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PROFESSOR

STRANG:

OK, so this is the start -- I won't be able to do it all in one day -- of what I think of as the

number one model in applied math, in discrete implied math, I'll say. Let me review what our

four examples are. Just so you see the big picture. So the first example was the springs and

masses. That was beautiful. It's simple. The masses are all in a line, and the matrix K, the

free-fixed and fixed-fixed and free-free come out closely related to our K, T, B matrices. So

that was the natural place to start, and actually we also got a chance to do the most important

equation in time. Ku''-- Sorry, Mu''+Ku=0. So that was a key example. Then least squares.

Very important, I'm already getting questions from the class about problems that come up in

your work, least square problems. Maybe I'll just mention that the professional numerical guys

don't always go to A transpose A. If it's a badly conditioned problem, and that conditioning is a

topic that was in 1.7 and we'll eventually come back to, if it's a badly conditioned problem,

matrix A then-- A transpose A kind of makes it worse. So there's another way to orthogonalize

in advance. And if you're working with orthogonal vectors, or orthonormal vectors, numerical

calculations are as safe as they can be. Yeah. Wall Street is more like A transpose A. And the

orthonormal is the safe way.

Alright, this is today's lecture. You'll see the matrix a for a graph, for a network. It's simple to

construct, and it just shows up everywhere. Because networks are everywhere. And, just,

looking ahead, trusses are there partly because they're the most fun. You'll enjoy trusses. I

mean, it's kind of fun to figure out is the truss going to collapse or not. It's good. And actually,

what's the linear algebra in there? The collapsing or not will depend on solutions to Au=0. Let

me just recall the equation Au=0. If A is our key matrix in each example, it's different in each

example. And we sort of hope that Au=0 doesn't have solutions, or that it has solutions we

know. Because if Au=0 has solutions that's the case where A transpose A is not invertible and

we have to do something. Very useful to review. What were the solutions to Au=0, in the case

of springs? Well, there were some in the free-free case. The all ones vector was the solution

u, or all constant was the solution u in the free-free case and that's why we couldn't invert it.

But the fixed-free or the fixed-fixed, when we have one support or two supports, that removed

the all ones solution. Good.



the all ones solution. Good.

Least squares, we assume there weren't any. We assumed-- Because we wanted to work

directly with A transpose A, the normal equations, so we assumed that the columns of A were

independent. We assumed that there were no non-zero solutions to Au=0. Because if there

were, that would have made A transpose A singular, and we would have had to do something

different. Here, this'll be a lot like this one. Today, once you see A, you'll spot the solutions to

Au=0. This is A for a network. And the solution is going to be that same guy, all ones. And that

only tells us again that we have to ground a node, I may use an electrical term. Grounding a

node is like fixing a displacement. Once you've fixed one of those, say at zero, whatever, but

zero's the natural choice. Once you've said one of the potentials, one of the voltages is zero,

then you know all the rest. You can find all the rest from our equations. So this is like this in

having this all ones solution. And as you'll see with trusses, that could, depending on the truss,

have more solutions. And if there are more solutions that's when the truss collapses. So the

trusses need more than just a single support to hold up a whole truss. OK.

So that's the Au=0. Now we're ready for the lecture itself. Graphs and networks. OK, let me

start with, what's a graph. A graph is a bunch of nodes and some or all of the edges between

them. Let me take just a particular example of a graph. And this of course you spot in the

book. Oh and everybody recognized that, and it's probably now corrected, that in the

homework where it said 3.4 it meant 2.4, of course. And this is Section 2.4 now. Let me draw a

different graph. Maybe it'll have four nodes, at those four edges, let me put in a fifth edge. OK,

that's a graph. It's not a complete graph because I didn't include that extra edge. It's not a tree

because there are some loops here. So complete graphs are one extreme where all the edges

are in. A tree is the other extreme, where you have a minimum number of edges. It would only

take probably three edges. So just while we're looking at it, there are a bunch of possible trees

that would be sort of inside this graph. Sub-graphs of this graph, if I knock out those two edges

I have a tree, going out. Or a tree could be like this. Or a tree could be like this. Anyway, five

edges is in this graph, six in a complete graph, it would be three edges in a tree. OK, and the

number of edges is always m. So five edges. And the number of nodes is always n, for nodes.

