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GREEN'S THEOREM AND ITS APPLICATIONS

The discussion in 11.19 - 11.27 of Apostol is not complete
nor enﬁirely rigorous, as the author himself points out. We
give here a rigorous treatment.

Green's Theorem in the Plane

We already know what is meant by saying that a region in
the plane is of Type I or of Type II or that it is of both
types'simultaneously. Apostol proves Green's Theorem for
a region that is of both types. Such a region R can be

described in two different ways, as follows:
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The author's proof is complete and rigorous except for one gap,

which arises from his use of the intuitive notion of "counter-

clockwise",
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Specifically, what he does is the following: For the first

part of the proof he orients the boundary C of R

(*)

By increasing
By increasing
By decreasing

By decreasing

Then in the second part

(**)

By decreasing
By increasing
By increasing

By decreasing

X,
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Y
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on the curve y =

on the line segment x

on the curve y = ¢2(x)

on the line segment x

the proof, he orients

on the curve x = wl(y)

on

on the curve x = wz(y)

on

the line segment y

the

line segment y

¢l(x)

as follows:
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-.
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and

as follows:

(The latter line segment collapses to a single point in the pre-

ceding figure.)

The crucial question is:

How does one know these two

orientations of C are the same?

One can in fact see that these two orientations are the

same, by simply analyzing a bit more carefully what one means

by a region of Typeé I and II.

Specifically, such a region can be described by four

monotonic functions:
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[Some or all of the a; can be missing, of

course. Here are pictures of typical such regions:]

The curves.al and Py along with the line segment Y = ¢, are

used to define the curve y = ¢l(x) that bounds the region on
the bottom. Similarly, aq and a, and y = 4 define the curve

y = ¢2(x) that bounds the region on the top.



E4

Similarly, the inverse functions to 2y and A3y along with
X = a, combine to define the curve x = ¥, (y) that bounds the
region on the left; and the inverse functions to @, and Ay
along with x = b, define the curve x = wz(y).

Now one can choose a direction on the bounding curve ¢ by
simply directing each of these eight curves as indicated in the
figure, and check that this is the same as the directions

specified in (*) and (**), {?ormally, one directs these curves

-as follows:

increasing x

= decreasing y on y = a; (x)
increasing x on y = ¢
increasing x = increasing y on y = az(x)
increasing y ' on X = b
decreasing x = increasing y on y = a4(x)
decreasing x ony =4
decreasing x = decreasing y on y = a3(x)
decreasing y on x = a,]

We make the following definition:

Definition. Let R be an open set in the plane bounded by

a simple closed Piecewise-differentiable curve C. We say that

R is a Green's region if it is possible to choose a direction

on C so that the equation

$ Pax+ aay = [ (32 - 2 axey
c R ’

holds for every continuously differentiable vector field
P(X'Y)I + Q(x,y)g that is defined in an open set containing

R and C.
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. The direction on C that makes this equation correct is

called the counterclockwise direction, or the counterclockwise

Orientation, of C.

In these terms, Theorem 11.10 of Apostol can be restated

as follows:

Theorem 1. Let R be bounded by a simple closed piece-
wise-differentiable curve. If R ii of Types I and II, then R

is a Green's region.

As the following figure illustrates, almost any region R
you are likely to draw can be shown to be a Green's region by
repeated application of this theorem. 1In sucﬁ a case, the

'counterclockwise direction on C is by definition the one for
which Green's theorem holds. For example, the region R is a
Green's region, and the counterclockwise orientation of its
boundary C is as indicated. The figure on the right indicates
the proof that it is a Green's region; each of R and R

1 2
is of Types I and II.

Definition. Let R be a bounded region in the plane

whose boundary is the union of the disjoint piecewise-differ-
entiable simple closed curves Cl, ceey Cn' We call R a

Jeneralized Green's regibn if it is possible to direct the

curves Cl, ceey Cn so that the equation
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} dxdy

a»
o)

Q)

Pdx + Qdy = (29 _
Cy+Cobua *C @y = ||z |3x

1 72 b4

holds for every continuously differentiable vector field
PI + Qf defined in an open set about R and C.

