
StokesI Theorem 

Our text states and proves Stokes' Theorem in 12.11, but ituses 

the scalar form for writing both the line integral and the surface integral 


involved. In the applications, it is the vector form of the theorem that is 


most likely to be quoted, since the notations dxAdy =d the like are not 


in common use (yet) in physics and engineering. 

Therefore we state and prove the vector form of the theorem here. 


The proof is the same as in our text, but not as condensed. 


--.I 

Definition. Let F = PT + QT + $ be a continuously differentiable , 

3 vector field defined in an open set U of R . We define another vector . 

field in U, by the equation 

curla = ()R/ay - + 
a d z )  i + (JP/>Z- aR/Jx) 7 + (>Q/& -ap/Jy) 7 .  

We discuss later the physical meaning of this vector field. 


An easy way to remember this definition is to introduce the symbolic 


operator "delM, defined by the equation 


* 
md to note that curl F can be evaluated by computing the symbolic determinant 

7' 7 

-9 + 
curl? = V ~ F= det 

Theorem. (Stokes1 theorem). Let S be a simple smooth parametrized 

surface in R ,  parametrized by a function g : T S , where T is a 
region in the (u,v) plane. Assume that T is a Green's region, bounded 

by a simple closed piecewise-smooth curve D, and that has continuous 

+ 



second-order partial deri~tivesin an open set containing T ard D. 

Let C be the curve L(D). 

If F is a continuously differentiable vector field defined in 

an open set of R~ containing S and C, then 

J --t 
( F a  T) ds -- JJs ((curl T)-$] d~ . 

Jc 

Here the orientation of C is that derived from the counterclockwise 

orientation of D; and the normal fi to the surface S points in the same 

direction as 3rJu Y 1gJv . 

4 
Remark 1. The relation between T and 2 is often described 

informally as follows: "If youralkaround C in the direction specified by 

3 with your head in the direction specified by i? , then the surface S 

is on your left." The figure indicates the correctness of this informal 

description. 
/ 

Remark 2. We note that the equation is consistent with a change 


of parametrization. Suppose that we reparametrize S by taking a function 


9 : W -s T carrying a region in the (s,t) plane onto T, and use the 

new parametrization R(s,t) = g(q(s,t)) . What happens to the integrals
/ 



in the statement of the th?orem? If det Dg .0 , then the left side of 

the equation is unchanged, for we know that g carries the countercloclcwise 


orientation of 2~ to the counterclockwise orientation of 2 T. Furthermore, 

because )-R /as x&/J t = ( J dx 3rJk) det Dg , the unit normal 

determined by the parametrization g is the same as that determined by g , 

so the right side of the equation is also unchanged. 


Orr the other hand, if det D g i  0, then the counterclockwise orientation 

of J W  goes to the opposite direction on C, so that 7 changes 

sign. But in that case, the unit normal determined by g is opposite to 

that determined by r. Thus both sides of the equation change sign. 

--- Proof of the theorem. The proof consists of verifying the 


following three equations: 


m e  theorem follo& by adding these equations together. 


We shall in fact verify only the first equation. The others are 


proved similarly. Alternatively, if one makes the substitutions 

> 4 -+ 3 -4 
1 j and j +k m.d k -+i md x--sy and y + z  and z - e x ,  

then each equation is transformed into the next one. This corresponds to 

3 ar? orientation-presedng chmge of ~riables in R , so it leaves the 

orientations of C and S unchanged. 
-3 

Sa let F henceforth denote the vector field Pi ; we prove Stokes' 

theorem in that case. 



The idea of the proof is to express the line and surface integrals 


of the theorem as integrals over D and TI respectively, and then to 


apply Green's theorem to show they are equal. 


Let r(uIv) = (X(U.V)~ Y(u,v), Z(u,v)), as usual. 


Choose a counterclockwise parametrization of D ; call it 


l(t) 
4 

. for a 5 t < b. Then the function 


is the parametrization of C that we need to compute the line integral 


of our theorem. k 


a 


We compute as follows: 


where 2 U u  and aX&v are evaluated at d_(t), of course. We can write 

this as a line integral over D. Indeed, if we let p and q be the functions 

a x
p(uIv) = P(g(uIv) )*ru(ufv) 

a x  
s(u,v) = P(g(u,v) 1 8 --$urv)d I

then our integral is just the line integral 


New by Green's theorem, this line integral equals 




I * )  (J~/JU - J, /~v) du dv . 