So A will be five by four.

OK. And it's called, so we get a special name in this world, it's called the incidence matrix of

the graph. The incidence matrix. Or, of course, these things come up so often they have other

names, too. But incidence matrix is a pretty general name. OK, I have to number the nodes

just so we can create the matrix A. One, two, three, four. And I have to number the edges. If I



don't number them, I don't know which is which. So let me call this edge one, from one to two,

and I'll draw an arrow on the edges. So from one to two, maybe this'll be edge two, from one

to three. This'll be edge three. Oh no, let me put edge three there, would be a natural one, say

from two to three. And how about edge four there, from two to four. And edge five going from

three to four. OK, so now I have numbered, I've identified the nodes, and I've identified the

edges. And there were five edges and four nodes. Usually m is bigger than n. We're in this--

Except for trees, m will be at least as large as n. And I've put arrows on, so you could say it's a

directed graph. Because I've given a direction. You'll see that the directions, those arrow

directions, which are just to tell me which way current should count as plus, if it's with the

arrow, or which way it should count as minus if it's against the arrow. Of course, current could

go either way. It's just, now I have a convention of which is plus and which is minus.

OK, so now let me tell you the incidence matrix. So everybody can get it right away, how do

you create this incidence matrix? A five by four. So it's going to have five rows, one for every

edge. So what's the row for edge one? And it's got four columns, one for every node. So these

are the nodes. Nodes one, two, three, four. So there's a column for every node and a row for

every edge. OK, edge one. This is just going to tell me everything about the graph. So exactly

what's in that picture will be in this matrix. If I've erased one, I could reproduce it by knowing

the other one. OK, edge one goes from node one to node two. So it leaves node one, I'll put a

minus one there. In the first column. And a plus one in the second column. Edge one doesn't

touch nodes three and four. So there you go, that's edge one. Let me do edge two and then

you'll be able to fill in the rest. So edge two goes from one to three, minus one, and a one.

Edge three goes from two to three, I'll just keep going. Minus one and a one. Edge four goes

from two to four. And edge five goes from three to four. OK. Simple, right? Got it. That matrix

has got all the information that's in my picture, and the matrix-- But the point about matrices is,

they do something. They multiply a vector u to produce something. They have a meaning

beyond just a record of the picture. So A is a great thing. In fact, what does it do? Let's see.

So that's the matrix A that we work with. Oh, first tell me about Au=0. Because we brought up

that subject already. Are those four columns independent? I've got four columns, they're sitting

in five-dimensional space, there's plenty of room there for four independent vectors. Are these

four columns independent vectors? No. No, they're not. Because what combination of them

produces the zero vector? [1, 1, 1, 1]. If I take that column plus that, plus that, plus that, I'm

multiplying by-- So, A, I'll just put that up here and then I won't have to write it again. A times

[1, 1, 1, 1], is five zeroes. So that u, that particular u, of all ones, is, I would say, in the null



space of the matrix. The null space is all the solutions at Au=0. In other words, so these four

columns, tell me about the geometry again. These four columns, if I take all their

combinations, yeah. Think about this. If I take all four combinations, all combinations, any

amount of this column, this column, this column, that fourth column, those are all vectors in

five-dimensional space. Now, this isn't essential but it's good. Do you have an idea of what

you'd get? What would you get if you took, so this, think of four vectors, pointing along, take all

their combinations, that kind of fills in. Whatever fill in may mean. And what does it fill in? What

do I get? What's your image? Frankly, I don't know. I can't visualize five-dimensional space.

That well. But still, we can use words. What do you think?