Once again, every such region you are likely to draw can
be shown to be a generalized Green's region by several appli-
cations of Theorem 1. For example, the region R pictured

generalized '
is aAGreen's region if its boundary is directed as indicated.
The proof is indicated in the figure on the right. One applies

Theorem 1 to each of the 8 regions pictured and adds the results

together.

Definition. Let C be a piecewise—differentiable curve in the plane parametrized by

. the function at) = (x(t),y(t)). The vector T = (x’(t),y’(t)) /lla’ (t)|| is the unit tangent
vector to C. The vector

n = (y’ (t),—=x(£))/lla’ (W)l

is called the unit negative normal to C.

m

—

l’f

If C is a simple closed curve oriented counterclockwise, then n is the "outward normal"

to C.
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- -
@ Iff=Pi + Qj is a continuously differentiable vector field defined in an open
set containing C, then the integral J (f-n)dS is well—defined; show that it equals the
C

line integral
J  ~Qdx+Pay

@ Show that if C bounds a region R that is a Green’s region, thenqs (f-n)dsS =
C
oP
IJy (5% + )exar

[Remark. If f is the velocity of a fluid, then J (f-n)dS is the area of fluid flowing
C

outward through C in unit time. Thus 6P/dx + 8Q/dy measures the rate of expansion

of the fluid, per unit area. It is called the divergence of f.]

Definition. Let ¢ be a scalar field (continuously differentiable) defined on C. If x

is a point of C, then ¢’(x;n) is the directional derivative of ¢ in the direction of n. Itis

-}

equal to Vé(x)-n, of course. Physicists and engineers use the (lousy) notation -gg to
denote this directional derivative.
@ Let R be a Green’s region bounded by C. Let f and g be scalar fields (with

continuous first and second partials) in an open set about R and C.

(2) Show (EI)C % 45 = U v2g dx dy
R

where V2g = azg/@x2 + 32g/6y2.

(b) Show
EI)C £ %845 = ”R (7% + ¥t - Vg)dx dy.

(c) 7% =0 = 7%, show

qSC £ %8 g5 =q’>c_g Uy

These equations are important in applied math and classical physics. A function f with -
vt = 0 is said to be harmonic. Such functions arise in physics: In a region free of
charge, electrostatic potential is harmonic; for a body in temperature equilibrium, the

temperature function is harmonic.
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Conditions Under Which ﬁf *lQE.EE.i Gradient.

Let £ = PL + 03 be a continuously differentiable vector
field defined on an open set S in the plane, such that |
BP/ay = 3Q/3x on S. In generzl, we kncw that £ need not be
a gradient on S. We do know that £ will be a gradient if s
is convex (or even if S is star-convex). We seek to extend
this result to a more general class of plane sets.

This more general class may be infqrmally described as
consisting of those regions in the plane that have no "holes".

For example, the region Sl inside a simple closed curve C1 has

k_’—_\ has a hole

no holes, nor does the region S2 obtained from the plane by

deleting the non-negative x-axis. On the other hand, the
region S3 consisting of the poihts inside Cy and outside
C3 has a hole, and so does the region S4 obtained from the
plane by deleting the origin.

Needless to say, we must make this condition more precise
if we are to prove a theorem about it. This task turns out
to be surprisingly difficult.

We begin by proving some facts about the geometry of the

plane.



Eq

Definition. A stairstep curve C in the plane is a curve

that is made ﬁp of finitely many horizontal and vertical line
segments.

For such a curve C, we can choose a rectangle Q whose
interior contains C. Then by using the coordinates of the end
points of the line segments of the curve C as partition points,
‘we can construct a partition of Q such that C is made up
entirely of edges of subrectangles of this partition. This

process is illustrated in the following figure:
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Theorem 2, (The Jordan curve theorem for stairstep curves),

Let C be a simple closed stairstep curve in the plane. Then the

complement of C can be written as the union of two disjoint

open sets. One of these sets is bounded and the other is

unbounded. Each of them has C as its boundary.

Proof. Choose a rectangle Q whose interior contains C,
and a partition of Q, say Xy < K] < een ¥ X, and Yo < Yy < oo < Y
such that C is made up of edges of subrectangles of this partition.

