MIT OpenCourseWare <u>http://ocw.mit.edu</u>

18.085 Computational Science and Engineering I Fall 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

A Matlab Cheat-sheet (MIT 18.06, Fall 2007)

Basics:

save 'file.ma			
load 'file.ma			
diary on	record input/output to file <i>diary</i>		
diary off	stop recording		
whos	list all variables currenly defined		
clear	delete/undefine all variables		
help command	quick help on a given command		
doc command extensive help on a given comm			

Defining/changing variables:

	\mathcal{O}	00	
x =	3	define variable x to be 3	
x =	[1 2 3]	set x to the 1×3 row-vector (1,2,3)	
	[1 2 3];		
x =	[1;2;3]	set x to the 3×1 column-vector (1,2,3)	
A =	[1 2 3 4;	5 6 7 8;9 10 11 12];	
set A to the 3×4 matrix with rows 1,2,3,4 etc.			
x(2)) = 7	change x from $(1,2,3)$ to $(1,7,3)$	
$A(2,1) = 0$ change $A_{2,1}$ from 5 to 0			

Arithmetic and functions of numbers:

3*4, 7+4, 2-6 8/3 multiply, add, subtract, and divide num	
3^7, 3^(8+2i) compute 3 to the 7th power, or 3 to the	8+2i power
sqrt(-5) compute the square root of -5	
exp(12) compute e^{12}	
log(3), log10(100) compute the natural log (ln) and base-1	$0 \log(\log_{10})$
abs(-5) compute the absolute value $ -5 $ sin(5*pi/3) compute the sine of $5\pi/3$	
besselj(2,6) compute the Bessel function $J_2(6)$	

Arithmetic and functions of vectors and matrices:

- x * 3 multiply every element of x by 3 x + 2 add 2 to every element of x
- x + y element-wise addition of two vectors x and y
- A * y product of a matrix A and a vector y
- A * B product of two matrices A and B
- x * y not allowed if x and y are two column vectors!
- **x** .* y element-wise product of vectors x and y
- A^3 the square matrix A to the 3rd power
- x^3 not allowed if x is not a square matrix!
- **x.^3** every element of x is taken to the 3rd power
- $\cos(x)$ the cosine of every element of x
- abs(A) the absolute value of every element of A
- exp(A) e to the power of every element of A
- sqrt(A) the square root of every element of A
- expm(A) the matrix exponential e^A
- sqrtm(A) the matrix whose square is A

Constructing a few simple matrices:

- rand(12,4) a 12×4 matrix with uniform random numbers in [0,1)
- randn(12,4) a 12×4 matrix with Gaussian random (center 0, variance 1)
- zeros(12,4) a 12×4 matrix of zeros
- ones(12,4) a 12×4 matrix of ones
- eye(5) a 5×5 identity matrix I ("eye")
- eye(12,4) a 12×4 matrix whose first 4 rows are the 4×4 identity
- linspace(1.2,4.7,100)

row vector of 100 equally-spaced numbers from 1.2 to 4.7

- 7:15 row vector of 7,8,9,...,14,15
- diag(x) matrix whose diagonal is the entries of x (and other elements = 0)

Portions of matrices and vectors:

x(2:12)	the 2nd to the 12th elements of x
x(2:end)	the 2nd to the last elements of x
x(1:3:end)	every third element of x, from 1st to the last
x(:)	all the elements of x
A(5,:)	the row vector of every element in the 5th row of A
A(5,1:3)	the row vector of the first 3 elements in the 5th row of A
A(:,2)	the column vector of every element in the 2nd column of A
diag(A)	column vector of the diagonal elements of A

Solving linear equations:

A \ b	for <i>A</i> a matrix and <i>b</i> a column vector, the solution <i>x</i> to $Ax=b$
inv(A)	the inverse matrix A^{-1}
[L,U,P] = lu(
eig(A)	the eigenvalues of A
[V,D] = eig(A) the columns of V are the eigenvectors of A , and
	the diagonals $diag(D)$ are the eigenvalues of A

Plotting:

plot(y)	plot y as the y axis, with $1, 2, 3, \dots$ as the x axis			
plot(x,y)	plot y versus x (must have same length)			
plot(x,A)	plot columns of A versus x (must have same # rows)			
loglog(x,y)	plot y versus x on a log-log scale			
<pre>semilogx(x,y)</pre>	plot y versus x with x on a log scale			
<pre>semilogy(x,y)</pre>	plot y versus x with y on a log scale			
<pre>fplot(@(x)expression,[a,b])</pre>				
	plot some expression in x from $x=a$ to $x=b$			
axis equal	force the <i>x</i> and <i>y</i> axes of the current plot to be scaled equally			
	e') add a title A Title at the top of the plot			
<pre>xlabel('blah'</pre>) label the x axis as <i>blah</i>			
ylabel('blah') label the y axis as <i>blah</i>			
legend('foo',	'bar') label 2 curves in the plot <i>foo</i> and <i>bar</i>			
grid include a grid in the plot				
figure	open up a new figure window			

Transposes and dot products:

x.', A.'	the transposes of x and A		
x', A'	the complex-conjugate of the transposes of x and A	dot(x,y),	<pre>sum(x.*y)two other ways to write the dot product</pre>
x' * y	the dot (inner) product of two <i>column</i> vectors x and y	x * y'	the <i>outer</i> product of two <i>column</i> vectors x and y