
Joseph Kovac
18.086 Final Project
Spring 2005
Prof. Gilbert Strang

The Fundamentals and Advantages of Multi-grid Techniques

Introduction

 The finite difference method represents a highly straightforward and logical
approach to approximating continuous problems using discrete methods. At its heart is a
simple idea: substitute finite, discrete differences for derivatives in some way appropriate
for a given problem, make the time and space steps the right size, run the difference
method, and get an approximation of the answer.
 Many of these finite difference methods can ultimately be written in a matrix
form, with a finite difference matrix multiplying a vector of unknowns to equal a known
quantity or source term. In this paper, we will be examining the problem Au=f, where A
represents a finite difference matrix operating on u, a vector of unknowns, and f
represents a time-independent vector of source terms. While this is a general problem,
we will specifically examine the case where A is the finite difference approximation to
the centered second derivative. We will examine solutions arising when f is zero
(Laplace’s equation) and when it is nonzero (Poisson’s equation).
 The discussion would be quite straightforward if we wanted it to be; to find u, we
would simply need to multiply both sides of the equation by A-1, explicitly finding
u= A-1f. While straightforward, this method becomes highly impractical as the mesh
becomes fine and A becomes large, requiring inversion of an impractically large matrix.
This is especially true for the 2D and 3D finite difference matrices, whose dimensions
grow as the square and cube of the length of one edge of the square grid.
 It is for this reason that relaxation methods became both popular and necessary.
Many times in engineering applications, getting the exact answer is not necessary; getting
the answer right to within a certain percentage of the actual answer is often good enough.
To this end, relaxation methods allow us to take steps toward the right answer. The
advantage here is that we can take a few iterations toward the answer, see if the answer is
good enough, and if it is not, iterate until it is. Oftentimes, using such an approach,
getting an answer “good enough” could be done with orders of magnitude less time and
computational energy than with an exact method.
 However, relaxation methods are not without their tradeoffs. As will be shown,
the error between the actual answer and the last iteration’s answer ultimately will decay
to zero. However, not all frequency components of the error will get to zero at the same
rate. Some error modes will get there faster than others. What we seek is to make all the
error components get to zero as fast as possible by compensating for this difference in
decay rates. This is the essence of multi-grid; multi-grid seeks to allow the error modes
of the solution to decay as quickly as possible by changing the resolution of the grid to
let the error decay properties of the grid be an advantage rather than a liability.

 1

Basic Theory of the Jacobi Relaxation Method

 Before going into the theory of the method, I first want to state that much of the
following closely comes from an explanation in A Multi-grid Tutorial by William Briggs
et al. This text explained the material as clearly and concisely as one could hope for. To
a large extent, much of the “theory section” following will be reiteration of their
explanation, but with emphasis on concepts which will be validated in the numerical
experiments later. In no way do I claim these derivations as my own. The following is a
derivation of the Jacobi method in matrix form, which is the relaxation method which
will be used for the rest of the paper.
 We can first express the matrix A as a sum of its diagonal component D and lower
and upper triangular components L and U:

ULD ++=A (1)

so

fuULD =++)((2)

We can move the upper and lower triangular parts to the right side:

fuULDu ++−=)((3)

We can then multiply both sides by D-1:

))((1 fuULDu ++−= − (4)

We can define

)(1 ULDRJ +−= − (5)

Therefore, we have defined the iteration in matrix form, and can write, in the notation of
Briggs’s chapter in Multi-grid Methods:

fDuRu J
1)0()1(−+= (6)

Weighed Jacobi takes a fraction of the previous iteration and adds it to a fraction of the
previous iteration with the Jacobi iteration applied:

fDuRIu J
1)0()1(])1[(−++−= ωωω (7)

We can rewrite the above as

fDuRu 1)0()1(−+= ωω (8)

 2

where
])1[(JRIR ωωω +−= (9)

This iteration and its characteristics on the grid is the focus of this paper. Before
attempting to implement this method, it is first good to predict the behavior we expect to
see theoretically. One way to do this is to look at the eigenvalues of the matrix Rω. The
following again stems from Briggs, but some of the following was not explicitly
explained and left as an “exercise” in the text.