'§Ega l. We begin by marking each of the rectangles in

the partition + or - by the following rule:

Consider the rectangles in the iEE "column" beginning with
the bottom one. Mark the bottom one with +. In general, if a
given rectangle is marked with + or -, mark the one just above
it with the Same sign if their common edge does not lie in C,
and with the opposite sign if this edge does lie in C. Repeat
this process for each column of rectangles. In the following

figure, we have marked the rectangles in columns 1,3, and 6,

to illustrate the process.

-+ ~+ +
+ - +
ym = -
+ - +
+ - -
+ + +

Note that the rectangles in the bottom row are always
marked +, and so are those in the first and last columns,

(since C does not touch the boundary of Q ).
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Step 2. We prove the following: If two subrectangles

f the partition have an edge in common, then they have opposite

signs if that edge i in C, and they have the same sign if that

——

edge is not ig C.

This result holds by construction for the horizontal edges.
We prove it hélds for the vertical edges, by induction.

It is true for each of the lowest vertical edges, those
of the form xix[yo,yl]. (For no such edge is in C, and the
bottom rectangles are all marked +.) Supposing now it is true
for the rectangles in row j - 1, we prove it true for rectangles

in row j. There are 16 cases to consider ('), of which we

illustrate 8: 9 q
2 . .
/ /
v 4
+ | + + |+ + |+
0) (2) () R
+ | 4 + - - l
/ 1 /1. N 7[?
] E] R
(5) (6) (7)
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(The other eight are obtained from these by changing all the signs.)

We know in each case, by construction, whether the two horizontal edges

are in C, and we know from the induction hypothesis whether the lower
vectical edge is in C. Those edges that we know are in C are marked
heavily in the figure. We seek to determine whether the upper vertical

edge (marked "?") is in C or not. We use the fact that C 1is a
simple closed curve, which implies in particular that

each vertex in C lies on exactly two edges in C. 1In case (1),
this means that the upper vertical edge is not in C, for
otherwisé the middle vertex would be on only one edge of C.
Similarly, in cases (25, (3), and (4), the'upper vertical edge
is not in C, for otherwise the middle vertex would lie on
three edges of C.

Similar reasoning shows that in cases (5), (6), and (7)
the upper vertical edge must lie in C, and it shows that
case (8) cannot occur.

Thus Step 2 is proved in these 8 cases. The other 8
are symmetric to these, so the same proof applies.

Step 3. It follows from Step 2 that the top row of
rectangles is marked +, since the upper left and upper right
rectangles are marked +, and C does not touch the boundary of Q.

§E§E 4. We divide all of the complement of C into two
sets U and V as follows. Into U we put the interiors of allA
rectangles marked -, and into V we put the interiors of all
rectangles marked +. We also put into V all points of the
plane lying outside and on the bouﬁdary of Q. We still have
to decide where to put the edges and vertices of the partition

that do not lie in C.



=iz = .

Consider first an edge lying interiqr to Q. If it does
not lie in the curve C, then both its adjacent rectangles lie
in U or both lie in V (by Step 2); put this (open) edge in
U or in V accardingly. Finally, consider a vertex v that lies
interior to Q. If it is not on the curve C, then case (1) of
the preceding eight cases (or the case with opposite signs)
holds. Thén all four of the. adjacent rectangles are in U or
all four are in V; put v into U or V accordingly.

It is immediately clear from the construction that U and V
are open sets; any point of U or V (whether it is interior to
a subrectangle, or on an edge, or is a vertex) lies in an open
ball contained entirely in U or V. It is also immediate that
U is bounded and V is unbounded. Furthermore, C is the common
boundary of U and V, because for each edge lying in C, one of |
the adjacent’ rectangles is marked + and the other is marked -,
by Step 2. d |

Definition. Let C be a simple closed stairstep curve in

the plane. The bounded open set U constructed in the preceding

proof is called the inner region of C, or the region inside C.

It is true that U and V are connected, but the proof is difficult.

We shall not need this fact.

Definition. Let S be an open connected set in the plane.

