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22. The pole diagram and the Laplace transform 

When working with the Laplace transform, it is best to think of the 
variable s in F (s) as ranging over the complex numbers. In the first 
section below we will discuss a way of visualizing at least some aspects 
of such a function—via the “pole diagram.” Next we’ll describe what 
the pole diagram of F (s) tells us—and what it does not tell us—about 
the original function f(t). In the third section we discuss the properties 
of the integral defining the Laplace transform, allowing s to be complex. 
The last section describes the Laplace transform of a periodic function 
of t, and its pole diagram, linking the Laplace transform to Fourier 
series. 

22.1. Poles and the pole diagram. The real power of the Laplace 
transform is not so much as an algorithm for explicitly computing lin
ear time-invariant system responses as in gaining insight into these 
responses without explicitly computing them. (A further feature of the 
Laplace transform is that it allows one to analyze systems which are 
not modeled by ODEs at all, by exactly the same methodology.) To 
achieve this insight we will have to regard the transform variable s as 
complex, and the transform function F (s) as a complex-valued function 
of a complex variable. 

A simple example is F (s) = 1/(s − z), for a fixed complex number z. 
We can get some insight into a complex-valued function of a complex 
variable, such as 1/(s−z), by thinking about its absolute value: |1/(s− 
z)| = 1/|s−z|. This is now a real-valued function on the complex plane, 
and its graph is a surface lying over the plane, whose height over a point 
s is given by the value |1/(s − z)|. This is a tent-like surface lying over 
the complex plane, with elevation given by the reciprocal of the distance 
to z. It sweeps up to infinity like a hyperbola as s approaches z; it’s as 
if it is being held up at s = z by a tent-pole, and perhaps this is why 
we say that 1/(s − z) “has a pole at s = z.” Generally, a function of 
complex numbers has a “pole” at s = z when it becomes infinite there. 

F (s) = 1/(s−z) is an example of a rational function: a quotient of 
one polynomial by another. The Laplace transforms of many important 
functions are rational functions, and we will start by discussing rational 
functions. 

A product of two rational functions is again a rational function. 
Because you can use a common denominator, a sum of two rational 
functions is also a rational function. The reciprocal of any rational 
function except the zero function is again a rational function—exchange 
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numerator and denominator. In these algebraic respects, the collection 
of rational functions behaves like the set of rational numbers. Also like 
rational numbers, you can simplify the fraction by cancelling terms 
in numerator and denominator, till the two don’t have any common 
factors. (In the case of rational numbers, you do have to allow ±1 as a 
common factor! In the case of rational functions, you do have to allow 
nonzero contants as common factors.) 

When written in reduced form, the magnitude of F (s) blows up to 
as s approaches a root of the denominator. The complex roots of ↓

the denominator are the poles of F (s). 

In case the denominator doesn’t have any repeated roots, partial 
fractions let you write F (s) as 

w1 wn
(1) F (s) = p(s) + + + 

s − z1 
· · · 

s − zn 

where p(s) is a polynomial, z1, . . . zn are complex constants, and w1, . . . , wn 

are nonzero complex constants. 

For example, the calculation done in Section 20.5 shows that the 
poles of F (s) = 1/(s3 +s2 −2) are at s = 1, s = −1+ i, and s = −1− i. 

The pole diagram of a complex function F (s) is just the complex 
plane with the poles of F (s) marked on it. Figure 15 shows the pole 
diagram of the function F (s) = 1/(s3 + s2 − 2). 

−1+i


1


−1−i


Figure 15. Pole diagram for 1/(s3 + s2 − 2) 

The constant wk appearing in (1) is the residue of the pole at s = zk. 
The calculation in 20.5 shows that the residue at s = 1 is 1/5, the 
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residue at s = −1 + 2i is (−1 + 2i)/10, and the residue at s = −1 − 2i 
is (−1 − 2i)/10. 

Laplace transforms are not always rational functions. For example, 
the exponential function occurs: F (s) = ews, for w a complex constant. 
The exponential function has no poles: it takes on well defined complex 
values for any complex input s. 

We can form more elaborate complex functions by taking products— 
e−s/(s3 + s2 − 2), for example. The numerator doesn’t contribute any 
poles. Nor does it kill any poles—it is never zero, so it doesn’t cancel 
any of the roots of the denominator. The pole diagram of this function 
is the same as the pole diagram of 1/(s3 + s2 − 2). 