We first note that, by the properties of eigenvalues and by eq. 9,

RJR ωλωλ ω +−=)1((10)

 Therefore, we first need to find λRJ. We observe that:

IAUL 2−=+ (11)

Therefore,

2−=+ AUL λλ (12)

Noting that, for the 1D case,

ID
2
11 =− (13)

So, using eq. 5 and properties of eigenvalues,

1
2

)2(
2
1

+
−

=−
−

= A
ARJ

λ
λλ (14)

Therefore, remembering eq. 10,

2
1 A

R
ωλλ ω −= (15)

The kth eigenvalue of the matrix A is:

11),
2

(sin4)(2 −≤≤= nk
n

kAk
πλ (16)

So, by eq. 15, the eigenvalues λω are:

 3

11,
2

sin21)(2 −≤≤⎟
⎠
⎞

⎜
⎝
⎛−= nk

n
kRk
πωλ ω (17)

And the jth component of the kth eigenvector is:

njnk
n

jk
jk ≤≤−≤≤⎟

⎠
⎞

⎜
⎝
⎛= 0,11,sin,

πω (18)

We can make two quick observations here. First, for ω between 0 and 1, the

eigenvalues will always lie between -1 and 1, implying stability to the iteration. Second,
we remember that all vectors in the space of the matrix A can be represented as a
weighed sum of the eigenvectors:

∑
−

=

=
1

1

)0(
n

k
kkcu ω (19)

In this case, since the eigenvectors are Fourier modes, there is an additional useful

interpretation of the weighting coefficients ck of the linear combination of eigenvectors;
these are analogous to the Fourier series coefficients in a periodic replication of the
vector u. The other key point to see here is that varying the value of ω allows us to adjust
how the eigenvalues of A vary with the frequency of the Fourier modes. Plotted below is
the eigenvalue magnitude versus k, for n=32. We can easily see that varying ω
significantly changes the relative eigenvalue magnitude at various frequencies.

Figure 1: Distribution of eigenvalue magnitude as ω is varied

 4

 The implications of the graph above manifest themselves when we think of the
homogenous case of Au=0. If we were to use the Jacobi iteration in this case, and started
from a vector as our “guess” at the final answer:

⎟
⎠
⎞

⎜
⎝
⎛=

n
jku πsin)0((20)

where k is between 1 and n-1, we would have an error made of only one mode, i.e. the
error would lie perfectly along a single eigenvector of the matrix A and ck would be zero
for all k except the k which the vector u lay along. A priori, in this simple case, we know
that the solution should converge to 0 with enough steps, as there are no source or sink
terms.
 In practical situations, we won’t know the correct u, and the error will not be
simply along one eigenvector. Now, the importance of Figure 1 becomes clear: adjusting
ω allows us to decide which error frequencies on the grid we want to decay quickly
relative to others. Picking the correct ω is somewhat application specific. In Briggs’
example, he picks to have the eigenvalue magnitudes of the middle frequency and highest
frequency match, so that the grid we work on will be decidedly favored towards either
decay of high frequency modes or low frequency modes. The motive for this choice will
become apparent later. For this condition, ω=2/3. This value of ω will be used
throughout the numerical experiments.