Then S -is called simply connected, if, for every simple closed

stairstep curve C which lies in S, the inner region of C is

also a subset of S.
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Theorem 3. If U is the region inside a simple closed

Stairstep curve C, then U is a Green's region.

Proof. Choose a partition of a rectangle Q enclosing U
such that C consists entirely of edges of subrectangles of
the partition. For each subrectangle Qij of this partition

lying in U, it is ‘true that

f PAx + Qdy = f f [32 _ B_P] dxdy
c 0 X oy
ij ij €

if Cij is the boundary of Qij’ traversed in a counterclockwise
direction. (For Qij is a type I-II region). Now each edge of
the partition lying in C appears in only one of these curves
cij' and each edge of the partition not lying in C appears in
either none oﬁ the cij' or it appears in two of the Cij with

oppositely directed arrows, as indicated:

If we sum over all subrectangles Qij in U, we thus obtain

the equation

Pdx + Qdy = JJ [%% - %g) dxdy.

I(line segments in C) U
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The only question is whether the directions we have thus given
to the line segments lying in C combine to give an orientation
6f C. That they do is proved by examining the possible cases.
Seven of them are as follows; the other seven are opposite

to them.

7
%7

2
G

/,«r

These diagrams show that for each vertex v of the partition

N

2

\

NN
N
N

such that v is on the curve C, v is the initial point of one
of the two line segments of C touching it, and the final

point of the other. U]

Theorem 4. Let S be an open set in the plane such that

every pair of points of S can be joined by a stairstep curve

in S. Let

£(x,y) = P(x,y)1 + Q(x,y)J

be a vector field that is continuously differentiable in s,

such tha

P _ 20
T odx

Y

on all of S. (a) If S is simply connected , then £ is a gradient i

S. (b) If S is not simply connected, then f may or may not be a gradient i
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Proof. The proof of (b) is left as an exercise. We prove (a) here.
Assume that S is Ssimply connascted.

Step 1. We show that

| § Pdx + Qdy = 0
o

for every simple closed stairstep curve C lying in s,

)

We know that the region U inside C is a Green's region.
We also know that the region U lijes entirely within §. (For
if there were a point p of U that is not in S, then C
encircles a point p not.in S, so that S has a hole at p.
This contradicts the fact that s is simply connected.) There-

fore the equation 23Q/3x = dP/3y holds on all of U; we there-

fore conclude that

=1 (29 _ 2& =
fc Pdx + Qdy -JI;[SX Y]dxdy_ 0,

for some orientation of C (and hence for both orientations of

c).

SteE 2. We show that if

§ Pdx + Qdy = 0
c

for every simple closed stairstep curve in S, then the same

equation holds for every stairstep curve in §.
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Assume C consists of the edges of subrectangles.

in a partition of some rectangle that contains ¢, as usual,

We proceed by induction on the number of vertices on the

curve C. Consider the vertices of C in order:

VarVesees ,V_,v..
0’71’ "n’'’0

Now C cannot have only one vertex. If it has only two, then

C is a path going from Vs to vy and then back to Vor The line

integral vanishes

in this case.

Now suppose the theorem true for curves with fewer than n
vertices. Let C have n vertices. 1If ¢ is a simple curve, we
are through. Otherwise, let Vi be the first vertex in this
sequence that equals some earlier vertex ] for i < k. We
cannot have Ve = Vg-pr for then Vk-1Vx Would not be a line
segment,

If Yk = Vg.gr then the curve contains the line segment
Vi-2Vkx-1+ followed by the same line segment in reverse order.

Then the integral from Vk-a to Vi-1 and the integral from

LI r—%r—"‘ NZf=Qi-L

A~

SR

N

es s =
<
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Vk-i to vk are negatives pf eaéh other. We can délete Vk_l
from the sequence of vertices without changing the value of

the integral. We have a closed curve remaining with fewer

line segments than before, and the induction hypothesis
applies.

If i < k-2, then we can consider the closed curve with
‘vertices Vi vi+l""’vk’ This is a simple c;osed curve, since
all its vertices are distinct, so the integral around it is
2ero, by Step l. Therefore the value of the integral
fC Pdx + Qdy is not changed if we delete this part of C, i.e.,

if we delete the vertices VireessV,_, from the sequence. Then

the induction hypothesis applies.

