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St.okes' Theoream

Our text states and proves Stokes' Theorem in 12.11, but it uses
the scalar form for writing both the line integral and the surface integral
involved. In the applications, it is the vector form of the theorem that is
most likely to be quoted, since the notations dxAdy and the like are not
in common use (yet) in physics and engineering.

Therefore we state and prove the vector form of the theorem here.

The proof is the same as in our text, but not as condensed.

- -
Definition. Let F = Pi + Q3’+ RK be a continuously differentiable

vector field defined in an open set U of R3. We define another vector

field in U, by the equation

@rl ¥ = (ORAy - 90/0z) 1 + (3p/dz - 3R/Ax) § + (/% -3pRy) ¥ .

We discuss later the physical meaning of this vector field.

Ari easy way to remember this definition is to introduce the symbolic

operator "del", defined by the equation

S ._. 27 9>, 9>
Y = 5ttt K 4

and to note that curl ¥ can be evaluated by computing the symbolic determinant

— — ~
i 3 K
curl F = _.')4-1? = det | 9% 3y Iz

P Q R

Theorem. (Stokes' theorem). Let S be a simple smooth parametrized
surface in R3, parametrized by a function r : T = S, vwhere T 1is a
region in the (u,v) plane. Assume that T is a Green's region, bounded

by a simple closed piecewise-smooth curve D, and that r has continuous
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second-order partial derivatives in an open set containing T ard D.
Let C be the curve r(D).

If F 1is a continuously differentiable vector field defined in

an open set of R3 centaining S and C, then

j (F-T) ds = H ((curl #)-7R) ds .
c S

Here the orientation of C 1is that derived from the counterclockwise

orientation of D; and the normal T to the surface S points in the same

direction as Jr/dudr/dv .
-

Remark 1. The relation between T and n is often described
informally as follows: "If youwalkaround C in the direction specified by
T, with your head in the direction specified by n', then the surface S
is on your left." The figure indicates the correctness of this informal
description. |

Rémark 2. We note that the equatiqn is consistent with a change
of pararﬁetrization. Suppose that we reparametrize S . by taking a function
g : W— T carrying a region in the (s,t) plane onto T, and use the

new parametrization R(s,t) = r(g(s,t)). What hax/;pens to the integrals
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in the statement of the thiorem? If det Dg > 0 , then the left side of
the equation is unchanged, for we know that g carries the counterclockwise
orientation of QW' to the counterclockwise orientation of 9 T. Furthermore,
because IR /s xIR/It = (drMux dr/Jv) det Dg , the unit normal
determined by the parametrization R is the same as that determined by £,
SO the right side of the equation is also unchanged.

On the other hand, if det Dg< 0, then the counterclockwise orientation
of JW gces to the opposite direction on C, so that T changes
sign. But in that case, the unit normal determined by R 1is opposite to

that determined by r. Thus both sides of the equation change sign.

Proof of the theorem. The proof consists of verifying the

following three equations:

i PLT ds §Y PRz 3 - 32/Iy BT as ,
c s

1]

fc 0j’-T as S‘S‘S (-90/92 T + 30Bx K)- 0" ds ,

[ ’R.-Tas gS‘ QRAY T -IR/AxT])-Pas .
c s

The theorem follows by adding these equations together.
We shall in fact verify only the first equation. The others are
proved similarly. Alternatively, if one makes the substitutions

- - - - - —
i—=j and j -k ard k — i

and X —9y and y —-z and z —x ,
then each equation is transformed into the next one. This corresponds to
an orientation-preserving change of variables in R3 + SO it leaves the

orientations of C and S unchange&.

—y
- SQ let F henceforth denote the vector field Pi ; we prove Stokes'

theorem in that case.
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The idea of the proof is to express the line and surface integrals

of the theorem as integrals over D and T, respectively, and then to

apply Green's theorem to show they are equal.
Let r(u,v) = (X(u,v), Y(u,v), Z(u,v)), as usual.
Choose a counterclockwise parametrization of D ; call it

7(t) + for a< t<b. Then the function

<(t) = r(¥(t)) = (X(3(£)),Y(A(£)),2(B(t)))

is the parametrization of C that we need to compute the line integral

@ Q?

We compute as follows:

- b
j F.dg = ‘( P(£(t)) «](t) det
C a

b
- | reentE e + §X~62<t>1 at
a

where 3X/2u and dX/)v are evaluated at 3(t), of course. We can write

this as a line integral over D. Indeed, if we let p ard g be the functions

plu,v)

P(x(u,v)) $X(a,v)

P(z(uv)) 2X(u,v) ,

alarv) oV

then our integral is just the line integral
-
f (o1 + qj) - a¥.
D

Ncw by Green's theorem, this line integral equals



(*) ffT (3q/du - Jp/dv) du dv .

' We use the chain rule to compute the integrand. We have

p) = (P X . dP DY 2P D

ﬁ (—'b—D(.TLI+Wﬂ+aZ du/3v T P oy
3p _ (P 3X . JP JY . 9P 97\ Ix 2°x
ﬁ - (T;_B—v+3y%+az Bv)au * P 3du

where P and its partials are evaluated at r(u,v), of course.
Subtracting, we see that the first and last terms cancel each other.