Basic Theory of Multi-grid

 There is an obvious disadvantage to the relaxation method so far: while high
frequency error components can quickly decay, the eigenvalues of lower frequency
components approach 1, meaning that these lower frequency error components take many
more iterations to be damped out than higher frequencies. The essence of multi-grid is to
use this feature to our advantage rather than to our detriment. What if we were to
somehow take a few iterations to first smooth out the high-frequency components on the
fine grid, then downsample the problem onto a coarser grid where the lower frequency
components would decay faster, then somehow go back up to the fine grid?
 First, consider what happens to the kth mode when downsampled onto a grid half
as fine as the original vector (i.e. downsampling by a factor of 2). The kth mode on the
fine grid becomes the kth mode on the coarse grid. This also implies that the “more
oscillatory” modes on the fine grid become aliased on the coarse grid. A rigorous
argument complete with Fourier series plots could be made here, but that is not the point.
The implication is that now the error that refused to decay quickly on the fine grid has
been frequency-shifted so that it has become high-frequency error on the coarse grid and
will decay quickly.
 All that is left to do is to define what it means to move from a fine grid to a coarse
grid and eventually come back again, and how to correctly state the problem so that the
answer achieved is accurate. First, a few basic relationships need to be established.
Again, this is not original thought, and closely follows the Briggs text. First, the
algebraic error of the current iteration is defined as

 5

)()(nn uue −= (21)

where u is the correct value of u, and u(n) is the resulting approximation after n steps.

The residual is defined as the amount by which the current guess at u(n) fails to satisfy
Au=f:

)()(nn ufr A−= (22)

Given these relationships, we can also state that

)()(nn re =A (23)

This fact lets us make the following statement about relaxation, as quoted from Briggs:

“Relaxation on the original equation Au=f with an arbitrary initial guess v is equivalent to
relaxing on the residual equation Ae=r with the specific initial guess e=0.”

This makes intuitive sense by eqs. 21-23: We don’t know the error, but we know
that the error will be zero when the residual is zero. Therefore, we can either iterate to
solve Au=f or we can ask, what would the error vector have to be to yield the current
residual? If we know the error, we know the answer by simple rearrangement of eq. 21.

In more mathematical terms, what the above statements are saying is the
following: if we take a few iterations to get the current value of r, we could then
reformulate the problem by taking that value of r, then solving the new problem Ae=r
using Jacobi iteration, and read off the value of e after a few iterations. This will give us
a guess at what the error was before the problem was restated. Rearrangement of eq. 21
would then imply that if we just added the calculated value of e to the u(n) we had before
restating the problem, we would get a refined guess at the true vector u.
 Putting this fact together with the idea of moving from grid to grid, we can
combine the overall idea into the following:

1) Relax the problem for a few steps on the fine grid with Au=f
2) Calculate the residual r=f-Au(n)

3) Downsample the residual onto a coarser grid
4) Relax on Ae=r for a number of steps, starting with a guess of e=0
5) Upsample and interpolate the resulting e onto the fine grid
6) Refine our guess at u by adding e on the fine grid to the original value of u(n)

 The above method is the central theory of multi-grid and variations of it will show
that there are significant gains to be made by changing the grid.

Implementing a Multi-grid Solver – 1D

 Up to this point, the paper has mostly been a reiteration and thorough explanation
of the Briggs text, specifically highlighting points which will be of importance later. At

 6

this point, however, the subtleties and difficulties of actually implementing a multi-grid
solver arise, and while a few of the upcoming points were explained in the Briggs text,
much of the actual implementation required original struggling on my part. It was quite
difficult despite the clarity of the theoretical basis of multi-grid. I also consulted with
two students in Prof. Jacob White’s group to help me think about aspects of boundary
conditions more clearly.
 In the 1-D case, I sought to implement as simple of a solver as possible; I was far
more interested in developing a more feature-rich 2D solver. Therefore, in the 1-D case,
I developed a solver which would solve Laplace’s equation only, and with zero boundary
conditions. In other words, I wanted to solve only the homogenous case to demonstrate
that the error decays faster on the fine grid for high frequencies versus low frequencies,
and that an inter-grid transfer would make error decay faster.
 Since I only needed to deal with zero boundary conditions in this case, I was able
to use the standard, second finite difference matrix with zero boundary conditions from
class. To demonstrate the multi-grid method, I designed one solver and its associated
finite difference matrix for a 16 point grid problem, and another which would operate on
an 8 point grid. The finite difference method was the standard one from class.
 The inter-grid transfers between the fine and coarse grids were the trickier parts.
Briggs implements downsampling from the fine grid to the coarse grid by the following
“full weighting” definition:

() 1
2

12
4
1

12212
2 −≤≤++= +−

njvvvv h
j

h
j

h
j

h
j (24)

For a vector 7 components long, this operation can be implemented by a

multiplication by the following matrix:

 1 2 1 0 0 0 0
 ¼ * 0 0 1 2 1 0 0 (25)
 0 0 0 0 1 2 1

Such a matrix would move the vector from a grid of seven points to a grid of three
points. This takes care of the coarsening operation; a scaled transpose of this matrix
performs linear interpolation, and allows us to transfer data from the coarse grid to the
fine grid. That fact is the primary motivation for using the full weighting method rather
than simply downsampling by taking every other point from the fine grid.

Unfortunately, practical, non-ideal interpolators will also introduce error through
the interpolation; this error will need to be smoothed out by relaxing again on the fine
grid as it will likely have some higher-frequency components in the interpolation error
best smoothed by the finer grid. If one transposes the above matrix and scales it by 2, the
linear interpolation scheme would be realized.

As stated before, I only sought to confirm the idea that the higher frequency error
will decay faster on the fine grid than the low frequency error. In the graph below, I
defined the initial “guess” as the sum of a low frequency (discrete frequency π/8) and a
higher frequency (discrete frequency 15π/16). It is obvious that the high frequency
component decays much faster than the low frequency component.

 7

Figure 2: High-frequency component of error decays faster than low frequency component

The only other thing left to confirm in the 1D case was that a multi-grid approach

showed some promise of benefit. To demonstrate this, I used the same initial function
and compared a relaxation of thirty steps on the fine grid with a relaxation of ten steps on
the fine grid, ten on the coarser grid, and ten more to smooth out interpolation error at the
end on the fine grid, giving both approaches the same total number of steps. The results
for the single grid approach versus the multi-grid approach are shown below.

Figure 3: The advantage of the grid transfer quickly becomes apparent

I must qualify the above plot with the following information. There was a bit of a
discrepancy with the definition of h in the finite difference method (i.e. the 1/h2 term in
front of the matrix K). Intuitively, as the grid coarsens, h should change. This change
was necessary and gave the best results in the 2D case. However, in the 1D case I had to
tweak this factor a bit; I had to multiply the proper K on the coarse grid by 4 to get the

 8

expected advantage working with the grid transfer. I couldn’t find the source of the
discrepancy, and it might be a subtlety that I missed somewhere. Nonetheless, even with
this mysterious “gain factor,” the above experiment proves that faster convergence to the
zero error state can happen with a grid transfer rather than simply staying on the fine grid
for all steps.

Implementing a Multi-grid Solver – 2D

 The 2D case shares a number of similarities with the 1D case, but it carries a
number of subtleties with it that make implementation of the method significantly more
difficult than the 1D case. The most difficult aspect to attack was getting the boundary
conditions right. I decided that I would stick to Dirichlet boundary conditions for this
project, as their implementation was significant work, let alone think about Neumann
conditions.
 The 1D case was implemented minimally, only thoroughly enough to demonstrate
the relative rates at which the different modes of the error in the homogenous case
decayed and that grid transfers showed a hint of promise. In the 2D case, I wanted to
implement a more useful and practical solver. Specifically, I wanted to be able to specify
Dirichlet boundaries, source terms in the grid, and boundaries within the grid. In the
electrostatics case, this would be like saying that I wanted to be able to specify the
boundary voltages of my simulation grid, any charge source in the medium, and the
voltages of any electrodes existing internal to the grid.
 Specifying charge sources is very easy: just specify them in f. However,
specifying boundary conditions is more difficult. I decided to incorporate the boundary
values by altering both the matrix A and the right-hand side f. As we learned, the 2D
finite difference matrix generally has the following form:

Figure 4:The K matrices from Prof. Strang's new text

 In order to properly implement the boundary condition, we must remember the
equations underlying the K2D matrix: we are simply solving an N2 by N2 system of linear
equations. Therefore, if we fix u(p)=b for some value p and constant b, this means that in
our system of linear equations, whenever the value u(p) shows up in one of the
simultaneous equations, its value must be b. The way to accomplish this is simple; we
must alter Au=f to reflect this fact. If we simply set the pth row of A to zero, and then set
the pth column of that row to be 1 (i.e. set the pth diagonal entry to 1), the value at u(p)
will be forced to f(p). Therefore, assuming f was originally the zero vector, we must now
satisfy that the pth entry of f now be equal to u(p), so now f(p)=b. This has forced u(p)=b.

One might wonder if we should also set the pth column to zero. We should not, as
the columns allow the forced value of u(p) to propagate its information into other parts of

 9

the grid. Physically, at least in electrostatics, there is no intuition of having a source at a
point where there is a boundary condition, because the boundary manifests itself as a
source in this implementation. Therefore, if there is a boundary at u(p), f(p) will be zero
at that point before we put the constraint on the point.
 The above method works excellently for interior boundary points. The actual grid
boundaries, where Dirichlet conditions were sought, are not as straightforward. Some
finite difference methods deal with these points implicitly by never explicitly defining
grid points at the edges. Instead, I decided to explicitly define these points and alter the
A matrix, creating a matrix format which deviated from that in the figure above.
 The difficulties in the above implementation arise when the difference matrix of
“K2D” “looks” outside the grid implicitly when it touches the edges of the grid. This is
easier to see in the 1D K matrix. The first and last rows of K are missing -1’s in that
matrix. Implicitly, this means that the finite difference operator looked “off the grid” and
found zero, unless a nonzero value shows up to make a non-zero entry in f. I decided to
explicitly define the boundary values instead of trying to keep up with these issues.
 First, the ordering definition of u and A must be defined. For my implementation,
u(0) was the upper-left corner of the grid and u(N) was the lower-left corner. u(N+1) was
the point right of u(0), and u(2N) was the point to the right of u(N). u(N2-N+1) was the
upper-right corner, and u(N2) was the lower-right corner.
 Therefore, to define explicit boundaries, I needed to set the first N values of u to
the Dirichlet conditions. Therefore, when constructing A, by the reasoning from the
interior boundary points described above, the upper-left corner of A was a block identity
matrix of size N, and f(1…N) was set to the boundary value. This construction dealt with
the left edge easily. I constructed the rest of A by using the traditional 2D stencil from
class. In order to account for the top and bottom edges, I made sure to set those
corresponding rows in A to zero, except with a 1 on the diagonal and the corresponding
value of f to the boundary condition. When I reached the lower-right corner, I augmented
A with another block identity matrix of size N, and set f to the boundary condition at
those points. A matrix density plot is shown below to illustrate this construction.
Approaching the boundaries explicitly made them easier to track, but an algorithm to
construct a general A for a given mesh size was quite difficult; that is the tradeoff.

 10

Figure 5: Sparsity pattern of my altered finite difference matrix which allows for explicit boundary
definition. Notice the periodic gaps along the diagonal representing the top and bottom edges of the
grid.

 With boundary conditions properly incorporated, the last topic to address was that
of inter-grid transfers: what matrix downsamples the original data to a coarser grid?
Which matrix transfers from the coarse grid to the fine grid? The proper way to phrase
the question is this: what is the proper way to transfer data from one grid to another?
 In going from a coarse grid to a fine grid, the central problem is interpolation.
The central ideas of interpolation and downsampling were discussed in the 1-D section.
The 2D implementation is highly similar, but with a little more complexity than the 1D
case due to slightly trickier boundaries on the edges. I decided that I would again seek to
do downsampling as a weighted averaging of neighboring points rather than by injection.
Again, the reason for this approach was so that simply transposing the downsampling
matrix would yield the linear interpolation matrix for upsampling and linear interpolation.
 Such a downsampling matrix was rather straightforward to implement for the
interior points of the grid. Incorporating the edges would have been somewhat trickier,
and the averaging scheme used, if simply allowed to include the edges, would have
changed the boundary values themselves, which is to be avoided at all costs. Therefore, I
took the following approach.