You get a something subspace. You got a something, you get something flat. I don't know if

you do. It's pretty flat, somehow. Like I'm just asking you to jump up from a case we know.

Where we had columns in three-dimensional space and we took a combination and they gave

us a plane. Right, when they were dependent? Now, how would you visualize the

combinations in five-dimensional space? Just for the heck of it? It's some kind of a subspace, I

would say. And what's its dimension, maybe that's what I want to ask you. What's the

dimension? Do I get, like, a four-dimensional subspace of five-dimensional space when I take

the combinations of these particular four guys? Yes or no? Do I get a four-dimensional

subspace, whatever that may mean? No. Right answer, I don't. I don't. Somehow the

dimension of that subspace, whatever I get, isn't four because this fourth guy is not

contributing anything new. The fourth one is a combination of the first three. So I get a three-

dimensional subspace. The rank of this matrix is three. If you allow me to introduce that key

word, rank is the number of independent columns. It tells you how big the matrix really is. You

know, if the matrix, if I pile on a whole lot of zero columns, or a lot of zero rows, the matrix

looks bigger. But of course it isn't truly bigger. The heart of the matrix, the core of the matrix is

somehow just three. And actually, I tell you now and we'll see it happen, can I tell you the key

result in the first half of linear algebra? It's this. That if I have three independent columns, and

by the way any three are independent, it's just all four together are dependent. This has three

independent columns, then the great fact is, it has three independent rows. That's kind of

fantastic. Since it's such a beautiful and remarkable and basic fact, look at the rows. That what

linear algebra is all about. Looking at a matrix by columns, and then by rows, and seeing what

are the connections.

And the connection is, the key connection is, that these five rows, now what space are they in?

What what space are these rows in? Four-dimensional space. They only have four



components. So I had four columns in 5-D, I have five rows in 4-D. But now, are those five

rows independent? Let me just ask that question. Are those five independent rows, are they

pointing in different directions, or could any combination give the zero vector in 4-D, looking at

those five rows? What do you say, wait a minute. Five vectors, in four-dimensional space?

Dependent, of course. Right. So they're dependent. There couldn't be five independent

vectors in 4-D. But are there four in this particular case? And here's the great fact, no, there

are three. If there are three independent columns and no more, then there are three

independent rows and no more. And we'll get to see which rows are independent. And which

are not. That's a question about A transpose, and we haven't got to A transpose yet. OK, are

you OK with that incidence matrix? Because this is like the central matrix of our subject. We

can figure out A transpose A, that's kind of fun. If I do A transpose A then you'll see the core

computations of this neat section. So if I do A transpose A, so I'm going to bring in A transpose

and you know that I'm not just bringing it in from nowhere, that networks-- the balance law is

going to involve A transpose. So let's just anticipate.

What do you think A transpose A looks like? Now, how am I going to do this for you? May I

write-- May I erase this for a moment, and try to squeeze in A transpose here? So that you

can multiply it by sight and see the answer, and then you'll see the pattern. That's the great

thing about math. You do a few examples, and you hope that a pattern reveals itself. So let me

show A transpose. So now I'm going to take that column and make it a row. I'm going to take

that column and make it a row, it's going to be a little squeezed but we can do it. Take that

column, [0, 1, 1, 0, -1]. And the last column, [0, 0, 0, 1, 1]. OK. So I just wrote A transpose

here. And now could you help me with A transpose A. Which is the key matrix in the graph

here. What size will it be? Everybody knows it's going to be square, it's going to be symmetric,

and just tell me the size. Four by four. Right, we have a four by five times a five by four, we're

expecting this to be four by four. And what's the first entry? Two. Right, take row one, dot it

with column one. I get two ones and then a bunch of zeroes, so I just get a two. What's the

next entry? Take row one against column two, can you do that in your head? Row one,

column two, the top one is going to hit on a minus one, and I think that's all there is, right?

