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18.03SC Practice Problems 2 

Direction fields, integral curves, isoclines, separatrices, funnels 

Solution Suggestions 

As an example, take the ODE 
dy 

= x − 2y.
dx 

1. Draw a big axis system and plot some isoclines, especially the nullcline. Use them to 
illustrate the direction field. Using the direction field, plot a few solutions. Try to do this 
by hand first. Later you might want to refer to the Isoclines Mathlet. 

Do this on paper first. Then start the Isoclines applet in the Mathlets Gallery. 

Set the equation to be y� = x − 2y. Move the m slider on the right to generate 
different isoclines (yellow lines), and click on the axis system to plot the solutions 
(blue curves). Compare the results with what you drew by hand. 

2. One of the integral curves seems to be a straight line. Is this true? What straight line is 
it? (i.e., for what m and b is y = mx + b a solution?) 

Yes, one of the curves seems to be a straight line. You can guess visually from the 
applet that the linear solution seems to be the graph of the function y = 1

2 x − 1
4 . 

You can verify this guess is indeed a solution to the equation by checking that 
dy = 1 = x − 2( 1 1

4 ) = x − 2y.dx 2 2 x − 

This answer can also be computed without guesswork. If y = mx + b is a solution, 
then 

m = 
dy 

= x − 2y = x − 2(mx + b),
dx 

or, rearranging terms, 
m = (1 − 2m)x − 2b. 

Two polynomials in x can only the same for all x (over the reals) if they have the 
same coefficients. Equate coefficients of the powers of x to get two equations in 
two unknowns that must be satisfied simultaneously. 

m = −2b 
0 = 1 − 2m 

From the second equation, m = 2
1 . Plugging this into the first equation gives b = 

1− 4 . This matches the answer guessed from the applet. 

3. In general – for the general differential equation dy = F(x, y) – if a straight line is dx 
an integral curve, how is it related to the isoclines of the equation? What happens in our 
example? 

If a straight line is an integral curve, then it is part of the isocline for its slope. In 
our example, the line from Question 2 forms the entire m = 2

1 -isocline. 
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4. It seems that all the solutions become asymptotic as x ∞. We will see later that this →
is true, but for now, explain why solutions get trapped between parallel lines of fixed slope. 

Here all the isoclines have the form m = x − 2y for some constant m. That is, 
the isoclines are lines of slope 1

2 . When m > 2
1 , any solution through a point on 

an m−isocline will have slope of tangent line ( dy = F(x, y) = m) greater than dx 
the slope of the linear isocline ( 1

2 ) at the point of intersection. Thus, any solution 
that intersects such an isocline must pass from the region below the isocline to the 
region above it. In particular, no solution can cross in the other direction. Similarly, 
any solution through a point on an m-isocline for m < 2

1 must pass from the region 
above the line to the region below it. 

From the above, the m-isocline is given by the equation y = 1
2 x − m 

2 , so all the 
isoclines for m > 2

1 lie below the line y = 1
2 x − 4

1 , while all the isoclines for m < 2
1 lie 

above it. Thus, any solution will eventually get trapped between any two isoclines 
that surround the line y = 2

1 x − 4
1 , i.e. between parallel lines of fixed slope 1

2 . 

5. Where are the critical points of the solutions of y� = x − 2y? How many critical points 
can a single solution have? For what values of y0 does the solution y with y(0) = y0 have 
a critical point? When there is one, is it a minimum or a maximum? You can see an answer 
to this from your picture. Can you also use the second derivative test to be sure? 

All critical points lie on the y� = 0-isocline, which is the line y = 2
1 x. We will 

argue that solutions above the linear integral curve y = 1
2 x − 4

1 found in Question 
2 have exactly one critical point and solutions below it have no critical points. For 
graphical intuition, refer to the following screenshot of the Isoclines applet with 
a picture of the direction field for this equation, the nullcline, the linear integral 
curve, and several solutions. 

Figure 1: Several isoclines and solutions for the equation y� = x − 2y 
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The question can be rephrased as how do solutions touch or intersect the nullcline. 

From the graph it seems that the solution space is divided in two, and the only 
solutions to intersect the nullcline are those that lie above the 1

2 -isocline y = 1
2 x − 14 . 

From Question 4, the 1
2 -isocline is an asymptote, and solutions stay above this line 

for all x if they are above it at any point – for example, if they have a larger y-
intercept (y0 > − 4

1 ). We will show that solutions have a critical point exactly when 
they are contained in the upper solution space. 

One direction of this is easy. All the critical points lie on the nullcline, which is in 
the upper solution space, so a solution has a critical point only if it also lies in the 
upper solution space. To show the other direction, use the geometry of the isoclines 
that we found - that these are parallel lines of slope 1

2 , of steadily increasing value 
equal to negative double their y-intercept. So solutions in the upper solution space 
have translational symmetry and all look like the solution through (0, 0), shifted 
along the nullcline. In particular they all intersect the nullcline eventually. 

