
V9.3-4 Surface Integrals 

3. Flux through general surfaces. 

For a general surface, we will use xyz-coordinates. It turns out that here it is simpler 
to calculate the infinitesimal vector dS = n dS directly, rather than calculate n and dS 
separately and multiply them, as we did in the previous section. Below are the two standard 
forms for the equation of a surface, and the corresponding expressions for dS. 

z=z (x,y)
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In the first 
we use z both for the dependent variable and the function which gives its dependence on x 
and y; you can use f(x, y) for the function if you prefer, but that’s one more letter to keep 
track of. 

(11a) z = z(x, y), dS = (−zx i − zy j + k ) dx dy (n points “up”) 

(11b) F (x, y, z) = c, dS = ±∇F 
dx dy (choose the right sign); 

Fz 

Derivation of formulas for dS. 

Refer to the pictures at the right. The surface S lies over its projection R, 
a region in the xy-plane. We divide up R into infinitesimal rectangles having 
area dx dy and sides parallel to the xy-axes — one of these is shown. Over it 
lies a piece dS of the surface, which is approximately a parallelogram, since its 
sides are approximately parallel. 

The infinitesimal vector dS = n dS we are looking for has 

direction: perpendicular to the surface, in the “up” direction; 
magnitude: the area dS of the infinitesimal parallelogram. 

This shows our infinitesimal vector is the cross-product 

dS = A×B 

where A and B are the two infinitesimal vectors forming adjacent sides of 
the parallelogram. To calculate these vectors, from the definition of the 
partial derivative, we have 

f dyy 

A 
f dxx 

dx 

A lies over the vector dx i and has slope fx in the i direction, so A = dx i + fx dx k ;

B lies over the vector dy j and has slope fy in the j direction, so B = dy j + fy dy k .
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A×B = � 
� 
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= (−fx i − fy j + k ) dx dy , 
� 0 dy fydy � 

which is (11a). 

To get (11b) from (11a), , our surface is given by 

(12) F (x, y, z) = c, z = z(x, y) 

where the right-hand equation is the result of solving F (x, y, z) = c for z in terms of the 
independent variables x and y. We differentiate the left-hand equation in (12) with respect 
to the independent variables x and y, using the chain rule and remembering that z = z(x, y): 

∂x ∂y ∂z ∂z 
F (x, y, z) = c Fx = 0 Fx + Fz = 0+ Fz⇒ 

∂x 
+ Fy 

∂x ∂x 
⇒ 

∂x 
1 
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from which we get 

∂z 
= 

Fx ∂z 
= 

Fy 

∂x 
−
Fz 

, and similarly, 
∂y 

−
Fz 

. 

Therefore by (11a), 

dS = − ∂z ∂z F

F
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∇
F
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dx dy ,

∂x 
i −

∂y 
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which is (11b). 

Example 3. The portion of the plane 2x − 2y + z = 1 lying in the first octant forms a 
triangle S. Find the flux of F = x i + y j + z k through S; take the positive side of S as the 
one where the normal points “up”. 

Solution. Writing the plane in the form z = 1− 2x + 2y, we get using (11a), 

dS = (2 i − 2 j + k ) dx dy , so 

F dS = (2x − 2y + z) dy dx · 
S S 

= 2x − 2y + (1 − 2x + 2y) dy dx , 
R 

where R is the region in the xy-plane over which S lies. (Note that since the integration 
is to be in terms of x and y, we had to express z in terms of x and y for this last step.) 
To see what R is explicitly, the plane intersects the three coordinate axes respectively at 
x = 1/2, y = −1/2, z = 1 . So R is the region pictured; our integral has integrand 1, so its 
value is the area of R, which is 1/8. 

Remark. When we write z = f(x, y) or z = z(x, y), we are agreeing to parametrize 
our surface using x and y as parameters. Thus the flux integral will be reduced to a double 
integral over a region R in the xy-plane, involving only x and y. Therefore you must get rid 
of z by using the relation z = z(x, y) after you have calculated the flux integral using (11a). 
Then determine the region R (the projection of S onto the xy-plane), and supply the limits 
for the iterated integral over R. 

Example 4. Set up a double integral in the xy-plane which gives the flux of the field 
F = x i + y j + z k through that portion of the ellipsoid 4x2 + y2 + 4z2 = 4 lying in the 
first octant; take n in the “up” direction. 

Solution. Using (11b), we have dS = 
〈8x, 2y, 8z〉

dx dy. Therefore 
8z 

8x2 + 2y2 + 8z2 1 dx dy 

S 

F · dS = 
S 8z 

dx dy = 
S z 

dx dy = 
R 

� 

x2 − (y/2)2 
, 

1−

where R is the portion of the ellipse 4x2 + y2 = 4 lying the the first quadrant. 

The double integral would be most simply evaluated by making the change of variable 
u = y/2, which would convert it to a double integral over a quarter circle in the xu-plane 
easily evaluated by a change to polar coordinates. 

R 

y 
1/2 x 

1/2 
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4. General surface integrals.* The surface integral f(x, y, z) dS that we 
S 

introduced at the beginning can be used to calculate things other than flux. 

a) Surface area. We let the function f(x, y, z) = 1 . Then the area of S = dS . 
S 

b) Mass, moments, charge. If S is a thin shell of material, of uniform thickness, and 
with density (in gms/unit area) given by δ(x, y, z), then 

� � 

(13) mass of S = δ(x, y, z) dS, 
S 

� � 

1 
(14) x-component of center of mass = x = 

mass S 
x · δ dS 

S 

with the y- and z-components of the center of mass defined similarly. If δ(x, y, z) represents 
an electric charge density, then the surface integral (13) will give the total charge on S. 

c) Average value. The average value of a function f(x, y, z) over the surface S can be 
calculated by a surface integral: 

1 
(15) average value of f on S = f(x, y, z) dS . 

area S S 

Calculating general surface integrals; finding dS. 
To evaluate general surface integrals we need to know dS for the surface. For a sphere 

or cylinder, we can use the methods in section 2 of this chapter. 

Example 5. Find the average distance along the earth of the points in the northern 
hemisphere from the North Pole. (Assume the earth is a sphere of radius a.) 

a P 
φ 

aφ 
Solution. — We use (15) and spherical coordinates, choosing the coordi­
nates so the North Pole is at z = a on the z-axis. The distance of the point 
(a, φ, θ) from (a, 0, 0) is aφ, measured along the great circle, i.e., the longi­
tude line — see the picture). We want to find the average of this function 
over the upper hemisphere S. Integrating, and using (9), we get 

� � � 

2π � π/2 � π/2


aφ dS = aφa2 sinφ dφ dθ = 2πa3 φ sinφ dφ = 2πa3 .

S 0 0 0


(The last integral used integration by parts.) Since the area of S = 2πa2, we get using (15) 
the striking answer: average distance = a . 

For more general surfaces given in xyz-coordinates, since dS = n dS, the area element 
dS is the magnitude of dS. Using (11a) and (11b), this tells us 

(16a) z = z(x, y), dS = zx 
2 + zy 

2 + 1 dx dy 

(16b) F (x, y, z) = c, dS = 
|∇F |

dx dy |Fz| 
Example 6. The area of the piece S of z = xy lying over the unit circle R in the xy-plane 
is calculated by (a) above and (16a) to be: 
� � � � � 

2π � 1 
�

�1 
� 1 2π 

dS = y2 + x2 + 1 dx dy = r2 + 1 r dr dθ = 2π (r 2+1)3/2 = (2
√
2−1).· 

3 3S R 0 0 0 
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