
MIT OpenCourseWare
http://ocw.mit.edu 

18.034 Honors Differential Equations 
Spring 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


1 

Higher Order Taylor Methods 

Marcelo Julio Alvisio & Lisa Marie Danz 

May 16, 2007 

Introduction 

Differential equations are one of the building blocks in science or engineering. 
Scientists aim to obtain numerical solutions to differential equations whenever 
explicit solutions do not exist or when they are too hard to find. These numerical 
solutions are approximated though a variety of methods, some of which we set 
out to explore in this project. 

We require two conditions when computing differential equations numerically. 
First, we require that the solution is continuous with initial value. Otherwise, 
numerical error introduced in the representation of the number in computer 
systems would produce results very far from the actual solution. Second, we 
require that the solution changes continuously with respect to the differential 
equation itself. Otherwise, we cannot expect the method that approximates the 
differential equation to give accurate results. 

The most common methods for computing differential equations numerically 
include Euler’s method, Higher Order Taylor method and Runge-Kutta meth
ods. In this project, we concentrate on the “Higher Order Taylor Method.” 
This method employs the Taylor polynomial of the solution to the equation. It 
approximates the zeroth order term by using the previous step’s value (which is 
the initial condition for the first step), and the subsequent terms of the Taylor 
expansion by using the differential equation. We call it Higher Order Taylor 
Method, the “lower” order method being Euler’s Method. 

Under certain conditions, the Higher Order Taylor Method limits the error to 
O(hn), where n is the order used. We will present several examples to test this 
idea. We will look into two main parameters as a measure of the effectiveness 
of the method, namely accuracy and efficiency. 

1 



2 Theory of the Higher Order Taylor Method 

Definition 2.1 Consider the differential equation given by y�(t) = f(t, y), y(a) = 
c. Then for b > a, the nth order Taylor approximation to y(b) with K steps is 
given by yK , where {yi} is defined recursively as: 

t0 = a 

y0 = y(a) = c 

ti+1 = ti + h 

h2 ∂f hn ∂n−1f 
yi+1 = yi + hf(ti, yi) + (ti, yi) + ... + (ti, yi)2 ∂t n! ∂tn−1 

with h = (b − a)/K. 

It makes sense to formulate such a definition in view of the Taylor series expan
sion that is used when y(t) is known explicitly. All we have done is use f(t, y) 
for y�(t), ft(t, y) for y��(t), and so forth. The next task is to estimate the error 
that this approximation introduces. 

We know by Taylor’s Theorem that, for any solution that admits a Taylor 
expansion at the point ti, we have 

h2 hn h(n+1) 

y(ti+1) = y(ti) + hy�(ti) + y��(ti) + ... + y(n)(ti) + y(n+1)(σ)
2 n! (n + 1)! 

where σ is between ti and ti+1 

Using y� = f(t, y), this translates to 

h2 ∂f hn ∂(n−1)f h(n+1) ∂(n)f 
y(ti+1) = y(ti)+hf(ti, yi)+ (ti, yi)+...+ (ti, yi)+ (σ, y(σ))

2 ∂t n! ∂t(n−1) (n + 1)! ∂t(n) 

Therefore, the local error, that is to say, the error introduced at each step if the 
values calculated previously were exact, is given by: 

1 ∂(n)f 
Ei = (hn+1) (σ, y(σ))

(n + 1)! ∂tn 

which means that 

1 ∂(n)f 
max (hn+1) (σ, y(σ))Ei ≤ 

σ∈[a,b] (n + 1)! ∂tn 

2 



3 

We can say Ei = O(hn+1). Now, since the number of steps from a to b is 
proportional to 1/h, we multiply the error per step by the number of steps to 
find a total error 

E = O(hn). 

In Practice: Examples 

We will consider differential equations that we can solve explicitly to obtain an 
equation for y(t) such that y�(t) = f(t, y). This way, we can calculate the actual 
error by subtracting the exact value for y(b) from the value that the Higher 
Order Taylor method predicts for it. To approximate values in the following 
examples, the derivatives of f(t, y) were computed by hand. MATLAB then 
performed the iteration and arrived at the approximation. 

Notice that the definitions given in the previous section could also have been 
adapted for varying step size h. However, for ease of computation we have 
kept the step size constant. In our computations, we have chosen step size of 
(b − a)/2k, which resulted in K = 2k evenly spaced points in the interval. 

Example 3.1 We consider the differential equation 

1 + t 
y�(t) = f(t, y) = 

1 + y 

with initial condition y(1) = 2. It is clear that y(t) = 
√

t2 + 2t + 6 − 1 solves 
this equation. 

