
18.03 Problem Set 1


I encourage collaboration on homework in this course. However, if you do your homework 
in a group, be sure it works to your advantage rather than against you. Good grades for 
homework you have not thought through translate to poor grades on exams. You must 
turn in your own writeups of all problems, and, if you do collaborate, you must 
write on the front of your solution sheet the names of the students you worked 
with. 

Because the solutions will be available immediately after the problem sets are due, no ex
tensions will be possible. 

Part I of each problem set will consist of problems which are either rather routine or for 
which solutions are available in the back of the book, or in 18.03 Notes and Exercises. 

Part II contains more challenging and novel problems. They will be graded with care (Com
plain if they are not!) and contribute the bulk of the Homework grade. They will help you 
develop an understanding of the material. 

Problems in both parts are keyed closely to the lectures, and numbered to match them. Try 
the problems as soon as you can after the indicated lecture. Most problem sets correspond 
to four lectures, through the Monday or Wednesday before the set is due. Each problem set 
is graded out of 100 points. Each day counts 24 points. The grader has 4 points to give or 
withhold based on neatness and clarity of the answers. (Problem sets 6 and 7 relate to only 
three lectures, and each day in them counts 32 points.) 

I. First-order differential equations 

R1 T 2 Feb Natural growth models and separable equations: EP 1.1, 1.4. 
L1 W 3 Feb Direction fields, existence and uniqueness of solutions: 

EP 1.2, 1.3; Notes G.1; SN 1. 
R2 Th 4 Feb Isoclines, separatrix, extrema of solutions: Notes G.1, D. 
L2 F 5 Feb Numerical methods: EP 6.1, 6.2; Notes G.2. 
L3 M 8 Feb Linear equations: models: EP 1.5; SN 2. 
R3 T 9 Feb Mixing problems, half-life. 
L4 W 10 Feb Solution of linear equations, integrating factors: EP 1.5; SN 3. 

Part I. 

0. (T 2 Feb) [Natural growth, separable equations] Notes 1A-5c; EP 1.1: 32, 33, 35; EP 
1.4: 39, 66; EP 1.5: 1, 9, 20. 

1. (W 3 Feb) [Direction fields, isoclines] Notes 1C-1abe. 

2. (F 5 Feb) [Euler’s method] Notes 1C-4. 

3. (M 8 Feb) [Linear models] EP 1.5: 33, 45. (In both, be sure to write out the differential 
equation.) 



� 

Part II. 

0. (T 2 Feb) [Natural growth, separable equations] In recitation a population model was 
studied in which the natural growth rate of the population of oryx was a constant k > 0, so 
that for small time intervals Δt the population change x(t +Δt) − x(t) is well approximated 
by kx(t)Δt. (You also studied the effect of hunting them, but in this problem we will leave 
that aside.) Measure time in years and the population in kilo-oryx (ko). 

A mysterious virus infects the oryxes of the Tana River area in Kenya, which causes the 
growth rate to decrease as time goes on according to the formula k(t) = k0/(a+ t)2 for t ≥ 0, 
where a and k0 are certain positive constants. 

(a) What are the units of the constant a in “a + t,” and of the constant k0? 

(b) Write down the differential equation modeling this situation. 

(c) Write down the general solution to your differential equation. Don’t restrict yourself to 
the values of t and of x that are relevant to the oryx problem; take care of all values of these 

dx 
variables. Points to be careful about: use absolute values in 

x 
= ln |x| + c correctly, and 

don’t forget about any “lost” solutions. 

(d) Now suppose that at t = 0 there is a positive population x0 of oryx. Does the progressive 
decline in growth rate cause the population stabilize for large time, or does it grow without 
bound? If it does stabilize, what is the limiting population as t →∞? 

1. (W 3 Feb) [Direction fields, isoclines] In this problem you will study solutions of the 
differential equation 

dy 2 

dx 
= y − x . 

Solutions of this equation do not admit expressions in terms of the standard functions of 
calculus, but we can study them anyway using the direction field. 

(a) Draw a large pair of axes and mark off units from −4 to +4 on both. Sketch the direction 
field given by our equation. Do this by first sketching the isoclines for slopes m = −1, m = 0, 
m = 1, and m = 2. On this same graph, sketch, as best you can, a couple of solutions, using 
just the information given by these four isoclines. 