Then this one hits a zero and those three zeroes, so. And then what about the next guy here?

A minus one. And the last guy? A zero.

So that's row one of A transpose A. Can I just look at that for a moment before I fill in the rest?

And then, when you fill in the rest it'll confirm the idea. Why do I have a zero there? Why did a

zero appear in the 1, 4 position? If I look back at the graph, what is it about nodes one and



four that told me ahead of time? You're going to get a zero in that A transpose A. Everybody

see what nodes one and four are? Yeah, say it again. Not connected. No edge. Here there

was an edge from node one to two. Here is an edge from node one to three. Those both

produce the minus ones. And on the diagonal came the two to balance it. What does that two

represent? That two represents the number of edges that do go into node one. See, that row

is all about node one. So there are two edges into it, and then an edge out, and an edge out,

and the edge out and the no edge. OK. So, now I know it's going to be a symmetric matrix, so

I could speed up and fill those in. What's the next entry here? What's the guy on this diagonal?

So that's row two against column two, so I have a one there, a one there, a one there, that

makes a three. Why a three? Because there are, yeah, you got it. There are three edges into

node number two. Three edges into node number two, and now I'm going to have some minus

ones off the diagonal for those edges. So what are these entries going to be here? They're

both minus ones. Edge two is connected to all three other nodes. So I'm going to see a minus

one and a minus one there, and it's going to be symmetric. And I'm nearly there.

Of course, I'm describing a pattern that you're just seeing unfold, but I'm doing it that way so

that you'll feel hey, I can write down A transpose A, or check it quite quickly, without doing this

complete matrix multiplication. So what number goes there? That's to do with node three, and

I see node three connected to all three other nodes, and so what do you expect there? Minus

one there, and a minus one there, and what do you expect here? Two. And so now I have my

matrix. The A transpose A matrix. And that's square and it's symmetric. Now I ask you, is it

positive definite? Or is it only semi-definite? Right, we know that A transpose A is always

positive definite in the best case. But only positive semi-definite if it's singular, if there's some

vector in its null space, if a transpose a times some vector gives zero. If some combination of

those columns gives me the zero column. Which is it? Have I got a singular matrix or an

invertible matrix here? Singular. Why singular? Because a had some solutions to Au=0. So if

Au equaled zero, then I could multiply both sides by A transpose, that same u, A transpose

times zero will still be zero, it might be a different size zero, but it'll be zero. And what's the u,

then? It's the all ones vector. What am I saying about the columns of A transpose A? They're

dependent. They add up-- Because it's the [1, 1, 1, 1] vector that's guilty, every row adds to

zero. Every row adds to zero.

Let me just say for a moment, introduce two notation for the diagonal matrix. D, that's the

diagonal matrix, two, three, three, two. And then I'll put in a minus sign, and this is and I'll call it

W. So you can pick out what D and W are, but let me do it for sure. So D, the degree matrix.



See, this is this is like fun because I'm not doing anything yet. I'm just giving names here. Two,

three, three, two. The degree of a node, the degree means how many edges go from it. How

many edges touch it. And W is also a great matrix, it's called the adjacency matrix. It's also

beautiful. Now it'll have plus ones because I wanted minus W, so it has, these nodes are not

adjacent to themselves but it's got this one and this one and this one this one and that one,

and that's a zero. So there are five, the adjacency matrix tells me which nodes are connected

to which other nodes. And of course the connections are going both ways. So I see five ones

from five edges. And I see five more ones below the diagonal, because the edges are

connecting both ways. Ones connected to three, and three is connected to one. One is not

connected to four, and four is not connected to one. One is not connected to itself. By an

edge. If we allowed, like, little self loops, then a one could appear on the diagram. But we

don't. OK, so that's D and W.