Downsampling

1) Calculate the residual
2) Remove the edges from the fine grid residual data
3) Design a downsampling matrix to transform the inner grid residual data from the

fine grid to the twice-as-coarse grid
4) Apply the downsampling matrix to the interior residual data

 11

5) Append zeros around downsampled residual data grid to represent the fact that the
residuals are by definition zero at the edges where we have defined the exterior
boundaries.

Upsampling

1) Remove the zeros from the coarse grid’s edges (this is after we have relaxed the
residual problem on the coarser grid)

2) Apply the scaled, transposed downsampling matrix to the interior points to get the
interpolated guess at the error on the fine grid

3) Pad the resulting upsampled interior points with zeros since there is no refinement
in the error at the known boundaries

4) Add the upsampled guess at the error to the original guess at u

The downsampling operator was defined explicitly in Briggs, though in an index form
rather than matrix form. I implemented the operation as a matrix in order to speed up
computation in MatLab. Briggs defines the downsampling operation as follows in 2D
(v2h is the vector represented on the coarse grid, vh is the grid on the fine grid):

() 1
2

,1,

4

2
16
1

2,2

2,122,1212,212,2

12,1212,1212,1212,12

2 −≤≤

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

++++

+++

= +−+−

++−++−−−
nji

v

vvvv

vvvv

v
h

ji

h
ji

h
ji

h
ji

h
ji

h
ji

h
ji

h
ji

h
ji

h
ij (26)

I implemented it instead as a matrix operator. In order to implement the above

operation, the following stencil was used:

))121)()3(()242)()3)((121((
16
1 zerosMzerosM −− (27)

M was the number of interior points in one edge of the fine grid from which the

mapping was supposed to take place. As a final point, the stencil was not simply
replicated along the diagonal, rather to implement the correct operation it was
implemented in a staggered pattern (similar to 1D) as shown in the sparsity pattern
below.

 12

Figure 6: Sparsity pattern for the downsampling matrix; stencil is replicated in the matrix in a
staggered fashion

Briggs describes the indexed form of the 2-D linear interpolation operator, and it is

simply implemented by transposing the above matrix and scaling by 4.

Numerical Experiments in 2-D

 Finally, with all the tools in place for 2-D, numerical experiments could be
undertaken. A convincing example that the system was working properly would be
solution of a problem with a known solution. To this end, I decided to compare the
multi-grid solver’s solution to the actual solution to Laplace’s equation with the
following boundary conditions:

Figure 7: Boundary conditions for the known solution to Laplace's equation

 The solution to Laplace’s equation in this case can be expressed as a sum of sines
and hyperbolic sines. I will not go through the derivation here for that answer, but I
wrote a loop in MatLab to compute a partial sum of the relevant terms to produce the
correct answer so that it could be compared to the multi-grid solver’s output. The two
solutions produced are very similar. The Gibbs phenomenon is apparent in the partial
sum of sines. They are plotted below.

 13

Figure 8: Fourier expansion of actual solution. Right edge converges to 1; perspective of plot is

misleading.

Figure 9: My solver's output after 1000 steps on the fine grid

 14

 The next obvious experiment is to see how quickly the relaxation error decays to
zero. The decay of pure modes was examined for the 1-D case. Now however, the solver
was considerably more powerful, so examining more sophisticated problems would be
interesting. In general, we don’t know the final solution; we only know the residual after
a step. So, from now on, instead of discussing error, we will examine how the norm of
the residual decays.
 An interesting case to examine would be a unit spatial impulse. The Fourier
expansion of an impulse has equal weights on all frequencies, so examining how an
initial guess of an “impulse” decays to zero everywhere in homogenous conditions would
be insightful. The following plots show a unit impulse located at 67,67 on a 133 by 133
grid after various numbers of steps.

