
MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Numerical Approximations in Differential Equations

The Runge-Kutta Method

by Ernest Ngaruiya

May 15 2007

Abstract

In this paper, I will discuss the Runge-Kutta method of solving simple
linear and linearized non-linear differential equations. I start by stating why
the Runge-Kutta method is ideal for solving simple linear differential equa
tions numerically in comparison to more elementary methods. I will then
proceed to explain what steps the method actually carries out in solving the
differential equation along with the matlab code I used to write a simple
Runge-Kutta solver and the output of the code, given some basic differential
equations. I will then end by discussing the pitfalls of this way of solving
differential equations.

1 Introduction

Any nth order linear ordinary differential equation can be expressed in the
form of a system of first order linear ODEs. Numerical approximation can be
applied to effectively analyse differential equations that may not be easy to
solve by traditional methods. Once any ODE has been expressed as a linear
system, any of the methods of linear algebra can be applied on the system.
The Runge-Kutta method is a far better method to use than the Euler or
Improved Euler method in terms of computational resources and accuracy.
All these methods use a fixed step size, but there are other methods that
use a variable step size (though not neccessarily better in all circumstances).
While essentially the Euler methods are simple Runge-Kutta methods, I, like
has now become common, refer to the fourth-order Runge-Kutta method as
the Runge-Kutta method.

2 The Euler and Improved Euler methods

For an initial value problem

dy/dx = f(x, y), y(a) = y0

that has a unique solution y(x) on the closed interval [a, b] and given that
y(x) has a continous second derivative on that interval, then there exists a
constant C such that for the approximations yi to the actual values y(xi)

1

� �

� �

� �

computed using the Euler’s method with step size h > 0,

|yn − y(xn)| ≤ Ch

For n = 1,2,3, . . . ,k

for the Euler method, and

|yn − y(xn)| ≤ Ch2

for the improved Euler method. Here, h is the step size. This implies that
the error is of order h in the Euler method and order h2 in the improved Euler
method. The proof can be found in the book, Ordinary Differential Equa
tions by G. Birkhoff and G.C. Rota. On the other hand, the Runge-Kutta
method is a fourth-order method (Runge-Kutta methods can be modified
into methods of other orders though). The Euler methods suffer from big
local and cumulative errors. The improved Euler method and the Runge-
Kutta method are predictor-corrector methods and are more accurate than
the simple Euler method.

3 The Runge-Kutta Method

This method uses the simple fact that, for a given actual change in the out
put y, we can use the fundamental theorem of calculus to express the change
in the form of an integral

y(xn+1) − y(xn) = x
x
n

n+1 y�(x) dx = x
x
n

n+h y�(x) dx

We can then use Simpson’s rule for numerical integration

y(xn+1) − y(xn) ≈ h y�(xn) + 4y�(xn + h
2) + y�(xn+1)6

yn+1 ≈ yn + h y�(xn) + 2y�(xn + h) + 2y�(xn + h) + y�(xn+1)6 2 2

I used matlab to write out some code that implements an algorithm that uses
the Simpson’s rule to approximate solutions for a given number of steps. Us
ing the code, one can solve any nth order linear ODE as long as you specify
the initial conditions. I have shown that by attempting to approximate the
solutions to a first order ODE and a second order ODE. The code is shown

2

below:

function [T,X] = hrungekutta(t,x,t1,n,f)

T = t;

X = x’;

h = (t1 - t)/n;

for i = 1:n;

k1 = f(t,x);
k2 = f(t + h/2, x + k1*h/2);
k3 = f(t+h/2, x + k2*h/2);
k4 = f(t+h, x + k3*h);
x = x + h*(k1 + 2*k2 + 2*k3 + k4)/6;
t = t+h;
T = [T;t];
X = [X;x’];

end

This function takes the form f(tinitial, [x0; y0], tfinal, steps, @ode)

I implemented ODEs as functions. So it can take in any ODE as long as you
express it in the form of a linear system and you specify its initial values.
Note that in Matlab, to input a function to another function, you must use
the @ sign in front of the input function’s name.

For example, the function ddxeqnegx is the ode x�� = −x .
In this case, you will input @ddxeqnegx .

Example: [T,X] = hrungekutta(0,[0;1],5,10,@ddxeqnegx)

This solves x�� = −x whose general solutions are of the form [sin(t), cos(t)]
for t running from 0 to 5 where the initial values are x = 0, y = 1, since you
change x�� = −x to the system of first order ODEs x� = y, y� = −x

The code for the input ODE is:

function X = ddxeqnegx(t,x)

X=x;

X(1) = x(2);

X(2) = -x(1);

3

A graph of the solution is shown in the next page:

An example of a first order ODE is [x,y]=hrungekutta(0,[0],1,10,@pidiff)
which approximates the solution to dy = 4 , with the initial value y0 = 0.

dx (1+x2)
4Note that the general solution to this differential equation is y =

arctan(x) .
Therefore, y1 ≈ π . Outputs for a ten step Runge-Kutta method are shown
below.

x =

0

0.1000

0.2000

4

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

y =

0

0.3987

0.7896

1.1658

1.5220

1.8546

2.1617

2.4429

2.6990

2.9313

3.1416

With 1000 steps, I got π = 3.141592653589791

4	 Pitfalls in the Runge-Kutta method and
other numerical methods

There are a number of problems faced by the Runge-Kutta method. While I
will not go into the details here, I will use an example equation to illustrate
a problem that one could face.

Consider the equation

dy = 5y − 6e−x, y(0) = 1
dx

Its general solution is

5

y(x) = e−x + Ce5x

With the initial condition y(0) = 1, then C = 0

A small error in the evaluation of the output leads to a non-zero value of
C. Since the exponent is big, a very small error in approximation (which is
almost inevitable) leads to a huge error in the output.

Acknowledgement

I would like to thank my instructor Vera Hur for great suggestions on how
to write this paper and putting me in the same group as Lisa Danz, Marcelo
Alvisio, Laura Evans and Oleg Golberg who are all interested in Numerical
Methods of approximating differential equations. I would also like to thank
Josh Nichols-Barrer, who showed us some really neat problems in math.

References

[1] Birkhoff, Garrett and Rota, Gian-Carlo. Ordinary Differential Equations
4th ed. (John Wiley & Sons, New Jersey, 1989)

[2] Edwards, Henry and Penney, David. Elementary Differential Equations
with Boundary Value Problems4th ed. (Prentice Hall, 1999)

[3] http://en.wikipedia.org/wiki/Runge-kutta

6

http://en.wikipedia.org/wiki/Runge-kutta