Example. 1In the following case,

N

R - DI

> N
4 7
i b r !
A
et /‘?_v‘ - & / \/ 2
i' ? N 5' Y
> ".l r~r=7 /‘L \ }\ } AL
T V7 3' 1 Y
ﬁ—f < + 1 : : 1Tv: -: -~ /K .
f,, ! Y K
M MRmaas tma s & S n
-
T’ 2
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the first vertex at which the curve touches a vertex already
touched is the poxnt 9. One considers the 51mple closed cross-
hatched curve, the integral around which is zero. Deleting this
curve, one has a curve remaining consisting of fewer line seg-
ments. You can continue the process uhtil You have a simple

closed curve remaining.

Step 3. We show that if Cl and C2 are any two stairstep

curves in S from p to g, then

fcl Pdx + Qdy = [CZ Pdx + Qdy.

This follows by the usual argument. If -C2 denotes C2 with
the reversed direction, then C = Cl + (-Cz) in a closed stairstep

curve. We have
jC-fC=IC+[-C2=¢C°

This last integral vanishes, by Step 2.
Step 4. Now we prove the theorem. Let a be a fixed

point of S, and define

$(x) = fcg:_) Pdx + Qdy.

where C(x) is any stairstep curve in S from a to x. There
always exists such a stalrstep curve (by hypothesis), and the
value of the line integral is lndependent of the choice of

the curve (by Step 3). 1It remains to show that

36/3x = P and 3¢/3y = Q.
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WevproVed this once before under the assumption‘that C(x) was

an arbitrary piecewise smooth curve. But the proof works just as
well if we require C(x) to be a stairstep curve. To compute
3¢/3%x, we first computed (¢ (x+h,y) - ¢(x,y)]1/h. We computed
¢(x,y) by choosing a curve Cl from a to (x,¥), and inte-
grated along Cl‘ We computed ¢(x+h,y) by choosing this same
curve Cl plus the stéaight.line C2 from (x,y) to (x+h,y) .

In the present case, we have required Cl to be a stairstep curve.

Then we note that if Cl is a stairstep curve, C

1 ¥ C, 1is also

& stairstep curve. Therefore the earlier proof goes through with-

out change. [

Remark. It is a fact that if two pair of points of S can
be joined by some path in S, then they can be joined by a stair-
step path. (We shall not bother to prove this fact.) It follows
that the hypothesis of the preceding theorem is merely that S be

connected and simply connected.

Exercises
1. Let S be the punctured plane, i.=., the plane with the

origin deleted. Show that the vector fields

> - ' — -
Xi + vi -vi + xj
X +y X +y

satisfy the condition 2P2/dy = 2 Qﬁéx.
(a) Show that f is a gradient in S. [Hint: First find P sp‘fhat
2/« = x/(x2 + yz).] (b) Show that g is not a gradient in S. [Hint:

Compute _yclg- dd where C is the unit circle centered at the qrigin.]
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2. Prove the following:

Theorem 5. Let C1 be a simple closed stairstep curve in the plane.
Let C2 be a simple closed stairstep curve that is contained in the inner
region of Cl' Show that the region consisting of those points that are in
the inner region of Cl and are not on C2 hor in the inner region of C2

is a generalized Green's region, bounded by C, ard C

1 2"

[Hint: Follow the pattern of the proof of Theorem 3.]

3. Let g be the vector field of Exercise 1. Let C be any simple
closed stairstep curve whose inner region contains 0. Show that

chig-dg # 0. [Hint: Show this inequality holds if C 1is the boundary

of a rectangle. Then apply Theorem 5. ]

*4 . Even if the region S 1is not simply connected, one can
usually determine whether a given vector field equals a gradient
field in S. Here is one example, where the region S 1is the

punctured plane, ’ -

Theorem 6. Suppose that £ = Pi + Qj is continuously

differentiable and

3Q/9x = 3P/3v

in the punctured plane. Let R be a fixed rectangle enclosing

the origin; orient B4 R counterclockwise; let

A = P dx + Q dy. "

[Bd R

(a) If C 1is any simple closed stairstep curve not touch- -

ing the origin, then

J P dx + Q dy
C

either equals + A (if the origin is in the inner region of ()

or 0 (otherwise).
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(b)) If A =0, then f equals a gradient field in the

punctured plane. [Hint: Imitate the proof of Theorem 4.]

