6. Power Series

6A. Power Series Operations

6A-1. Find the radius of convergence for each of the following:
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by using operations on series (substitution, addition and multiplication, term-by-term dif-
ferentiation and integration), find series for each of the following
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a) vy is a solution to the ODE y” —y =0 b) y=sinhz = (e” —e™?).

6A-4. Find the sum of the following power series (using the operations in 6A-2 as a help):
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6B. First-order ODE’s

6B-1. For the nonlinear IVP 3/ =z +%2%, y(0) =1, find the first four nonzero terms
of a series solution y(z) two ways:

a) by setting y = Y ;" anz™ and finding in order ag, a1, as, . . ., using the initial condition
and substituting the series into the ODE;
b) by differentiating the ODE repeatedly to obtain y(0),y’(0),y”(0),..., and then

using Taylor’s formula.

6B-2. Solve the following linear IVP by assuming a series solution
y = Z a/nxn I
0

substituting it into the ODE and determining the a,, recursively by the method of undeter-
mined coefficients. Then sum the series to obtain an answer in closed form, if possible (the
techniques of 6A-2,4 will help):

a) Yy =x+y, y(0)=0  b) y=-ay, y0)=1 ¢) I-=z)y'—y=0, y(0)=1
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6C. Solving Second-order ODE’s

o0
6C-1. Express each of the following as a power series of the form Z b,z™ . Indicate the

N
value of N, and express b,, in terms of a,,.
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6C-2. Find two independent power series solutions Y a,2™ to y” —4y =0, by obtaining
a recursion formula for the a,,.

6C-3. For the ODE y" + 2zy’ + 2y = 0,
a) find two independent series solutions y; and ys;
b) determine their radius of convergence;
c¢) express the solution satisfying y(0) = 1, y’(0) = —1 in terms of y; and ys;

d) express the series in terms of elementary functions (i.e., sum the series to an elementary
function).

(One of the two series is easily recognizable; the other can be gotten using the operations
on series, or by using the known solution and the method of reduction of order—see Exercises
2B.)

6C-4. Hermite’s equation is  y” — 2xy’ + ky = 0.  Show that if k is a positive even
integer 2m, then one of the power series solutions is a polynomial of degree m.

6C-5. Find two independent series solutions in powers of x to the Airy equation: y” = zy.

Determine their radius of convergence. For each solution, give the first three non-zero
terms and the general term.

6C-6. Find two independent power series solutions »_ a,z™ to
(1 —2%)y"” — 22y’ +6y=0.

Determine their radius of convergence R. To what extent is R predictable from the original
ODE?

6C-7. If the recurrence relation for the a, has three terms instead of just two, it is
more difficult to find a formula for the general term of the corresponding series. Give
the recurrence relation and the first three nonzero terms of two independent power series
solutions to

y'+2y +(x-1)y=0.
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