
on Q such that fo t <e. Let P be a partition relative
to which t 1is a step function. Now if a subrectangle Qij
of this partition contains a point of S in its interior,
then the value of t on this subrectangle must be at least} 1.
Thus these subrectangles have total area less than e. Now S
is contained in the union of these subrectangles (of total area
less than €) and the partition lines. Thus S has content
zero.,

(3) Because ffs 1 and ffT 1 exist and S N T has
content zero, it follows from additivity that [f 1 exists

SUT
and equals [ L1+ [[ 1.
S T

(4) Since the part of S not in Int S 1lies in B4 S,

it has content zero. Then additivity implies that

area S area(Int S) + area(S - Int S)

area(Int S).

A similar remark shows that

area(SUVBA4 S) area(Int S) + area(Bd 8S)

area(Int S). O
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Remark. Let S be a bounded set in the plane. A
direct way of defining the area of S, without developing
integration theory, is as follows: Let Q be a rectangle con-
taining S.

Given a partition P of Q, let a(P) denote the total
area of all subrectangles of P that are contained in S, and
let A(P) denote the total area of all subrectangles of P that

contain points of S. Define the inner area of S be the supremum

A(P)
§% N N NN By XY
;‘\ r//{ . /: \l S a.(P)
N 7 ] V7R
AN N AT R
N /Y, kLA N
NI 07070 4 \ Y Ay 7 PR
\ L/ V/AX Nl 794 AR AN
N e _’,y/ \i N :: \2\\
N S INRNRN NN
of the numbers a(P), as P ranges over all partitions of Q;

and define the outer area of § to be the infemum of the numbers

A(P). 1If the inner area and outer area of S are equal, their

common value is called the area of s,
We leave it as a (not too difficult) exerc1se to show that

this deflnltlon of area is the same as the one we have given.

Remark. There is just one fact that remains to be proved
about our notion of area. We would certainly wish it to be true
that if two sets S and T in the plane are "congruent" in the sense

of elementary geometry, then their areas are the same. This fact is
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not immediate from the definition of area, for we used rectangles
with sides parallel to the coordinate axes.to form the partitions
on which we based our notion of "integral", and hence of "area".

It is not immediate, for instance, that the rectangles S and T

pictured below have the same area, for the area of T 1is defined

(1)
(05) (5,5

- (34) .
S T (#,3)

(0)0) CS-JO) _ » (o)o)

by approximating T by'rectangles with vertical and horizontal
sides. [Of course, we can write equations for the curveé bound-
ing T and computé its area by integration, if we wish. ]

Proof of the invariance of area under "congruence" will
have to wait until we study the problem of change of variables

in a double integral.
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Exercises

1. Show that if st 1 exists, then Bd S hzes content zero.

(Hint: Choose Q so that S<Q. Since f&lls exists , there are functions
S and t that are step functions relative to a partition P of Q, such
that s € lg <t orn Q and g&z (t - s) <% . Show that the subrectangles
determined by P trat contain points of S hzve total volume less than €. ]
2. (a) Let S and T be bounded subsets of R2 . Show that
Bd (SUT) € (Bd SVBd T ). Give an example where equality does not hold .
(k) Show that if S and T are Jordan-measurable, then so are

SUT and SnT , and furthermore

area(SvT) = area S + area T - area (SAnT).

Express in terms of iterated integrals the double integral

JJ xzyz, where S is the bounded portion of the first
S

quadrant lying between the curves xy = 1 and xy = 2 and the
lines y = x and y = 4x. (Do not evaluate the integrals.)
A solid is bounded above by the surface 2z = x2 - yz. below

by the xy-plane, and by the plane x = 2. Make a sketch;

express its volume as an integral; and find the volume.

5. Express in terms of iterated integrals the volume of the region
in the first octant of R3 bcunded by: (a) The surfaces z = xy and
z=0 ard x+ 2y + 2z =1. (b) The surfaces z =xy and z =0 and

x+2y -z =1,
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Let Q denote the rectangle [0,1] x [0,1] in the following exercises.

®(a) Let f(xy) = 1/(y—x) if x#y,
flx,y)=0 if x=y.

Does ”Q f exist?
(b) Let g(x,y) = sin (1/(y—x)) if x ¢y,
g(x,y) =0 if x=y.

Does ” g exist?
Q

@Let f(x,y) = 1if x = 1/2 and y is rational,

f(x,y) = 0 otherwise

1
Show that ” f exists but J f(x,y)dy fails to exist when x = 1/2.
0

Q

Let f(x,y) = 1 if (x,y) has the form (a/p,b/p),

where a and b are integers and p is prime,

f(x,y) = 0 otherwise.

1.1
Show that J J f(x,y)dy dx exists but ” f does not.
070 Q
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