(c) If A # 0, then f differs from a gradient field by

a constant multiple of the vector field

2

g(x) = (-yi + X1)/(x2 + y°).

That is, there is a constant ¢ such that £ + cg equals a

gradient field in the punctured plane. (Indeed, c = -A/27.)
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%9 _ 20 3%, 39 av,3v | 9%y
Ju ax Ju dy Ju’ 3v duov
P 2
Sl (393X, 3Q 3Y,3Y . 37
IV (ax v * Yy av)au * avau °

Subtracting, we obtain

30 (3% 3Y _ 3X 3Y, _ 30
ax(au v v au) ax J(u,v) J

where DQ/QX is evaluated at F(u,v). Since 3Q/9x = £ , we have our desired result:
JIS f(x,y) dx dy = + J}; £(F(u,v))J(u,v) du dav. [J

One can weaken the hypothesis of this theorem a bit if one
wishes. Specifically, it is not necessary that the function
f(x,y) which is being integrated be continuous in an entire rec-
tangle containiné the region of integration S. It will suffice
if £(x,y) 1is merely continuous on some open set containing S
and C. For it is a standard theorem (not too diffiéult to prove)
that in this case one can find a function g that is continuous
in the entire plane and equals f on S and C. One then applies

the theorem to the function g.
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b -
f Q(a(t))j «»a'(t) dt
a

L o3 - da

b vy d
f Q(a () 7Y (8(t)) dt
a

b
Y o, Py
L. Q(g(t))(gaBl(t) t oagBy (k) dt

j ].é'(t) dt ’

b oy 7
=) oo T+ 5

where the partials are evaluated at fg(t). We can write this last integral

as a line integral over the curve D. Indeed, if we define
p)
Pi(u,v) = Q(F(u,v) Sh(u,v)
0,(u,v) = Q(F(u,v) u,v) |,
1 oV

then this last integral can be written as
FP
5 (P11+Qlj)' dg.

Now we apply Green's theorem to express this line integral as a

double integral. Since T 1is by hypothesis a Green's region,

this line integral equals

0Q oP
1__1
T

It remains to compute these partials, using the chain rule. We

have
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Proof. Let R = [c,d] x (c',d']. Define

% v
Q(x,y) = ] f(t,y)dt for (x,y) in R. Then 3Q/3x = f(x,y)
- e .

on all of R, because f is continuous. We prove our theorem
by applying Green's theorem. Let (u,v) = B(t) be a |
parametrization of the curve D, for a < t < b; choose the
counterclockwise direcﬁion, SO Creen's theorem holds for 7.
Then a(t) = F(8 (t)) is a parametrization of the
curve C. It may be constant on some subintervals of the ¢t-
axis, but that doesn't matter when we compute line integrals.

Also, it may be counterclockwise or clockwise.

= i N
% N
< A - S L_’a”/////ﬂ
8 t R e e
“D=oT l__

R

We apply Green's theorem to S :

- >
If f(x,y)dx dy = ff 3Q/3x dx dy = * j (0i + Qj) *da.
: c 2
] S
This sign is + if a(t) parametrizes C in the counterclock-
wise direction, and - otherwise. Now let us compute this iine

integral.



The change of variables theorem

Theorem 7. (The change of variables theorem)

Let S be an open set in the (x,y) plane and let T be an open set

y_{ the (u,v) plane, p_ounded'gx the piecewise-differntiable simde closed curves
N

C and D , respectively. Let F(u,v) = (X(u,v), Y(u,v)) be a transformation

(Coh'Huu.ou.sly differentiable)
from an open set of the (u,v) plane into the (x,y) plane that carries T into

S, and carries D =)T onto C =)S. As a transformation of D ontoC,

To be
F may be constant on some segments of D, but otherwise iii\o?le—tg:one.