We use the chain rule to compute the integrand. We have 


where P and its partials are evaluated at ~(u,v), of course. 

Subtracting, we see that the first and last terms cancel each other. 

The double integral (*)  then takes the form 

Nclw we compute the surfac~ integral of our theorem. Since 
3 

curl F = > P / ~ ZT->P/>~ 2 , formula (12.20) on p. 435 of our text 

tells us we have 


Here 2P/>z and 2 P/3y are e~luated a t  -r(u,v), of course. 
, 

Our theorem is thus proved. 




Exercises on tfie diverqence theorem 


1. 	 Let S be the portion of the surface z = 9 - x2 - y2 lying 


above the xy plane. Let 8 be the unit upward normal to S. 


Apply the divergence theorem'to the solid bounded by S and the 

xy-plane to evaluate J'I P il d ~  if:
S 

2 
(a) 1 2= ~ i n ( ~ + z ) ?+ s X Z J  + ( x +y ) d .  

(b) D = y2z3 + yf + zR. 

Anewers: (a) 8 1 ~ / 2 *  (b) 8ln. 


2 .  	 Let S1 denote the surface z = 1 - 2 x - 2Y ; z 2 0. Let 

I S2 denote the unit d i s c  x 2  + 2 y 1 z = 0 Let = x t  -
(2wcy)f + zk; let 3, be the unit normal to S, and let 3, be 

the unit normal to S 2 ,  both with positive d component. Evaluate 

y o d l d S  and Jj 1 * a 2 d s .  


S1 s2 




-'Grad 'Curl - - -  Div and all that. 

We study two questions about these operations: 


I. DO they have natural (i.e., coordinate-free) physical 


or geometric interpretations? 


11. What is the relation between them? 


I. We already have a natural interpretation of the 


gradient. 


For divergence. the question is answered in 12.20 of -

Apostol. The theorem of that section gives a coordinate-free 
-+ 

definition of divergence F. and the subsequent discussion 

1 

+ 
gives a physical interpretation, in the case where F is the 


flux density vector of a moving fluid. 


Apostol treats curl rather more briefly. Formula 
i 

(12.62) on p. 461 gives a coordinate-free expression for 

+ 
r i - curl F

-L 

(a) - , as follows:

where C(r) is the circle of radius r centered at -a 
lying in the plane perpendicular to and passing through 

the point a, and C(r) is directed in a counterclockwise 



+
direction when viewed from the tip of n. This number is 


! +
called the circulation - of 5 - at - a around - the vector n; 

it is clearly independent of coordinates. Then one has a 

-b 

coordinate-free definition of curl F as follows: 


+ 
curl F at -a points in the direction of the vector 


+ 
around which the circulation of F is 


a maximum, and its magnitude equals 


this maximum circulation. 


YOU will note a strong analogy here with the relation between 


the gradient and the directional derivative. 

,

-+ 
For a physical interpretation of curl F, let us 


+ 
imagine F to be the velocity vector field of a moving fluid. 


I 

Let us place a small paddle wheel of radius P in the fluid, 


-+
with its axis along n. Eventually, the paddle wheel settles 


down to rotating steadily with angular speed w (considered as 


positive if counterclockwise as biewed from the tip of if). 

+ + 

The tangential component F*T of velocity will tend to in- 


crease the speed w if it is positive and to decrease o if 




it is negative.  On phys ica l  grounds, it i s  reasonable t o  
1 

suppose t h a t  

+ 
average value of ( F - T )  

-b
= 	- , speed of a p o i n t  

on one of t h e  paddles 

That is, 

& I C ~+ +
T d s  = r w .  

I t  fo l lows t h a t  

s o  t h a t  by formula w e  have ( i f  is  very s m a l l )  , 

d +
c u r l  F ( a )  - = 2w.

+ 
I n  phys ica l  terms then,  t h e  vec to r  k u r l  F(=)] p o i n t s  i n  t h e  

d i r e c t i o n  of t h e  a x i s  around which our  paddle wheel s p i n s  

most r a p i d l y  (in a counterclockwise d i r e c t i o n ) ,  and i ts magni-

tude  equa l s  t w i c e  this maximum angular  speed. 



, 11. What a r e  t h e  r e l a t i o n s  between t h e  opera t ions  

grad, c u r l ,  and d iv?  Here is one way of expla in ing  them. 