The double integral (*) then takes the form

dP XY Yp)z,x
ﬂT S 3ysuv T Sasuy] WAV

Ncw we compute the surfaee integral of our theorem. Since
e N = -
curl F = 9Pz j - dP/dy Kk , formula (12.20) on p. 435 of our text

tells us we have

s e ?. s = ] [9;’33}5 - 2R 4y g

'Here oP/3z and 3P/Jy are evaluated at £(u,v), of course.

Our theorem is thus proved. LJ



Exercises on the divergence theorem

Let S be the portion of the surface 2z = 9 - xz - y2 lying

above the xy plane. Let B be the unit upward normal to S.
Apply the divergence theorem to the solid bounded by S and the

xy-plane to evaluate JI P .3 ds if:
C S

(a) ¥ = sin(y+z)1 + %3 + (x2+y2)ﬁ.
(b) P = y221 + y3 + zR.
Answers: (a) 8lm/2. (b) B8lm.
Let S1 denote the surface 2z = 1 - x2 - y2: z'z 0. Let

Sy denote the unit disc x° + yz ¢ 1l, z=0. Let T = x? -

(2x+y)3 + zk; let 31 be the unit normal to S, and let 32 be
the unit normal to Sz, both with positive K component. Evaluate

JJSI T 31 dS‘ and JISZ T 32 ds.
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Grad, Curl, Dpiv andg all that.

We study two questions about these Ooperations:
I. Do they have natural (i.e., coordinate-free) Physical

Or geometric interpretations?

II. What is the relation between them?

I. We already have a natural interpretation of the
gradient.
For divergence, the question is answered in 12.20 of
Apostol. The theorem of that section gives a coordinate-free
/definition of divergence E, and the subsequent discussion
gives a physical interpretation, in the case where E is the
flux density vector of a moving fluigd.
Apostol treats curl rather more briefly. Formula
(12.62) on p. 461 gives a coordihate—free expression for

- >
n e+ curl F(a), as follows:

(*) T - curl E(g) = 1im -1 f F - da
C(r)

r-0 mr
where C(r) is the circle of radius r centered at a
lying in the Plane perpendicular to A and Passing through

the point 8, and C(r) is directed in a counterclockwise




direction when viewed from the tip of Rn. This number is

called the circulation of F o at a around the vector n;

——

it is clearly independent of coordinates. Then one has a

-
coordinate-free definition of curl F as follows:

-
curl F at a points in the direction of the vector
>
around which the circulation of F is
a maximum, and its magnitude equals

this maximum circulation.

You will note a strong analogy here with the relation between
the gradient and the directional derivative.

For a physical interpretation of curl F, let us
imagine E to be the velocity vector field of a moving fluid.
Let us place a small paddle wheel of radius r in the fluid,

with its axis along a. Eventually, the paddle wheel settles

-y
m

o

ey

down to rotating steadily with angular speed w (considered as

positive if counterclockwise as viewed from the tip of n).
The tangential component Fel of velocity will tend to in-

crease the speed w if it is positive and to decrease w if



it is negative. On physical grounds, it is reasonable to

suppose that

> >
average value of (F.T)

speed of a point
on one of the paddles

That is,

3y

ds

1 >
mfcf" Te-

It follows that

—17 f F oo % ds = 2y,

T—C c
so that by formula (*), we have (if r 1is very small),

™ . curl F(g) = 2uw.

. -

In physical terms then, the vector E:url F'(g)] points in the
direction of the axis around which our paddle wheel spins

most rapidly (in a counterclockwise direction), and its magni-

tude equals twice this maximum angular speed.
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II. What are the relations between the operations
grad, curl, and div? Here is one way of explaining them.

Grad goes from scalar fields to vector fields, Curl

goes from vector fields to vector fields, and Div goes from
vector fields to scalar fields. This is summarized in the

diagram:

Scalar fields ¢ (x)
grad

Vector fields : E(i)
curl

Vector fields a(&)
div

Scalar fields | ¥ (x)

Let us consider first the top two operations, grad and

curl. We restrict ourselves to scalar and vector fields that

are continuously differentiable on a region U of R3.
Here is a theorem we have already proved:

-

Theorem 1. F is a gradient in U if and only if

% Fe de = 0 for every closed piecewise-smooth path in U,
C

> > >
Theorem 2. If F = grad ¢ for some ¢, then curl F = 0.

Proof. We compute curl F by the formula

[ > > -
i j k
* s
curl F = det Dl D2 D3
| F1 Fp P3|

-> ) . e >
= J.(DZF3-D3F2) = 3(DyF3=D4Fy) + k(‘Dle-DzFl) .
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We know that if F 1is a gradient, and the partials of F are
continuous, then DiFj = DjFi for all i, j. Hence
- -> .
curl F = 0. a

Theorem 3. If curl F = § i a star-convex region U,

then F = grad ¢ for some ¢ defined in U.