Assume S and T are Green's regions. Assume that f£(x,y) is continuous

in some rectangle R containing S. Then

-HS f(x,y) d&x dy = + S\IT £(F(u,v)) J(u,v) du dv .
Here J(u,v) = det dX,Y/du,v . V’I_'hg sign is + if F carries the

clockwise orientation of D to the clockwise orientation of C, and is -

ctherwise.

Eyamgle 1. Consider the polar coordinate transformation
F(r,0) = (r cos 0, r sin 9) .
It carries the rectangle T 1in the (r,8) plane indicated in the figu:e into
the wedge S 1in the (x,y) plane. It is constant on the left edge of T,
but .is one-to-one on the rest of T. Note that it canmes the counterclockwise

orientation of D =dT to the counterclockwise orientation of C = o S.

e K3
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An alternate version of the change of variables theorem is

the following:

Theorem 8. Assume all the hypotheses of the preceding

theorem. Assume also that J(u,v) does not change sign on the

region T,

If J(u,v) > 0 on all of T, the sign in the change of

variables formula is +; while if J(u,v) <0 on all of T, the

sign is -. Therefore in either case,

Jj f(x,y)dx dy = ff £(F(u,v)) IJ(U'V)I du dv.
S T
Proof. We apply the precedlng theorem to the function

l. We obtaln the formula

CE(x,y)

(*) IJ dx dy = * JJ J(u,v)du dv.

S T
The left side of this equation is positive. Therefore if
J(u,v) 2 0 on all of T, the sign on the right side of the
formula must be +; while if J(u,v) < 0 on all of T, the
sign must be -. Now we recall that the sign does not depend on
the particular function being integrated, only on the transforma--

tion involved. Then the theorem is proved. a



ey

Remark. The formula we have just proved gives a geometric
interpretation of the Jacobian determinant of a transformation.
If J(u,v) # 0 at a particular point (uo,vo), let us choose a
small rectahgle T about this point, and consider its image s

under the transformation. If T 1is small enough, J(u,v) will

K"_\,

be very close to J(uo,vo) on T, and so will not change sign.

Assuming S 1is a Green's region, we have

area S = Jj dx dy = ff |T(u,v)| du dv, so

S T
area S ~ lJ(uO,vO)I (area T).

Thus, roughly speaking, the magnitude of J(u,v) measures how
much the transformation stretches or shrinks areas as it carries

a piece of the u, v plane to a piece of the x, y plane. And
the sign of J(u,v) tells whether the transformation presérves
orientation or not; if the sign is negative, then the transforma-
tion "flips over" the region T before shrinking or stretching it

to fit onto 8.
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Izcmecries
As an application of the change of variables theorem,_we
shall verify the final Property of our notion of area, namely,
the fact that congruent regions in the Plane have the same area.
First, we must make precise what we mean by a "congruence."

Definition. A transformation h : R2 —_> R2 of the plane

_ or an isometry
to itself is called a congruenceAlf 1t preserves distances between

points. That is, h '1s a congruence if

Th(a) - h(b)Il = lla-bi

for every pair a, b of points in the plane.

The following is a purely geometric result:

Lemma 9. If h : rRZ — r? is a congruence, then h has

the form

hlx;y) = (ax +by +p, = + dy + q)

or, writing vectors as column matrices,

-2 B

where (a,c) and (b,d) are unit orthogonal vectors. It follows that

ad - bd, the Jacobian determinant of h, equals +1.

Proof. Let (p,q) denote the point h(0,0). Define

k : R2 —_> R2 by the equation

k(x,y) = h(x,y) - (p,q).

It is easy to check that Kk . is a congruence, since

k(a) - k(b) = h(a) - h(b)



for every pair of points 2, b. Let us study the congruence k,

which has the property that k(0) = 0.
We first show that Kk preserves norms of vectors: By

hypothesis,

la-0ll = llk(a) - k(O)I,  so

Ial Tk(a) = 0l = 1lk(a)l.
Second, we show that kK preserves dot products: By hypothesis,
Ik(2) - k()12 = la-bl?, so
Ik(a)i? - 2k(a) k(b)) + k)12 = 1al? - 2a-b + 1502
Because k preserves norms, we must have

k(@ - k(@ =a - b.

