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1 Introduction 

Consider an initial value problem 

y�(x) = f(x, y(x)), y(0) = y0 (1) 

To approximate the value y(t) many numerical algorithms such Runge-Kutta methods make 
computations for a set of points chosen on the interval [0, t]. Usually the chosen points form 
an arithmetic series with stepsize h. As h decreases, the algorithms yield more precise results. 
However, in practice it is often needed to find the approximation of y(t) with a given precision 
and then the problem of choosing an adequate value for h arises. A näıve approach when h 
is divided by 2 if the iteration of the algorithm produces an error larger than allowed usually 
yields satisfactory results. With this approach, all information from the previous iteration 
is discarded. It is possible to use that information to predict the value of h which produces 
an error of an allowed magnitude. Using an adaptive iteration for h it is possible to make 
the use of the algorithm more computationally effective. For the sake of simplicity, we will 
show how to apply the adaptive stepsize technique to Euler integration, even though similar 
methods exist for Runge-Kutta and other numerical algorithms. We will start with deriving 
an adaptive recurrence relation for h from estimating the error Euler integration produces, 
and them compare the computational efficiency of the adaptive and näıve approaches. 

2 Standard Euler Integration 

Consider an initial value problem of the same form as (1). Suppose we are interested in 
approximating y at a point x = t. For this purpose, split the interval [0, t] into n intervals of 
length h = 

n
t . Due to the intermediate value theorem for every x we have 

y(x + h) = y(x) + hf(x, y(x)) + ch2 (2) 

where for some ξ ∈ (x, x + h) we have 

f �(ξ, y(ξ)) 
c = (3) 
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This observation leads to Euler integration, a simple numerical method of solving ordinary 
differential equations. Let tk = kh for k = 0, 1, . . . , n. Then define a recursive sequence as 
follows 

yk+1 = yk + hf(tk, yk), k ≥ 0 (4) 

Due to (2) the error introduced on each step of (4) is ch2 where c is proportional to y��(ξ). In 
practice, we most often need to approximate the value of y(t) with a given precision. If we use 
the standard Euler integration method with a fixed stepsize h, we cannot deduce anything 
about the error factor c. Therefore, we need to iterate the algorithm for larger values of n 
until the resulting yn approximates y(t) with the desired precision. In other words we need 
to devise a sequence hi and compute the value of yn 

(i) 
using the relations y0

(i) 
= y0 and 

(i) (i) (i)
yk+1 = yk + hif(tk, yk ) (5) 

(i+1) (i)
for i = 1, 2, . . . until |yni+1 − yni | becomes small enough. If the implementation of the algo
rithm uses fixed-precision representation of real numbers, which is often the case in practice, 
the complexity of each step of (5) is constant. Therefore, the complexity of computing yn 

(i)
(t) 

with an n−step integration is linear in n. Let nmin be the smallest number of steps necessary 
to achieve the desired precision. Then our goal is to reduce the total number of iterations 
of (5) and avoid values of n that are much larger than nmin. A natural way is to double 
the number of steps n on every iteration. In other words, hi is given by a simple recursion 
hi+1 = h

2 
i . This way only log2 nmin iterations of the algorithm are needed and all n that we 

use do not exceed 2n. 

3 Adaptive Stepsize Method 

It is easy to notice that every iteration of the Euler integration algorithm provides much in
formation that the simple approach when n is doubled on every step does not use. Moreover, 
the desired precision level is not used when calculating the stepsize on the next iteration. 
One solution to this problem which allows to optimize the iteration algorithm is to look at 
the error each step produces. We already found that each step of the iteration (5) produces 
an error of ch2 where the rate of change of c is proportional to f ���(ξ). Let us define the error 
of each step 

�
(i) 

= y(t) − y(i) 
(6) k k 

Then we are looking for |�n
(i

i 

)| < � to hold. If we assume that the error factor c in (2) is con
stant, it will enable us to devise a sequence hi that will lead to a more efficient approximation 
of y(t). If c is constant, then the accumulated error when calculating yn 

(i) 
is 

�(i) = nich
2 
i = 

t 
ch2 

i = tchi = ahi (7) ni h i 

where a is a constant. Consider two iterations with stepsizes h1 and h2. Recalling the 
definition of the error of each iteration, we have 

y(t) − yn1 n1 

(1) = �(1) = ah1 (8) 

y(t) − y(2) = �(2) = ah2 (9) n2 n2 
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Subtracting, we have 

y(2) (1) (10) n2 
− yn1 

= a(h1 − h2) 
(2) (1) 

a = 
yn2 − yn1 (11) 
h1 − h2 

Let us find what is the condition for h3 needed for the next iteration to produce an error 
within the desired range. 