-Grad goes from s c a l a r  f i e l d s  t o  vec tor  f i e l d s ,  -Curl 

goes from vec to r  f i e l d s  t o  vec tor  f i e l d s ,  and -Div goes from 

vec to r  f i e l d s  t o  s c a l a r  f i e l d s .  his i s  s u m a r i z e d  i n  t h e  

diagram: 

S c a l a r  f i e l d s  0 (5)  

Vector f i e l d s  

c u r l  

Vector f i e l d s  (,I a

1 
S c a l a r  f i e l d s  Jl (XI-

L e t  us cons ider  f i r s t  t h e  t o p  two opera t ions ,  grad and 

c u r l .  W e  r e s t r i c t  ou r se lves  t o  s c a l a r  and vec to r  f i e l d s  t h a t  

3 a r e  cont inuous ly  d i f f e r e n t i a b l e  on a region  U of R . 
Here is a theorem w e  have a l r e a d y  proved: 

+
Theorem 1. F - -  i s  a g r a d i e n t  - i n  U -- i f  and only - i f  

r -L 

F *  du - = 0 - f o r  eve ry  c losed  piecewise-smooth pa th  - i n  U. 
+ + 

- -- 
+ 

Theorem 2. If F = grad 4 f o r  some 4 ,  then  c u r l  F = 0 .  

~ r o o f .  W e  compute c u r l  3 by t h e  formula 

c u r l  



w e  know t h a t  i f  $ i s  a g rad ien t ,  and t h e  p a r t i a l s  of  F a r e  

continuous,  then  D . F  = D . F  f o r  all i, j. Hence 
1 j 	 J i 

+
c u r l F = O .  

-!-

Theorem 3 .  - I f  c u r l  = 8 - - -  i n  a  star-convex region U ,  

- then  $ = grad $ -- f o r  some + def ined  - i n  U .  

-The func t ion  $(XI = + (x )  + c i s  t h e  most genera l  -func- 
_I--

--- t i o n  such t h a t  
-b
F = grad $. 


+ +

Proof. I f  c u r l  F = 0, then  D.F = D.F for a l l  i,

I j 	 I i 
j. I f  U is  star-convex, t h i s  f a c t  impl ies  t h a t  F i s  a 

g r a d i e n t  i n  	 U,  by t h e  Poincar6 l e m m a .  17 

Theorem 4 .  -The cond i t ion  


c u r l  $ 	= d -i n  u 

--- does n o t  i n  genera l  imply - t h a t  3 - -  i s  a  g r a d i e n t  - i n  U.  

Proof. Consider t h e  vec td r  f i e l d  

3
It is def ined  i n  t h e  region  U c o n s i s t i n g  of a l l  of R ex-

c e p t  f o r  t h e  z-axis.  I t  is easy  t o  check t h a t  c u r l  ? = 8 .  
TO show i s  n o t  a g r a d i e n t  i n  U,  w e  l e t  C be t h e  u n i t  

c i r c l e  



~ ( t )= (cos t ,  s i n  t ,  0 ) ;

i n  t h e  xy-plane, and compute 

r t  fol lows from Theorem ]I t h a t  $ cannot be a g rad ien t  i n  U. 0 
Remark. A region U i n  R~ i s  c a l l e d  "simply 

connected" i f ,  roughly speaking, every c losed  curve i n  U 

3bounds an o r i e n t a b l e  su r face  l y i n g  i n  U. The region R -
( o r i g i n )  i s  simply connected, f o r  example, but  t h e  region 

3R - (z-axis )  i s  not .  

rt t u r n s  o u t  t h a t  i f  U i s  simply connected and i f  

, c u r l  $ = 8 i n  U ,  then i s  a g r a d i e n t  i n  U. The proof 

goes roughly a s  follows: 

Given a  c losed  curve C i n  U ,  l e t  S be an o r i e n t -  

a b l e  s u r f a c e  i n  U which C bounds. Apply Stokes t  theorem 

t o  t h a t  su r face .  One o b t a i n s  t h e  equat ion  

Then Theorem 1 shows t h a t  P i s  a g r a d i e n t  i n  U. 

NOW l e t  us  cons ider  t h e  next  t w o  opera t ions ,  c u r l  and 

d iv .  Again, w e  cons ider  on ly  f i e l d s  t h a t  a r e  cont inuously 
3 d i f f e r e n t i a b l e  i n  a  reg ion  U of  R . There a r e  analogues of 

a l l  t h e  e a r l i e r  theorems: 

I 



Theorem 5 .  - I f  F - - - -  i s  a c u r l  i n  - 
- 

U, then 


11 5 t dS = 0 - f o r  every o r i e n t a b l e  closed su r face  S - i n  U .  