We now show that k 1is a linear transformation. Let e

and e, be the usual unit basis vectors for Rz; then (x,y)

Xe + ygz. Let
&3 = k(g;) and e, = k(e,).

‘Then e, and &4 are also unit orthogonal vectors, since k

preserves dot products and norms. Given X = (%X,y), consider

£30
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the vector k(x):; Dbecause e, and g4 form a basis for R2,

we have
K(x) = «(x)ey + B(x) g,

for some scalars o and B, which are of course functions of x.

Let us compute o and R. We have

L(x) = k(x) 83 because e; 1is orthogonal to gy
= k(x) *+ k(e,) by definition of 83
=Xx°e because k pfeserves dot products,
= x because e is orthogonal to e,-
Similarly,
{3(§) = k(x) gy = k(x)*k(e,) = x- e, = V.

We conclude that for all points x = (x,y) of R®%,

k(x) = xey + ve,.

Letting ez = (a,c) and e4 = (b,d), we can write k out in

components in the form

(ax + by, cx + dy) .

k(x) = x(a,c) + y(b,qd)



Thus k is a linear transformation.

Returning now to our original transformation, h

that
k(x) = h(x) - (p,q).

Therefore we caﬁ write out h(x) in components as
h(x) = (ax + by +»p, Cx + dy + q).

To compute the Jacobian determinant of h, we note that because

€3 = (a,c) and €4 = (b,d) are unit orthogonal vectors, we have

the equation

Therefore

det Ja ¢ + det [a b det |1 o
= , oOr
b 4 c d 0 1

(ad - be)2 = 1.

~

Theorem 10. Let h be a congruence of the plane to it-

self, carrying region S to region T. If both S and T are

Green's regions, then

area S = area T.

£33

+ Wwe recall



Proof. The transformation carries the boundary of T in
a4 one-to-one fashion onto the boundary of S (since distinct

2 are carried by h to distinct points of R2).

points of R
Thus the hypotheses of the preceding theorem are.satisfied.

Furthermore, |[J(u,v)| = 1. From the equation

JJ dx dy = j[ |J(u,v)| du dv
S T

we conclude that
area S = area T. [

EXERCISES.
l. Let h(x) = A-+x be an arbitrary linear transformation

2 to itself. If S 1is a rectangle of area M, what is the

of R
area of the image of S under the transformation h?

2. Given the transformation
h(x,y) = (ax + by + p, cx + dy + q).

(a) Show that if (a,c) and (b,d) are unit orthogonal

vectors, then h 1is a congruence.

(b) If ad - bc = *1, show h preserves areas. 1Is h

necessarily a congruence?

2

3. A translation of R is a transformation of the form

g(x) =x-p



¢

where ] is fixed. A rotation of R2 is a transformation of

the form
h(x) = (x cos ¢ - y sin ¢, x sin ¢ + y cos ¢),

where ¢ 1is fixed.

(a) Check that the transformation h carries the point
with polar coordinates (r,6) to the point with polar coordinates
(r,6+9¢) .

(b) Show that translations and rotations are
congruences. Conversely, show that every congruence with Jacobian
+l1 can be written as the composite of a translation and a rota-
tion.

(c) ‘Show that every congruence with Jacobian -1 can be
written as the composite of a translation, a rotation, and the

reflection map

k(x,y) = (-x,y).

4. Let A be a square matrix. Show that if the rows of
A are orthonormal vectors, then the columns of A are also

orthonormal vectors.
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Let S be the set of all (x,y) with b2x% + a2y2 ¢ |,

Given f(x,y), express the integral JI f as an integral over
S
2

the unit disc u? + v2 ¢ 1. Evaluate when f(x,y) = x Y

Let C be a circular cylinder of radius a whose central axis

is the x-axis. Let D be a circular cylinder of radius b { a

whose central axis is the z-axis. Express the volume common to the

two cylinders as an integral in cylindrical coordinates, [ﬂvaluate

—5

when b = a. ‘]
Transforn_the integral in problem 3, p. D.26 by using the substi-
Y = uv with u, v > 0. Evaluate the integral.

tution x = u/v,

g T4 S fetle wtle il reilice, (0,0) R
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