
�� � � 

� � 

34 

7. Beats 

7.1. What beats are. Musicians tune their instruments using “beats.” 
Beats occur when two very nearby pitches are sounded simultaneously. 
We’ll make a mathematical study of this effect, using complex numbers. 

We will study the sum of two sinusoidal functions. We might as 
well take one of them to be a sin(�0t), and adjust the phase of the 
other accordingly. So the other can be written as b sin((1 + θ)�0t − π): 
amplitude b, circular frequency written in terms of the frequency of the 
first sinusoid as (1 + θ)�0, and phase lag π. 

We will take π = 0 for the moment, and add it back in later. So we 
are studying 

x = a sin(�0t) + b sin((1 + θ)�0t). 

We think of θ as a small number, so the two frequencies are relatively 
close to each other. 

One case admits a simple discussion, namely when the two ampli
tudes are equal: a = b. Then the trig identity 

sin(∂ + λ) + sin(∂ − λ) = 2 cos(λ) sin(∂) 

with ∂ = (1 + θ/2)�0t and λ = θ�0t/2 gives us the equation 
� ⎨ 

θ�0t θ 
x = a sin(�0t) + a sin((1 + θ)�0t) = 2a cos sin 1 + �0t . 

2 2 

(The trig identity is easy to prove using complex numbers: Compute 

e i(�+ω) + e i(�−ω) = (e iω + e −iω )e i� = 2 cos(λ)e i� 

using (6.5); then take imaginary parts.) 

We might as well take a > 0. When θ is small, the period of the cosine 
factor is much longer than the period of the sine factor. This lets us 
think of the product as a wave of circular frequency (1 + θ/2)�0—that 
is, the average of the circular frequences of the two constituent waves— 
giving the audible tone, whose amplitude is modulated by multiplying 
it by 

� � ⎨� 
� θ�0t � 

(1) g(t) = 2a cos . 
� 2 � 

The function g(t) the “envelope” of x. The function x(t) oscillates 
rapidly between −g(t) and +g(t). 



� 

35 

To study the more general case, in which a and b differ, we will study 
the function made of complex exponentials, 

i�0t + bei(1+θ)�0 t z = ae . 

The original function x is the imaginary part of z. 

We can factor out ei�0t: 

i�0t(a + beiθ�0t).z = e 

This gives us a handle on the magnitude of z, since the magnitude of 
the first factor is 1. Using the formula w 2 = ww̄ on the second factor, | |
we get 

|z| 2 = a 2 + b2 + 2ab cos(θ�0t). 

The imaginary part of a complex number z lies between −|z| and 
+|z|, so x = Im z oscillates between −|z| and +|z|. The function 
g(t) = z(t) , i.e. | |

(2) g(t) = a2 + b2 + 2ab cos(θ�0t), 

thus serves as an “envelope,” giving the values of the peaks of the 
oscillations exhibited by x(t). 

This envelope shows the “beats” effect. It reaches maxima when 
cos(θ�0t) does, i.e. at the times t = 2kν/θ�0 for whole numbers k. A 
single beat lasts from one maximum to the next: the period of the beat 
is 

2ν P0
Pb = = 

θ�0 θ 

where P0 = 2ν/�0 is the period of sin(�0t). The maximum amplitude 
is then a + b, i.e. the sum of the amplitudes of the two constituent 
waves; this occurs when their phases are lined up so they reinforce. 
The minimum amplitude occurs when the cosine takes on the value 
−1, i.e. when t = (2k + 1)ν/θ�0 for whole numbers k, and is |a − b|. 
This is when the two waves are perfectly out of sync, and experience 
destructive interference. 

Figure 4 is a plot of beats with a = 1, b = .5, �0 = 1, θ = .1, π = 0, 
showing also the envelope. 

Now let’s allow π to be nonzero. The effect on the work done above 
is to replace θ�0t by θ�0t − π in the formulas (2) for the envelope g(t). 
Thus the beat gets shifted by the same phase as the second signal. 
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Figure 4. Beats, with envelope 

If b = 1 it is not very meaningful to compute the pitch, i.e. the∈
frequency of the wave being modulated by the envelope. It lies some
where between the two initial frequencies, and it varies periodically 
with period Pb. 

7.2. What beats are not. Many differential equations textbooks 
present beats as a system response when a harmonic oscillator is driven 
by a signal whose frequency is close to the natural frequency of the oscil
lator. This is true as a piece of mathematics, but it is almost never the 
way beats occur in nature. The reason is that if there is any damping 
in the system, the “beats” die out very quickly to a steady sinusoidal 
solution, and it is that solution which is observed. 

Explicitly, the Exponential Response Formula (Section 12, equation 
3) shows that the equation 

ẍ + �2 x = cos(�t)n

has the periodic solution 

cos(�t) 
xp = 

�2 − �n 
2 
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unless � = �n. If � and �n are close, the amplitude of the periodic 
solution is large; this is “near resonance.” Adding a little damping 
won’t change that solution very much, but it will convert homogeneous 
solutions from sinusoids to damped sinusoids, i.e. transients, and rather 
quickly any solution becomes indistinguishable from xp. 

So beats do not occur this way in engineering situations. But they 
do occur. They are used for example in reconstructing an amplitude-
modulated signal from a frequency-modulated (“FM”) radio signal. 
The radio receiver produces a signal at a fixed frequency ω, and adds 
it to the received signal, whose frequency differs slightly from ω. The 
result is a beat, and the beat frequency is the audible frequency. 

Differential equations textbooks also always arrange initial condi
tions in a very artificial way, so that the solution is a sum of the pe
riodic solution xp and a homogeneous solution xh having exactly the 
same amplitude as xp. They do this by imposing the initial condition 
x(0) = ẋ(0) = 0. This artifice puts them into the simple situation 
a = b mentioned above. For the general case one has to proceed as we 
did, using complex exponentials. 
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