Here are the key matrices. This is actually, I venture to say that any afternoon at MIT there's a

seminar that involves these matrices. One name for this is the graph Laplacian, from Laplace's

equation. And we'll see pretty soon where that name's coming from. But it's there. And should

I think, I think I should, just about networks. Like where, does the networks come from? I think

we've got networks all around us. Right? Electrical networks are the simplest, maybe in some

ways the simplest to visualize. So that's the example, that's the language I'll use. Now, I get a

network, I use the word network when there's a c_1, c_2, c_3, c_4, c_5. Those extra numbers.

I've got the A, and now the network comes from the C part, that diagonal matrix. And if I'm

talking electricity, these could be resistors. Instead of springs, they're resistors. So it's the

conductance in those five resistors, are c_1, c_2, c_3, c_4, and c_5. So I'm ready for that.

Ready for the C matrix, because we got the A matrix. And we've got A transpose A, but the

applications throw in the C matrix also. What are other applications, I was saying, like this one

is the one, I'll use the word current, for flow in the edges, or I'll use the word flow. A network of

oil, or natural gas, or water pipes would be just that, and then the electrical-- People study the-

- Professor Verghese in Course 6 studies the electric grid. The US electric grid, or the western,

often the western half of the US electric grid. So that's got a whole lot of things. Pumping

stations. You see it? Actually, the world wide web, the internet, is a giant network that people

would love to understand. And the phone company would love to understand those networks

of phone calls. I mean, those are really, that's what, giant businesses are are dependent on

understanding and maintaining networks.

OK, so I'm going to use resistors. Of course, I'm staying linear. And I'm staying steady state.



So by staying linear there aren't any transistors in this net. By staying steady state, there aren't

any capacitors or inductors. Those guys would be linear elements, but they would be coming

in a time-dependent problem. A u_(tt) problem. And I'm just staying now with Ku=f, I'm trying

to create K. The stiffness matrix, which maybe here we might call the conductance matrix. OK,

so ready for the picture now? That these come into? You know what the picture looks like, it's

going to have the usual four, we'll start with these potentials u at the nodes, potentials at

nodes, so those will be u_1, u_2, u_3, u_4. Voltages, if I'm really speaking, those units would

be volts, and now comes the matrix A. And now I get, what do I get from A? What do I get from

A? Key question. If I multiply A times u, and you know that's coming, right? If I multiply A times

u, so I'll erase A transpose now, because we've got that. So there's A, and now I'll make space

to multiply by u, alright? So now I want to look at Au. So A multiplies a bunch of potentials, a

bunch of voltages. And let's just do this multiplication and see what it produces. This is the

great thing about matrices, they produce something. OK, what's the first component of Au? Of

course, Au is going to be five by five. It's going to be associated with edges. Right, u's

associated with nodes, Au with edges. Just, the pattern is so nice. Alright, what's the first

component? Just do that multiplication and what do you get? u_2-u_1. What do you get in the

second component? Do that multiplication and you get u_3-u_1. The third one will be u_3-u_2.

The fourth one would be u_4-u_2, and the fifth one will be u_4-u_3.

Just like our first difference matrices. But this one deals with, I mean, our first difference

matrices were exactly like this when the graph was all in a line. The big step now is that the

graph is not in a line, not even necessarily in a plane. Could be in, it's a bunch of points, and

edges. Actually, the position of those points, we don't have to know are they in a plane. I think

of them as nodes and edges. OK, what's the natural name for Au? I would call those potential

differences, right? Voltage differences. So that's what we see here and those will be e. e_1,

e_2, e_3, e_4, e_5. will be potential or voltage differences. Voltage drops, you might say.

Potential differences, voltage drops. Oh well, now. When I say voltage drops, that's because,

as we noted before, the current goes from a higher to a lower potential. It goes in the direction

of the drop. And I think that what we need now is minus Au, for e. So I think we need a minus

sign and it's quite common to have the minus sign. We saw it already with least squares. And

let me say also, so this is e. I'll abbreviate those five e's I just wrote down, five of them. So you

would remember there are five. We're talking about the currents. We're talking about, this is

the e in E=IR. The electromotive-- The voltage drop. That makes some current go. Now, also,

just as with least squares, so it was great that we saw it before, there could be a source term

here. So I'm completing the picture here, allowing the source term. And we'll come back to



what does that mean, physically. But at that point could enter b, and b is really standing for

batteries. I work hard to make the language match the initials. These letters. OK, now what?