Thus we calculate the error for y(2) by subtracting the approximation of y(2) 
from y(2), which is the exact value. Recall that we are using h = 2−k because 
(b − a) = 1. The following table displays the errors calculated. 

k = 1 k = 2 k = 3 k = 4 
order = 1 .0333 .0158 .0077 .0038 
order = 2 −.0038 −.0009 −.0002 −.0001 
order = 3 .0003269 .0000383 .0000046 .0000006 

For the first order case (also known as Euler’s method), we expect the error to 
be proportional to h, where h is the length of the intervals tested. This means 
that, when k increases by 1, we expect the error to be halved (approximately). 
Observing the values in the table confirms this expectation. 

For the second order case, we expect the error to be proportional to h2, so we 
expect the error to be divided by 4 as we move to the right on the table. For 
third order, we expect the error to be proportional to h3, so we expect the error 
to be divided by 8 as we move to the right. Again, this seems to be the case. 

3 



In figure 1, the graph on the left show the approximations of y(t) plotted against 
t by using Euler’s method. Each line corresponds to one row of the table above, 
that is, to different step sizes h = 1/2, 1/4, 1/8 and 1/16. The graphs on the 
right show the error plotted against t, so the errors at t = 2 are those given in 
the table. Here again, each line corresponds to a different step size h = 1/2, 
1/4, 1/8 and 1/16, Obviously, the lines with error closer to zero correspond to 
higher values of k. 

Figure 1: Euler’s Method: numerical computation of the solution with step size 
(on the left) and the corresponding error (on the right). 

Similarly, we have produced the same graphs using Taylor’s method of Second 
and Third order. They are show in figure 2 and 3 respectively. 

Now we will consider more examples to compare the pattern of the error values. 
We will not include the new graphs since their similarity with the graphs for 
the first example makes them uninteresting. 

Example 3.2 Here we consider the equation f(t, y) = 2
1 
y , with initial condition 

y(0) = 2. Its explicit solution is y(t) = 
√

t + 4. If we generate the error as above, 
we obtain the following table for t = 1. 

k = 1 k = 2 k = 3 k = 4 
order = 1 −.0066 −.0032 −.0016 −.0008 
order = 2 .0003852 .0000917 .0000224 .0000055 
order = 3 −.00002837 −.00000330 −.00000040 −.00000005 

4 



Figure 2: Second order Taylor’s Method: numerical computation of the solution 
with step size (on the left) and the corresponding error (on the right). 

Figure 3: Third order Taylor’s Method: numerical computation of the solution 
with step size (on the left) and the corresponding error (on the right). 

5 



4 

This second example again meets our expectations as stated in Example 1. Upon 
inspection, it is clear that first order errors are roughly halved with each increase 
in k, second order entries are divided by 4, and third order entries are divided 
by 8. 

The examples that follow will again illustrate this phenomenon. 

Example 3.3 Consider the differential equation y�(t) = f(t, y) = t + y, with 
initial condition y(0) = 0. The explicit solution is y(t) = −t − 1+ et . This gives 
the following data for t = 1. 

k = 1 k = 2 k = 3 k = 4 
order = 1 .4683 .2769 .1525 .0804 
order = 2 .0777 .0234 .0064 .0017 
order = 3 .0095 .0014 .0002 .0000 

Note that the error in the lower right is not actually zero; this is just from the 
computer rounding off. 

Example 3.4 Consider the differential equation y�(t) = f(t, y) = ty with initial 
condition y(0) = 1. Thus the explicit solution is g(t) = e 2

1 t2 
. This gives the 

following data for t = 1. 

k = 1 k = 2 k = 3 k = 4 
order = 1 .3987 .2293 .1247 .0653 
order = 2 .0667 .0225 .0065 .0018 
order = 3 .0286 .0045 .0006 .0001 

Evaluation of the method 

As we have seen in these examples, and as our theory would suggest, the Higher 
Order Taylor Method is able to arrive at very accurate approximations with 
relatively large step size. 

However, we have used the information of the derivatives of f(t, y). Differenti
ation in general can be costly. In practice, there are cases where the differential 
equation is a black box: f(t0, y0) can be found by empirical methods given t0 

and y0, but the explicit equation f(t, y) is unknown. In such cases, the Higher 
Order Taylor Method simply does not work. 

There is a class of differential equations, known as “stiff equations,” to which 
this method cannot be readily applied. The solutions of stiff equations are 
characterized by decaying as t increases, while the derivatives do not. This can 
cause wildly inaccurate approximations unless h is within a certain bound. It 
is generally easier to use an alternate method rather than worry about keeping 

6 



h within its bound. Indeed, other methods have been developed specifically to 
accomodate stiff equations. 

We have also assumed that the solution has a Taylor expansion that converges 
to the actual solution. Although this is the case for a wide variety of functions, 
it is advisable to take this into consideration. Alternative ways of verifying the 
approximation are advisable. 

In summary, the Higher Order Taylor Method is not universally applicable. 
When it does apply, it can be fairly accurate. In our examples, the error decays 
with decreasing h just as the theory would predict. In fact, the rate of decay is 
proportional to hn, where n is the order of approximation used. 

7 