Having done this, you will continue to investigate this equation using one of the Mathlets. So 
invoke http://math.mit.edu/mathlets/mathlets in a web browser and select Isoclines 
from the menu. (To run the applet from this window, click the little black box with a white 
triangle inside.) Play around with this applet for a little while. The Mathlets have many 
features in common, and once you get used to one it will be quicker to learn how to operate 
the next one. Clicking on “Help” pops up a window with a brief description of the applet’s 
functionalities. 

Select from the pull-down menu our differential equation y� = y2 − x. Move the m slider to 
m = −2 and release it; the m = −2 isocline is drawn. Do the same for m = 0, m = 1, and 
m = 2. Compare with your sketches. Then depress the mousekey over the graphing window 
and drag it around; you see a variety of solutions. How do they compare with what you 
drew earlier? 

(b) A separatrix is a curve such that above it solutions behave (as x increases) in one 
way, while below it solutions behave (as x increases) in quite a different way. There is a 
separatrix for this equation such that solutions above it grow without bound (as x increases) 

http://math.mit.edu/mathlets/mathlets


while solutions below it eventually decrease (as x increases). Use the applet to find its graph, 
and submit a sketch of your result. 

(c) Suppose y(x) is a solution to this differential equation whose graph is tangent to the 
m = −1 isocline: it touches the m = −1 isocline at a point (a, b), and the two curves have 
the same slope at that point. Find this point on the applet, and then calculuate the values 
of a and b. 

(d) Now suppose that y(x) is a solution to the equation for which y(a) < b, where (a, b) 
is the point you found in (c). What happens to it as x → ∞? More specifically, give an 
explicit function f(x) whose graph is asymptotic to the graph of the function y(x). For large 
x, is y(x) > f(x), y(x) < f(x), or does the answer depend on the value of y(a)? 
The following observations will be useful in justifying your claims. Please explain as clearly 
as you can why each is true. 
(i) The graph of y(x) can’t cross the m = −1 isocline at a point (x, y) with x > a. 
(ii) If the graph of y(x) is below the m = 1 isocline for x = a, it will eventually (as x grows) 
cross the m = 1 isocline. 
(iii) The graph of y(x) must eventually cross the nullcline. 

(e) Suppose a solution y(x) has a critical point at (c, d)—that is, y�(c) = 0 and y(c) = d. 
What can you say about the relationship between c and d? The applet can be very helpful 
here, but verify your answer. 

(f) It appears from the applet that all critical points are local maxima. Is that true? 

2. (F 5 Feb) [Euler’s method] (a) Write y for the solution to y� = 2x with y(0) = 0. What 
is y(1)? What is the Euler approximation for y(1), using 2 equal steps? 3 equal steps? What 
about n steps, where n can now be any natural number? (It will be useful to know that 
1 + 2 + + (n − 1) = n(n − 1)/2.) As n → ∞, these approximations should converge to · · · 
y(1). Do they? 

(b) In the text and in class it was claimed that for small h, Euler’s method for stepsize h has 
an error which is at most proportional to h. The n-step approximation for y(1) has h = 1/n. 
What is the exact value of the difference between y(1) and the n-step Euler approximation? 
Does this conform to the prediction? 

3. (M 8 Feb) [Linear models] Scrooge McDuck wants to set up a trust fund for his nephew 
Don. He has fool-proof investments which make a constant interest rate of I, measured in 
units of (years)−1 (so I = 0.05 means 5% per year), and he proposes to dole out the money 
to his profligate nephew at a constant rate q dollars per year. 

(a) Model this process by a differential equation. (Use the symbols I and q, rather than 
specific values for them.) Explain your steps. 

(b) Then find the general solution to this differential equation. 

(c) Now take I = 0.05. If Uncle Scrooge wanted to fund the trust so as to provide his 
nephew with $1000 per month in perpetuity, while maintaining a constant balance in the 
fund, how much should he invest? 

(d) But in fact Uncle Scrooge wants to teach his nephew the virtues of self-reliance, and 
so plans on having the trust fund run entirely out of money in exactly twenty years. If he 
wants to give his nephew $1000 per month, how much should he fund the trust with at the 
outset? Give the answer to the nearest penny (as Scrooge would insist on). 
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