That step just involved A, nothing physical. Now comes the step that involves C, so w will be

Ce. And these will be the currents on the edges. And that's the law, then, with a matrix C, of

course C is our old friend c_1 to c_5. And tell me first the name. Whose law is this? That the

current is proportional to the voltage drop? Ohm. So this is Ohm's law. Instead of Hooke's law,

it's Ohm's law. And I've written it with conductances, not resistances. So resistances are 1

over-- R, the usual R in E=IR, would be-- I'm more looking at it as I, current, equals Ce,

instead of E=IR. So I'm flipping the, the, the resistance, or the impedance to give the

conductance.

OK, and now finally can you tell me what the last step is going to be? If life is good, well you

might wonder whether life is good, reading the papers, but it's still good here. OK, what matrix

shows up there? Everybody knows it. A transpose. So the final equation, the balance equation,

will be, let me write it so I don't catch it up here. Will be A transpose w equals whatever. Will be

the balance equation. The current balance, it's the balance of currents, balance of charge,

whatever you like to say. At each node, it's the balance at the nodes. Because when we're up

on this line, we're in the node picture. We have four equations here, right? We're talking about

at each node. Here we're talking about on each edge. There it's so critical. These two

variables. Which we're seeing physically as node variables and edge variables. That pair of

variables just shows up everywhere. In displacements and stresses, it's fundamental in

elasticity. And oh, there are just so many in optimization, it's everywhere. And a big part of this

course is to see it everywhere. OK, why don't I, just so you see the main picture. We're going

to have the A transpose C A matrix that I'm going to maybe call K again. And now of course

there could be current sources. Just the way there could be forces that we had to balance.

There could be, not always but there could be, current sources from outside. External current

sources. So these are external voltage sources. These are external current sources. So in a

way, we now have combined our first two examples, our springs and masses only had forces

external. Our least squares problem had an external b. Measurements. This picture is the

whole deal. It's got b and f, and actually I could put in even a little more.

Sources like, well, we already kind of caught on to the fact that we'd better ground the node or

A transpose C A, as it stands, A transpose C A as it stands will be singular. You know, it's the

matrix, there's A transpose A and the C in the middle isn't going to help any. That's singular. If

we wanted to be able to compute voltages, we've got to set one of them. It's like setting one



temperature, it's like deciding where is absolute zero. Let's put absolute zero down here.

u_4=0. Grounded the node. OK, so we've fixed a potential. So here's a boundary condition

coming in u_4=0. That's another source term, another thing coming, you could say sort of

from outside the A transpose C A. We could fix another voltage at, I mean, I'm thinking now

about what's the picture. What's the whole problem? So the problem could have batteries, in

the edges. It could have current sources into the nodes. It could fix u_1 at some voltage like

ten. Our problem could fix-- We must fix one of them. Otherwise our matrix isn't-- is singular.

But once we've set up the matrix, and when we fix u_4=0 by the way, what happens to our

matrix?

Let me take u_4=0, so this is a key step here. When I set u_4=0, I now know u_4. It's not an

unknown any more. So I've removed u_4 from the problem. And then it'll be also removed

from A transpose A. So this, is you could say, like a reduced A, or a grounded matrix A. It's

now five by three. And A transpose A, what shape will the a transpose a matrix be? It'll be

three by three, right? I now have five by three, three by five. Multiplying five by three gives me

three by three. This column is gone, and that row is gone. Because the row came from A

transpose and the column came from A, and we've just thrown them away. By grounding that

node. Now give me the key fact about that A transpose A matrix? What do you see there?

