V9.3-4 Surface Integrals

3. Flux through general surfaces.

For a general surface, we will use zyz-coordinates. It turns out that here it is simpler
to calculate the infinitesimal vector dS = ndS directly, rather than calculate n and dS
separately and multiply them, as we did in the previous section. Below are the two standard
forms for the equation of a surface, and the corresponding expressions for dS. In the first
we use z both for the dependent variable and the function which gives its dependence on z
and y; you can use f(x,y) for the function if you prefer, but that’s one more letter to keep
track of.

(11a) z = z(z,y), dS = (=21 — 2§ + k)dady (n points “up”)
F
(11b) F(z,y,2) =c, ds = :l:z dx dy (choose the right sign);

z
Derivation of formulas for dS.

Refer to the pictures at the right. The surface S lies over its projection R,
a region in the zy-plane. We divide up R into infinitesimal rectangles having
area dz dy and sides parallel to the xy-axes — one of these is shown. Over it
lies a piece dS of the surface, which is approximately a parallelogram, since its
sides are approximately parallel.

The infinitesimal vector dS = ndS we are looking for has

direction: perpendicular to the surface, in the “up” direction;
magnitude: the area dS of the infinitesimal parallelogram.

This shows our infinitesimal vector is the cross-product
B
dS=AxB déy, f,dy

where A and B are the two infinitesimal vectors forming adjacent sides of A
the parallelogram. To calculate these vectors, from the definition of the fxdx —a
partial derivative, we have dx

A lies over the vector dx i and has slope f, in the i direction, so A =dz i + f,dx k ;
B lies over the vector dy j and has slope f, in the j direction, so B =dy j + f, dy k.

i j kK
AxB=|de 0 fode|=(—fai—-fyj+k)dxdy,
0 dy fydy

which is (11a).
To get (11b) from (11a), , our surface is given by
(12) F(z,y,2) =c, z=z(z,y)

where the right-hand equation is the result of solving F(x,y,z) = ¢ for z in terms of the
independent variables = and y. We differentiate the left-hand equation in (12) with respect
to the independent variables x and y, using the chain rule and remembering that z = z(z, y):

O dy 0z 0z
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from which we get

0] F, F,
a—; = —FZ, and similarly, a—z = _FZ .
Therefore by (11a)
0z . 0z T . _
dS = <_8x —8—3 +1>d:cdy = <le t5 +1)d:cdy = dzdy ,

which is (11b).

Example 3. The portion of the plane 2z — 2y + z = 1 lying in the first octant forms a
triangle S. Find the flux of F = zi 4+ yj + 2k through S; take the positive side of S as the
one where the normal points “up”.

Solution. Writing the plane in the form z =1 — 2z 4 2y, we get using (11a),

dS = (21 —2j + k)dzdy, S0

//F-dS = // (22 — 2y + z) dy dx
s

//R(zx—2y+(1—2x+2y))dydx,

-2

where R is the region in the zy-plane over which S lies. (Note that since the integration
is to be in terms of x and y, we had to express z in terms of & and y for this last step.)
To see what R is explicitly, the plane intersects the three coordinate axes respectively at
x=1/2, y=—-1/2, z=1. So R is the region pictured; our integral has integrand 1, so its
value is the area of R, which is 1/8.

Remark. When we write z = f(z,y) or 2 = z(z,y), we are agreeing to parametrize
our surface using x and y as parameters. Thus the flux integral will be reduced to a double
integral over a region R in the xy-plane, involving only x and y. Therefore you must get rid
of z by using the relation z = z(z,y) after you have calculated the flux integral using (11a).
Then determine the region R (the projection of S onto the zy-plane), and supply the limits
for the iterated integral over R.

Example 4. Set up a double integral in the xy-plane which gives the flux of the field

F =2i+yj + 2k through that portion of the ellipsoid 4x? 4+ y? + 422 = 4 lying in the
first octant; take n in the “up” direction.

Solution. Using (11b), we have dS =

2 2 2
//F.dsz//wdwy://zdmy:// dz dy ,
s s 8z 52 r\/1— 22— (y/2)?

where R is the portion of the ellipse 422 + y? = 4 lying the the first quadrant.

2
(81",8%8,2) dx dy. Therefore

The double integral would be most simply evaluated by making the change of variable
u = y/2, which would convert it to a double integral over a quarter circle in the zu-plane
easily evaluated by a change to polar coordinates.
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4. General surface integrals.* The surface integral / / f(z,y,z)dS that we
s
introduced at the beginning can be used to calculate things other than flux.

a) Surface area. We let the function f(x,y,z) =1 . Then the area of S = / ds .
S

b) Mass, moments, charge. If S is a thin Shell of material, of uniform thickness, and
with density (in gms/unit area) given by d(x,y, z), then

(13) mass of S = / 0(x,y,2)dsS,

(14) x-component of center of mass = T = // z-0dS
mass S J Jg

with the y- and z-components of the center of mass defined similarly. If §(z,y, z) represents
an electric charge density, then the surface integral (13) will give the total charge on S.

¢) Average value. The average value of a function f(z,y,z) over the surface S can be
calculated by a surface integral:

(15) average value of f on S = / f(z,y,2)dS .
s

area S

Calculating general surface integrals; finding dS.
To evaluate general surface integrals we need to know dS for the surface. For a sphere
or cylinder, we can use the methods in section 2 of this chapter.

Example 5. Find the average distance along the earth of the points in the northern
hemisphere from the North Pole. (Assume the earth is a sphere of radius a.)

Solution. — We use (15) and spherical coordinates, choosing the coordi-
nates so the North Pole is at z = a on the z-axis. The distance of the point
(a, ¢,0) from (a,0,0) is ap, measured along the great circle, i.e., the longi-
tude line — see the picture). We want to find the average of this function
over the upper hemisphere S. Integrating, and using (9), we get

2 pm/2 /2
/ / apdS = / / apa’sinpdpdd = 2ma® ¢ sinpdd = 2ma®
S 0 0 0

(The last integral used integration by parts.) Since the area of S = 2ma?, we get using (15)
the striking answer: average distance = a .

For more general surfaces given in xyz-coordinates, since dS = ndS, the area element
dS is the magnitude of dS. Using (11a) and (11b), this tells us

(16a) z=z(z,y), dS = /22 + 22+ 1dzdy

F
(16Db) F(x,y,z) =c¢, ds = |Z_, || dz dy

Example 6. The area of the piece S of z = xy lying over the unit circle R in the zy-plane
is calculated by (a) above and (16a) to be:

27 1 1 1 2
// dS:// \/y2+x2+1dacdy:/ / \/7“2+17“drd9=27T~3(7“2+1)3/2] :%(2&—1).
S R 0 0 0
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