
1. The Kermack-McKendrick equation 

The Kermack-McKendrick Equation is an important and simple model 
for a virus epidemic, which either kills its victims or renders them im
mune, first considered by W. O. Kermack and A. G. McKendrick in 
1927. 

Parameter names: 

•	 s is the fraction of the population which is susceptible to infec
tion. 

•	 c is the fraction of the population which is contagious. 
•	 r is the fraction of the population which is removed, either by 

recovery with immunity or by death. 
•	 � is the transmission rate: the proportionality constant medi

ating transmission. 
•	 � is the rate of decay of contagiousness: an individual has a 

e−�� chance to still be contagious a time α after infection; or, 
alternatively, an individual’s level of contagiousness declines ac
cording to this exponential decay. 

We assume s + c + r = 1, so we are supposing that the only way an 
individual can fail to be susceptible to the desease is either to have it 
or to have had it. We are thus considering only the initially susceptible 
population. 

The three variables are often written S, I (for “infected”), and R, 
and this model is often called the SIR model. 

Does such an epidemic eventually infect the entire population, or 
is it somehow self-limiting? Will it take off or sputter out? Can we 
relate various aspects of the course of this epidemic, such as the peak 
of the contagious proportion of the population and the proportion of 
the population which ultimately contracts the disease? 

The meaning of � is that ṡ = −�sc. 

(a) Explain this: Why should ṡ be proportional to both s and c? 
Why should the proportionality constant be negative? 

The meaning of � is that ċ = �sc − �c. 

(b) Explain this: What are the two processes yielding the two terms 
in ċ? Why should one of them be −ṡ? 

Together we have a “system” of equations: two functions of time, 
and an expression of the derivative of each in terms of the values of 
both. This is a subject we will take up in earnest at the end of the 
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course, but we can already get pretty far in analyzing it. The first step 
is the physics-inspired idea (as in EP §1.8) of eliminating time: 

(c) Explain why these two equations imply 

dc 
= �s−1 − 1 

ds 
for some constant �. What is � in terms of � and �? From the expres
sion of � in terms of the decay rate of infection �, and the transmission 
rate �, what would you expect small � to mean about the equation? 
What would large � mean? 

(d) Solve this equation; you should get 

c = � ln |s| − s + a 

where a is the constant of integration. When c is very small, that is, 
at the start of the epidemic, s should be near 1. This leads to a = 1. 
We choose to write the result as 

(1) c = � ln |s| − (s − 1). 

Once we know c in terms of s, we can substitute this back into the 
original equation for ṡ to obtain 

(2) ṡ = �s(s − 1 − � ln |s|). 

This is a subtle variant of the logistic equation, with the advantage 
that one doesn’t have to know the limiting population in advance. 

This is an autonomous equation, and we will study its critical points. 
The effect of this equation depends upon the value of the parameter �. 
(From now on we’ll assume s > 0, as it is in the application at hand; 
in fact, in our application 0 < s < 1.) First, draw the graphs of s − 1 
and of ln s. They are tangent at (1, 0). Multiplying ln s by the positive 
constant � stretches this graph vertically by a factor of � > 0. It still 
meets the graph of s − 1 at s = 1, but if � ↑ 1 the graphs meet one = 
additional time, at s = scrit. If � > 1, scrit > 1; if � < 1, 0 < scrit < 1. 

The equation scrit − 1 = � ln |scrit| can’t be solved analytically for 
scrit in terms of �, but we can find � in terms of scrit (which we will 
restrict to be positive!): 

scrit − 1 
ln scrit 

It can be plugged into Matlab. Let’s do that. 

Matlab contains a powerful and accurate ODE solver, called ode45. 
If you fire up Matlab and type help ode45 you’ll get a screenful of 
command summaries, from which the following is extracted. 
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In order to use ode45 you will have to create and store a file con
taining a description of the function F (x, t) occuring in the ODE ẋ = 
F (x, t). Here’s the file: 

function sdot=sir(t,s,flag,beta,gamma); 

sdot = beta*s*(s-1-gamma*log(s)); 

(Remember, the semicolons suppress the screen printout of the an
swers.) 

Now let’s pick some values. Reasonable values are � = .5, � = 1. 
Take as initial value s = .999999 (so only one in a million is contagious). 
We might watch the evolution of the disease over 75 time units. All 
this is accomplished by typing: 

[t,s]=ode45(’sir’,[0,75],.999999,[],1,.5) 

When you hit ∞enter→, a list of pairs of numbers should stream across 
the screen. Those are values of t followed by corresponding computed 
values of s. This command has defined two lists of numbers, t and s, 
of the same length. 

We want to plot s against t. This is easy: type 

plot(t,s) 

A window appears with a graph on it. The graph is somewhat decep
tive; it probably doesn’t extend all the way down to s = 0. To make it 
extend to zero, declare explicitly what you want your axis dimensions 
to be: 

axes([0,75,0,1]) 

To line things up with the eye a little better, add a grid, using grid. 
Notice how long it takes for the susceptable population to get enough 
below 1.0 to be visible on this plot! 

Finally, let’s add to this the graph of c, the contagious population. 
First compute it using (d) above: 

c=(.5)*log(s)-s+1 

Again a list of numbers will stream across the screen. To plot it 
against t, on the same graph, type hold on (which makes future graph
ing commands plot on the same window instead of a new one) and then 
plot(t,c). Again, note how long it takes for the contagious population 
to become noticeable! 

(e) From the graph, estimate the time at which the contagious pop
ulation is a maximum, and what that maximum is. Also, estimate the 
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fraction of the population which is left susceptible as t � �. Print out 
and hand in the plot you made (by selecting File/Print on Figure 
No. 1). 

Further comments: 

The significance of (1) depends upon the value of �. The tangent 
line to c = ln |x| at (1, 0) is given by c = s − 1 and lies above the curve. 
If � > 1, � ln |s| passes through the same point but more steeply, and 
intersects c = s − 1 at s = 1 and again at a point s > 1, which is not 
meaningful in our application. If � > 1, c < 0 when 0 < s < 1. What 
happens here is: nothing, the epidemic never gets started, since the 
rate of decay of contagiousness is too large relative to the transmission 
rate of the disease. On the other hand if � < 1, the epidemic flares 
and dies off, with little effect if � is near 1 and with more devastating 
effect if � is small. Small � reflects a slow decay rate of contagiousness 
relative to the transmission rate of the desease. The specific values of 
� and � determine the speed with which the epidemic spreads, but its 
trajectory in the (s, c) plane depends only on the quotient �. 

The limiting value of s, as t � �, can be found by setting c = 0 in 
(1). It satisfies the equation 

s
� − 1 

(3) � = 
ln s

� 

This can’t be solved for s
� in elementary functions, but it’s easy to 

use Matlab to compute � in terms of s
� and then plot the inverse 

function. One finds that if � < .2 then s
� < .01: more than 99% of 

the population is infected. As � � 1, s
� � 1: the epidemic affects a 

very small portion of the population if � is near 1. In any case, some 
fraction of the population will always survive. 

The differential equation ċ = �sc − �c tells us where to find the 
center of the epidemic: the maximum of c occurs when s = �, and 
thus, by (1), is given by 

(4) cmax = 1 − � + � ln �. 

The invariant � is thus available to doctors monitoring the disease, 
assuming they can recognize contagious individuals: they have to watch 
for the number of contagious individuals to peak. Knowing this peak, 
they can use (4) to find � and then (3) to find s

�
—that is, to predict the 

eventual fraction of the population which will be infected and rendered 
immune or dead. (Since c � 0, this is 1 − s

�
.) 
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