The function ¢(x) = ¢(x) + ¢ is the most general func-

tion such that § = grad b¢.

Proof. If curl F = 0, then DiFy = DyF; for all i,
j. If U 1is star-convex, this fact implies that F 1is a

gradient in U, by the Poincaré lemma. [J

Theorem 4. The condition

does not in general imply that F is a gradient in U.

Proof. Consider the vector field

F(x,y,2) = (55, %=, 0).

X +y X +y

It is defined in the region U consisting of all of R3 ex-
cept for the z-axis. It is easy to check that curl ¥ = §.
To show F is not a gradient in U, we let C be the unit

circle
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a(t) = (cos t, sin £, 0); 0 < t< 27

in the xy-plane, and compute

?C?-dg_=27r#0.

It follows from Theorem 1 that ¥ cannot be a gradient in U.[J

Remark. A region U in R3 is called "simply
connected" if, roughly speaking, every closed curve in U
bounds an orientable surface lying in U. The region R3-
(origin) is simply connected, for example, but the region
R3—(z-axis) is not.

It turns out that if U is simply connected and if
curl ¥ =3 in U, then F is a gradient in U. The proof
goes roughly as follows:

Given a closed éurve C in U, let S be an orient-

able surface in U which C bounds. Apply Stokes' theorem

to that surface. One obtains the equation
Lf)'F’-d_o_‘=”cur1§-Eds=“ 0 ds = 0.
C ' S

Then Theorem 1 shows that F is a gradient in U.

Now let us consider the next two operations, curl and
div. Again, we consider only fields that are continuously
differentiable in a region U of R3. There are analogues of

all the earlier theorems:



Theorem §. If

+ . .
G i a curl in U

y then

/[ G-3ds =0 for gvery orientable closed surface §
S .

Proof. Let S

be a closed surface that lies in

‘_7
e (While we assume that

)
pes
(a)

S 1lies

in U, we do not assume that

U includes the 3-dimensional

region that S bounds.

S up into two surfaces

-’
124V
>

common boundary, which is a simple smooth closed curve

by hypothesis, & = curl F for some F defined in U.

pute:-

” E-Hds=H curli‘"-ﬁds=f F da,
S S C

) Break

Sl and

S2 ‘that intersect in their

C. Now

We com-

1 1
ff Gen ds = ff curl F+n ds = - f F. da.
82 82 C
Adding, we see that .
H d.nds =o0.0
S

Remark. The converse of Theorem 5 holds also, but we

shall not attempt to prove it.

Theorem 6. If g = curl ¥ for some ?, then div & = 0.

Proof. By assumption,
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& = 17 = i %
= curl F = 1(D2F3—D3F2)—j(DlF3-D3Fl)+k(DlF2—D2Fl).
Then

i G = - - -
div G (DlD2F3 DlD3F2) (D2D1F3 D2D3Fl)+(D3DlF2"D3D2Fl)

=0.0

Theorem 7. If div G = 0 in a star-convex region U,

then & = curl F for some F defined in U.

The function H = F + grad ¢ is the most general func-

- -
tion such that G = curl H.

We shall not prove this theorem in full generality. The
proof is by direct computation, as in the Poincaré lemma.

A proof that holds when U is a 3-dimensional box, or
when U 1is all of R3, is given in section 12.16 of Apostol.
This proof also shows how to construct a specific such function
F in the given cases.

Note that if E = curl F and E = curl ﬁ, then
curl(ﬁ-f) = 0. Hence by Theorem 3, H-F = grad ¢ in U,
for some ¢.

Theorem 8. The condition

div & = 0

|5
a

does not in general imply that g is a curl in U.




Proof. Let § be the vector fiéld

P — i+y3 + zk
G(XIYIZ) = X ] 3/2 )
(x2+y2+zz)

which is defined in the region U consisting of all of R3'

except for the origin. One readily shows by direct computation

that div G = 0.

-
mo

If S 1is the unit sphere centered at the origin, then we show

that

LJ Gen dA # 0.

This will imply (by Theorem 5) that & is not a curl.

If (x,¥,2) 1is a point of S, then I (x,y,z)I =1,

> -+ -+ -> -
so G(x,y,2) = xi + yj + zk = i. Therefore

!J Gen dA = ff 1 dA = (area of sphere) # 0. a
S S
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Remark. Suppose we say that a region U in R3 is "two-

simply connected" if every closed surface in U bounds a
solid regioﬁ lying in U* The region U = R3-(origin) isvnot%wo-
simply connected", fof example, but the region U = R3—(z axis)
is.
It turns out that if Uisﬁmm-snmuy connected and if
div G = 0 in U, then g is a curl in U. The proof goes
roughly as follows:
Given a closed surface S in U, 1let V be the region

it bounds. Since & is by hypothesis defined on all of v,

we can apply Gauss' theorem to compute

Then the converse of Theorem 5 implies that G is a curl in U.

There is much more one can say about these matters, but
one needs to introduce a bit of algebraic topology in order to do

so. It is a bit late in the semester for that!

*The proper mathematical term for this is "homologically trivial in dimension two."
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