Now, you see a reduced, a grounded A transpose A. What kind of a matrix have I got? Positive

definite. Good. Positive definite. It's now not singular any more, its determinant is some

positive number. And everything is positive, its eigenvalues are all positive, everything's good

about that matrix. OK, and I guess what I was starting to say here, if I wanted to fix, this would

be a natural problem. Fix the top voltage at one, say. Fix u_1=1 and see how much current

flows. That would be a natural question. What's the system resistance between the top node

and the bottom, if I'm given-- Or the system conductance. If I'm given a c_1, a c_2, a c_3 a

c_4 and a c_5, I could say I could fix that voltage at one, I could fix this at zero. Maybe one of

the homework problems asks you for something like this. And then you find all the currents.

And the voltages, you solve the problem. And you know what the currents are. You know the

total current that leaves node one, enters node four when the voltages drop by one between,

right?

So current can flow down here, cross over here, down here whatever. Somehow all these five

numbers are going to play a part in that system resistance. So that would be an interesting

number to know. Out of those five numbers, somehow five c's, there's a system resistance

between that node and that node. And we can find it by setting this to be one, this to be zero,



having the reduced matrix-- Oh, well what will happen? How many unknowns will I have? Just

do this mental experiment. Suppose I introduce u_1 to be one, for example. This is just one

type of possible problem. If I take u_1 to be one, what happens to my matrix A? It loses its first

column, too. u_1 is not unknown any more. u_1 will not be unknown. And that value one is

somehow going to move to the right-hand side, right? People have asked me after class, well

what happens if a boundary condition isn't zero? Suppose we have this fixed springs and we

pull this spring down to make its displacement 12. Well, somehow that 12 is going to show up

on the right side of the equation. It's a source, it's an external term. OK, so if we had u_1

equals whatever, this u_1 would disappear. I would only have a two by two problem. Because I

would only have two, I now have only two unknown u's, right? So that's where sources can

come. And can I just complete the picture of the source stuff? We could fix, we could. Look,

here's what I'm going to say. External stuff. Sources can come into here. They can come into

here. They can come into here, so of course everybody says why shouldn't they come in

here? And the answer is we could send them here. So we could fix, we could fix some w's.

Of course, you understand we can't do everything. I mean, there's a limit to how much we can

put on the system. We want to have some unknowns left. Some matrix still, but anyway. I like

this picture now, it's more complete. That you now see the node variables and node

equations, the edge variables, e and w. The currents. These guys are the big ones. w and u

are what I think of as the crucial unknowns. e is sort of on the way. f is the source. But now we

have the possibility of sources at all four positions. OK, let's see. If I wrote out, If I looked at A

transpose C A, would you like to tell me, yeah. Have we got? No, we don't. I was going to say,

what's a typical row of A transpose C A, can I just say it in words? It'll be too quick to really

catch. So without the C, this is what we had. So what do you think that two becomes if there's

an A transpose C A, if there's a C in the middle. Have you got the pattern yet? That two was

there because of two edges. Edges one and two, it happened to be. So instead of the two, I'm

going to see c_1+c_2. Right. When those were ones, I got the two. So this will be c_1+c_2,

this'll be a minus c_1, and that'll be a minus c_2, when we do it out. And you could do it out for

yourself. Just tell me what would show up there. In A transpose C A, so I'm talking now about

A transpose C A. So instead of one plus one plus one, what do I have? What am I going to

have, and you really want to multiply it out, because it's so nice to see it happen. What do I

have? I'm looking at node two, I'm seeing three edges out of it. And instead of one, one, one,

I'll have c_1+c_3+c_4. c_1+c_3+c_4 will be sitting here. And minus c_1 will be here, and

minus c_3 will be here, and minus c_4 will be there. The pattern's just nice. So if you can read



this part of the section, I'll have more to say Friday about the A transpose w, the balance. That

critical point we didn't do yet. But the main thing, you've got it.