A general complex function of the type that occurs as a Laplace 
transform (the mathematical term is meromorphic) does not have a 
partial fraction decomposition, so we can’t use (1) to locate the poles. 
Poles occur where the value of the function blows up. This can be 
expressed as follows. Define the residue of F (s) at s = z as 

(2) ress=zF (s) = lim (s − z)F (s). 
s�z 

If F (s) does not have a pole at s = z, then 

ress=zF (s) = 0 . 

A complex function is by no means completely specified by its pole 
diagram. Nevertheless, the pole diagram of F (s) carries a lot of infor
mation about F (s), and if F (s) is the Laplace transform of f(t), it tells 
you a lot of information of a specific type about f(t). 

22.2. The pole diagram of the Laplace transform. 

Summary: The pole diagram of F (s) tells us a lot about long-term 
behavior of f(t). It tells us nothing about the near-term behavior. 

This is best seen by examples. 

Suppose we have just one pole, at s = 1. Among the functions with 
this pole diagram we have: 

F (s) = 
c

, G(s) = 
ce−as 

, H(s) = 
c 

+ b 
1 − e−as 

ss − 1 s − 1 s − 1 

where c = 0. (Note that 1 ∈ − e−as becomes zero when s = 0, canceling 
the zero in the denominator of the second term in H(s).) To be Laplace 
transforms of real functions we must also assume them all to be real, 
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and a ∗ 0. Then these are the Laplace transforms of 

f(s) = ce t , g(t) = 
cet−a for t > a, 

, h(t) = 
cet for t > a, 

0 for t < a cet + b for t < a 

All these functions grow like a multiple of et when t is large. You 
can even say which multiple: it is given by the residue at s = 1. (Note 
that g(t) = (ce−a)et, and the residue of G(s) at s = 1 is ce−a.) But 
their behavior when t < a is all over the map. In fact, the function 
can be anything for t < a, for any fixed a; as long as it settles down to 
something close to cet for t large, its Laplace transform will have just 
one pole, at s = 1, with residue c. 

Now suppose we have two poles, say at s = a + bi and s = a − bi. 
Two functions with this pole diagram are 

F (s) = 
c(s − a) 

, G(s) = 
cb 

. 
(s − a)2 + b2 (s − a)2 + b2 

and we can modify these as above to find others. These are the Laplace 
transform of 

f(t) = ce at cos(bt) , g(t) = ce at sin(bt). 

This reveals that it is the real part of the pole that determines the 
long term growth of absolute value; if the function oscillates, this means 
growth of maxima and minima. The imaginary part of the pole deter
mines the circular frequency of oscillation for large t. We can’t pick out 
the phase from the pole diagram alone (but the residues do determine 
the phase). And we can’t promise that it will be exactly sinusoidal 
times exponential, but it will resemble this. And again, the pole dia
gram of F (s) says nothing about f(t) for small t. 

Now let’s combine several of these, to get a function with several 
poles. Suppose F (s) has poles at s = 1, s = −1 + i, and s = −1 − i, 
for example. We should expect that f(t) has a term which grows 
like et (from the pole at s = 1), and another term which behaves 
like e−t cos t (up to constants and phase shifts). When t is large, the 
damped oscillation becomes hard to detect as the other term grows 
exponentially. 

We learn that the rightmost poles dominate—the ones with largest 
real part have the dominant influence on the long-term behavior of f(t). 

The most important consequence relates to the question of stability: 

If all the poles of F (s) have negative real part then f(t) decays 
exponentially to zero as t � ↓. 
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If some pole has positive real part, then f(t) becomes arbitrarily | |
large for large t. 

If there are poles on the imaginary axis, and no poles to the right, 
then the function f(t) may grow (e.g. f(t) = t has F (s) = 1/s2, which 
has a pole at s = 0), but only “sub-exponentially”: for any a > 0 there 
is a constant c such that |f(t)| < ceat for all t > 0. 

Comment on reality. We have happily taken the Laplace transform 
of complex valued functions of t: eit 

� 1/(s − i), for example. If f(t) 
is real, however, then F (s) enjoys a symmetry with respect to complex 
conjugation: 

(3) If f(t) is real-valued then F (s) = F (s). 

The pole diagram of a function F (s) such that F (s) = F (s) is sym

metric about the real axis: non-real poles occur in complex conjugate 
pairs. In particular, the pole diagram of the Laplace transform of a 
real function is symmetric across the real axis. 