h3 y
(2) (1) 

� > |�(3)| = |ah3| = 
|
|h

n

1 

2 

−
− 
h

y

2

n

| 
1 | (12) n3 

h3 > 
(h1 − h2)� 

(13) 
(2) (1)|yn2 − yn1 | 

This leads to a simple adaptive stepsize algorithm determined by the sequence hi which is 
defined as 

hi+2 = q 
(hi − hi+1)� 

(14) 
(i+1) (i)|yni+1 − yni | 

for some coefficient q < 1. 

4 Comparison 

Let us compare the efficiency of Euler integration using the näıve doubling iteration and the 
adaptive stepsize method shown by applying them to the following initial value problem 

y�(x) = 1 − 4x + y(x), y(0) = 1 (15) 

The goal is to approximate the value y(1) with error less than 10−3 . We will use the following 
simple implementation of Euler integration in Common Lisp using 8-byte floating point 
numbers. 

( defun eu l e r ( f tn n y0 ) 
”Approximate y ( tn ) with n−step Euler method” 
( d e c l a r e ( type double − f loat x y0 ) 

( type i n t e g e r n ) ) 
( l et ( ( h (/ tn n ) ) ( y y0 ) ) 

( progn 
( loop f o r i from 0 to (− n 1) 

do ( incf y (∗ h ( funcall f (∗ i h) y ) ) ) ) 
y ) ) ) 

The exact solution of the initial value problem (15) is easy to find to be 

3 x 19 4t y(x) = − + + e (16) 
16 4 16 
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Then y(1) ≈ 64.897. Let us choose the initial stepsize h1 = 0.1 and find the values of yn
(i

i 

) 
for 

the sequence hi defined by hi+1 = 2hi first. 

(1) (10) 
y10 ≈ 34.411 y5120 ≈ 64.796 

(2) (11) 
y20 ≈ 45.588 y10240 ≈ 64.847 

(3) (12) 
y40 ≈ 53.807 y20480 ≈ 64.872 

(4) (13) 
y80 ≈ 58.916 y40960 ≈ 64.885 
(5) (14) 

y160 ≈ 61.786 y81920 ≈ 64.891 
(6) (15) 

y320 ≈ 63.310 y163840 ≈ 64.894 
(7) (16) 

y640 ≈ 64.095 y327680 ≈ 64.896 
(8) (17) 

y1280 ≈ 64.494 y655360 ≈ 64.897 
(9)

y2560 ≈ 64.695 

Therefore, 17 iterations are needed and the cost of computing the approximation is 

10m + 20m + + 655360m = 10(216 − 1)m = 1310710m (17) · · · 

where m is the computational cost of one step of (5) which is constant for our implementation. 
Now let us keep the initial stepsizes h1 = 0.1, h2 = 0.05 but use the adaptive recurrence (14) 
with the coefficient q = 0.9. The first two approximations to y(t) are the same. 

y
(1) ≈ 34.411 y

(2) ≈ 45.588 10 20 

Because the allowed error � = 0.001, we have 

(0.1 − 0.05) × 0.001 
h3 = 0.9

45.588 − 34.411
≈ 4.026 × 10−6 (18) 

| | 

Then n3 = �
h
1 
3 
� = 248378. As expected, the iteration yields error close to the allowed limit. 

(3)
y248378 ≈ 64.896 (19) 

For the next iteration we have 

h4 = 0.9 
h2 − h3 ≈ 2.331 × 10−6 (20) 

|64.896 − 45.588| 

Then n4 = �
h
1 
4 
� = 429086. The fourth iteration yields an approximation with the desired 

precision. 
(4)

y429086 ≈ 64.897 (21) 

Thus, when a simple adaptive stepsize method is used, the number of iterations needed is 
only 4 with the total cost of computation 

10m + 20m + 248378m + 429086m = 677494m (22) 

which is around half of the cost of computing the approximation with doubling the number 
of steps. 
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5 Conclusion 

We have seen how to successfully apply the adaptive stepsize methods to Euler integration 
making it more computationally effective. Similar but more advanced techniques can be 
applied to more efficient numerical methods such as Runge-Kutta to develop adaptive step-
size algorithms such as Runge-Kutta-Fehlberg and Dormand-Prince methods which are used 
in practice. For example, Dormand-Prince method is used in one of the Matlab ordinary 
differential equation solvers. 
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