Finally, since the nullcline is also a line of slope 1
2 , any solution going through a 

point on it must pass from the region to the left of it to the region to the right 
of it, by the same reasoning as in Question 4, since at the point of intersection 
dy 1 
dx = 0 < 2 . Therefore, all solutions which intersect the nullcline at all will pass 
through it exactly once, so they have exactly one critical point. 

To summarize, solutions can have either zero or one critical points, and a solution 
has a critical point if and only if it lies above the linear integral curve y = 1

2 x − 1
4 

(has y-intercept y0 > − 4
1 ). 

The picture also makes it appear that all of the critical points are minima. 

We can verify this by using the second derivative test. Find an expression for the 
second derivative by taking the derivative of both sides of the differential equation: 

d2y dy 
.

dx2 = 1 − 2 
dx 

At a critical point, dy = 0 by definition. Plug this into the above equation to get dx 

that d2y = 1 at any critical point. The second derivative is positive, so any critical dx2 

point must be at least a local minimum. We just showed that a solution has at most 
one critical point, so it must be a global minimum. 

6. For another example, take dy = y2 2 . (This is also on the Isoclines Mathlet.)dx − x
Again, make a big picture of some isoclines and use them to sketch the direction field, and 
then sketch a few solutions. 

Set the equation to be y� = y2 − x2 in the applet, and follow the same procedure as 
in question 1. 

7. A “separatrix” is a solution such that solutions above it have a fate (as x increases) 
2entirely different from solutions below it. The equation dy = y 2 exhibits a separatrix. dx − x

Sketch it and describe the differing behaviors of solutions above it and below it. 

Play with the applet to get a feeling for the solution space. You should find that here 
the solutions either increase without bound or decrease without bound. You can 
use the applet to visually approximate the separatrix between these two fates by 
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drawing better and better distinguishing solutions. You can do this, for example, 
by choosing points near the top right of the picture (e.g., click near (3.70, 3.84)). 

After sketching the separatrix, describe the behaviors of solutions above and be

� 

� 

low it. Solutions above the separatrix rapidly increase without bound. Solutions 
below it approach the lower right asymptote of the −1-isocline, which forms the 
hyperbola y2 − x2 = −1. 

Some justification for this behavior is that the line y = x is part of the nullcline, and 
the direction field above it increases rapidly (is quadratic), while the direction field 
below it decreases rapidly. 

8. The equation dy = y2 2 also exhibits a “funnel,” where solutions get trapped as x dx − x
increases, and many solutions are asymptotic to each other. Explain this using a couple of 
isoclines. There is a function with a simple formula (not a solution to the equation, though) 
which all these trapped solutions get near to as x gets large. What is it? 

We saw in the previous question that solutions below the separatrix approach the 
lower right asymptote of the −1-isocline - the hyperbola y2 − x2 = −1, whose 
lower right asymptote is the line y = −x − 1. You can use the applet to observe 
further that solutions approach the asymptote quickly, becoming trapped between 
isocline fences, which themselves quickly approach this asymptote. Move in some 
isoclines around the asymptote and see how they force solutions to behave. 

For example, the lower part of the −2-isocline (the negative part of the hyperbola 
y2 − x2 = −2, which lies above and to the right of y2 − x2 = −1) seems to act as 
an upper fence for large enough values of x, forming the upper part of a funnel. 
Verify this by checking for which values of x the derivative of this isocline becomes 
greater than -2. Observe first that the m-isoclines in this this example are hyper
bolas y2 − x2 = m with slope x/y at each point (x, y). Then solve the inequality 
x/y > −2 subject to the restriction y2 = x2 − 2 to see that these conditions are 

satisfied simultaneously in the fourth quadrant exactly when x > 3
8 ≈ 1.64. 

In turn, for example, the lower half of the 1
2 -isocline (the lower half of the hyperbola 

y2 − x2 = 2
1 , which lies below and to the left of y2 − x2 = −1) seems to act as 

a lower fence for large enough values of x, forming the lower part of a funnel. 
To verify this, check when the derivative of this isocline becomes less than 1/2. 
Solving the inequality x/y < 1

2 , subject to y2 = x2 + 1
2 , see that these conditions 

are satisfied simultaneously for all (x, y) in the fourth quadrant (in fact, for all 

x > − 6
1 ≈ −0.41). 

You can use the applet to visually check the values we found for the points at which 
each isocline becomes a fence. Below is a screenshot of the applet displaying our 
direction field, together with these two isoclines and some solutions that intersect 
them. 
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Figure 2: The direction field for dy = y2 2 , some solutions and a funnel.dx − x
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