22.3. The Laplace transform integral. In the integral defining the 
Laplace transform, we really should let s be complex. We are thus 
integrating a complex-valued function of a real parameter t, e−stf(t), 
and this is done by integrating the real and imaginary parts separately. 

� T 

It is an improper integral, computed as the limit of e −stf(t) dt 
0 

as T (Actually, we will see in Section 21 that it’s better to � ↓. 
think of the lower limit as “improper” as well, in the sense that we 
form the integral with lower limit a < 0 and then let a � 0.) The 
textbook assumption that f(t) is of “exponential order” is designed 
so that if s has large enough real part, the term e−st will be so small 
(at least for large t) that the product e−stf(t) has an integral which 
converges as T � ↓. In terms of the pole diagram, we may say that 
the integral converges when the real part of s is bigger than the real part 
of any pole in the resulting transform function F (s). The exponential 
order assumption is designed to guarantee that we won’t get poles with 
arbitrarily large real part. 

The region to the right of the rightmost pole is called the region of 
convergence. Engineers abbreviate this and call it the “ROC.” 

Once the integral has been computed, the expression in terms of s 
will have meaning for all complex numbers s (though it may have a 
pole at some). 
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For example, let’s consider the time-function f(t) = 1, t > 0. Then: 
�

�T↑ 

F (s) = e −stdt = lim 
e−st 

�

� =
1 � 

lim e −sT − 1 
� 

. 
0 T �↑ −s 0 −s T �↑ 

Since �e−sT 
� = e−aT if s = a + bi, the limit is 0 if a > 0 and doesn’t 

exist if a < 0. If a = 0, e−sT = cos(bT )− i sin(bT ), which does not have 
a limit as T � ↓ unless b = 0 (which case is not relevant to us since 
we certainly must have s = 0). Thus the improper integral converges ∈
exactly when Re (s) > 0, and gives F (s) = 1/s. Despite the fact that 
the integral definitely diverges for Re (s) 0, the expression 1/s makes →
sense for all s ≥ C (except for s = 0), and it’s better to think of the 
function F (s) as defined everywhere in this way. This process is called 
analytic continuation. 

22.4. Laplace transform and Fourier series. We now have two 
ways to study periodic functions f(t). First, we can form the Laplace 
transform F (s) of f(t) (regarded as defined only for t > 0). Since 
f(t) is periodic, the poles of F (s) lie entirely along the imaginary axis, 
and the locations of these poles reveal sinusoidal constituents in f(t), 
in some sense. On the other hand, f(t) has a Fourier series, which 
explicitly expresses it as a sum of sinusoidal components. What is the 
relation between these two perspectives? 

For example, the standard square wave sq(t) of period 2ν, with value 
1 for 0 < t < ν and −1 for −ν < t < 0, restricted to t > 0, can be 
written as 

sq(t) = 2(u(t) − u(t − ν) + u(t − 2ν) − u(t − 3ν) + ) − u(t)· · · 
By the t-shift formula and u(t) � 1/s, 

� ⎨ 
1 � 

−αs −2αs 
� 1 2 

Sq(s) = 
s 

2(1 − e + e − · · · ) − 1 = 
s 1 + e−αs 

− 1 

The denominator vanishes when e−αs = −1, and this happens exactly 
when s = ki where k is an odd integer. So the poles of Sq(s) are at 0 
and the points ki where k runs through odd integers. s = 0 does not 

2 
occur as a pole, because the expression 

1 + e−αs 
− 1 vanishes when 

s = 0 and cancels the 1/s. 

On the other hand, the Fourier series for the square wave is 
� ⎨ 

4 sin(3t) sin(5t)
sq(t) = sin(t) + + + . 

ν 3 5 
· · · 
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If we express this as a series of complex exponentials, following 16.5, 
we find that ck is nonzero for k an odd integer, positive or negative. 
There must be a relation! 

It is easy to see the connection in general, especially if we use the 
complex form of the Fourier series, 

↑ 

f(t) = cne int . 
n=−↑ 

Simply apply the Laplace transform to this expression, using eint 
� 

1 
: 

s − in 
↑ 

� cn
F (s) = 

s − in 
n=−↑ 

The only possible poles are at the complex numbers s = in, and the 
residue at in is cn. 

If f(t) is periodic of period 2ν, the poles of F (s) occur only 
at points of the form nνi for n an integer, and the residue at 
s = nνi is precisely the complex Fourier coefficients cn of f(t). 
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