S 
 -

~ r o o f .  L e t  S be a c lased sur face  t h a t  l i e s  i n  U. 

(While we assume t h a t  S l ies  

i n  U ,  w e  do no t  assume t h a t  

U inc ludes  t h e  )-dimensional 

region t h a t  S bounds.) Break 

s up i n t o  two su r faces  S1 and 

S2 t h a t  i n t e r s e c t  i n  t h e i r  

common boundary, which is a simple smooth c losed  curve C. Now 
+-

by hypothesis ,  G = c u r l  ? f o r  some def ined  i n  U .  W e  corn-

pute  : 

G n d s  = H mda. 

S2 

11 c u r l  F mii d~ = -
s2  . 

1 
C -

Adding, w e  see t h a t  , 

ema ark. The convers'e of Theorem 5 holds  a l s o ,  bu t  w e  

s h a l l  not  a t tempt  t o  prove it. 

Theorem 6.  - I f  2 = c u r l  ? -- f o r  some ?, - then  d i v  2 = 0. 

-Proof. By assumption, 



Then 

-+
div G = (D1 2 3  D F -D1 3 2D F 1 - (D2D1F3-DZD3Fl)+(D3DlF2-D3D2F1) 

Theorem 7. - If div = 0 - - -  in a star-convex region U, 

- 2 3 -- 
+ 

then = curl for some F defined - in U. 

- 
+ +

The function H = 	F + grad $ --- is the most general - func- 
+ 

--- tion such that = curl H. 

We shall not prove this theorem in full generality. The 

proof is by direct computation, as in the ~oincar6 lemma. 

A proof that holds when U is a 3-dimensional box, or 

3 when U is all of R , is given in section 12.16 of Apostol. 

This proof also shows how to construct a specific such function 

in the given cases. 


if 2 -+ -+ 
Note that = curl ?$ and G = curl H, then 

+ + 
curl(H-F) = 8 .  Hence by Theorem 3, H - 5 = grad 4 in U, 

for some 4. 

Theorem 8. -The condition 

d i v G = O  
-t &I U 

--- does not in general imply - that if ----  is a curl in U. 




Proof. Let 2 be t h e  vector  f i e l d  

which i s  def ined  i n  t h e  region U c o n s i s t i n g  of a l l  of R3 

except  f o r  t h e  o r i g i n .  One r e a d i l y  shows by d i r e c t  computation 

t h a t  d i v  G = 0.  

I f  S i s  t h e  u n i t  sphere  centered  a t  t h e  o r i g i n ,  then w e  show 

t h a t  

his w i l l  imply (by Theorem 5)  t h a t  is n o t  a c u r l .  

I f  (x,y,z) is a p o i n t  of  St t h e n  I (x,y,z)B = 1, 
+ + + + *  

so G(x,y,z) = xi + yj + zk = n o  Therefore 

11 b*;  dA = 1 dA = ( a r e a  of sphere)  # 0. 0 



 erna ark. Suppose w e  say t h a t  a r eg ion  U i n  R3 i s  "two-

simply connectedw i f  every  closed su r face  i n  U bounds a 

3s o l i d  region l y i n g  i n  U.* The region U = R - ( o r i g i n )  i s  nott'two-

simply connected", f o r  example, bu t  t h e  region U = R 3 - ( z  a x i s )  

-i s .  

r t  
I1 

t u r n s  o u t  t h a t  i f  U is"two-simply connected and i f  

d i v  
-b
G = 0 i n  U ,  then 2 i s  a c u r l  i n  U .  The proof goes 


roughly a s  follows: 


Given a c losed  s u r f a c e  S i n  U,  l e t  V be t h e  region  

it bounds. Since i s  by hypothesis  def ined  on a l l  of V,  

w e  can apply Gauss' theorem t o  compute 

+ 
Then t h e  converse of Theorem 5 implies. t h a t  G is  a c u r l  i n  U. 

There i s  much more one can say about t h e s e  matters, bu t  

one needs t o  in t roduce  a b i t  of a l g e b r a i c  topology i n  o rde r  t o  do 

so.  It is a b i t  l a t e  i n  t h e  semester f o r  t h a t !  

*The proper mathematical term for this is ffharalogically t r iv ia l  in dimension two." 
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