Figure 10: Decay of a unit impulse. Notice that after 30 steps, the solution is much "smoother" than
after 10. This is because the higher-frequency modes have been filtered out by the fine grid.

 15

Figure 11: Stalling of residual decay on the fine grid

 We can see that the residual decays very quickly initially, but the decay rate then
stalls. This is because the error that is left is lower-frequency error which does not decay
quickly on the fine grid. This is seen in the figure, as after twenty and thirty iterations,
the solution looks very smooth.
 The question to ask now is, how much better could the answer be after a number
of steps if we employ a multi-grid approach? In the following experiment, three grid
coarseness levels were available. Grid 1 was the fine grid. Grid 2 was the “medium”
grid, and was twice as coarse as Grid 1. Grid 3 was the “coarse” grid, and was twice as
coarse as grid 2.
 An experiment similar to the one in Figure 10 was attempted with the unit
impulse. Three relaxations were performed, starting with homogenous conditions and a
unit impulse initial condition.

 Trial 1: Relax with 2500 steps on Grid 1
 Trial 2:

a) Relax with 534 steps on Grid 1
b) Move to Grid 2 and relax for 534 steps
c) Move back to Grid 1, incorporate the refinement from (b), and relax
 for 1432 steps for a total of 2500 steps

 Trial 3:
 a) Relax with 300 steps on Grid 1
 b) Relax with 300 steps on Grid 2
 c) Relax with 300 steps on Grid 3
 d) Move back to Grid 2, incorporate refinement from (c) and relax for 800
 steps
 e) Move back to Grid 1, incorporate refinement from (d) and relax for 800
 steps for a total of 2500 steps

 This scheme was chosen because it gave all methods the total number of steps.
Additionally, for trial 2 and trial 3, the ratio of forward relaxations (i.e. relaxation after
moving from fine to coarse) to backwards relaxation was constant at 3/8. The detail after
2500 steps is shown below for all three cases.

 16

Figure 12: The three-grid scheme outperforms both the single and dual grid schemes.

 It is clearly visible that given the same number of steps, the three-grid scheme
outperforms the single grid scheme and the dual grid scheme. However, it is not a given
that this result will always be the case. If the error, for example, was known to be almost
purely high-frequency, the advantage of the grid transfers might be outweighed by the
computation power necessary to keep making the transfers and interpolations.

The case shown above for the unit impulse is a case where the frequencies are
equally weighted in the initial conditions. As a second trial, I examined how the
residuals decayed for an initial condition with more low-frequency content. This case
was again homogenous with boundary conditions of zero, but the initial “guess” was 1
everywhere except at the boundaries. I repeated the experiment with these initial
conditions, and the results are shown below.

 17

Figure 13: Decay of residuals for the three schemes. The only fair comparison across methods is
after all three trials have made it back to the fine grid (i.e. after the last spike in residual on the green
line which comes from the interpolation error). The three-grid method is the most accurate after
2500 steps.

Figure 14: Detail of the final residual values for the three methods. The three-grid method clearly

wins out over the others. This is a more drastic out-performance than before since the initial
condition contained more low frequency error, which was better managed on the coarser grids.

Once again, the three-grid scheme wins. It is important to note that in the first
figure, the “norm” during the steps while the problem’s residual resides in the coarser
grid is not comparable to the norm of vectors in other grids, as the norm is vector-size
dependent. Therefore, the only truly fair points on the graph to compare the methods are
when all methods are on the same grids, namely the very beginning and very end (shown
in detail in Figure 14).

 18

There are two ways to interpret the results. We can get a better answer with the
same number of steps by using the three-grid cycle. Alternatively, we could stop earlier
with the three-grid cycle and settle for the value that the other methods would have
produced with more steps. The tradeoff is completely problem dependent.

I was suspicious as to how much difference the above residuals made in the
appearance of the answer, especially given the much higher initial values of the residuals.
The difference after trials 1, 2 and 3 is stark and is shown below. Remember, with an
infinite number of steps, all three methods would converge to a value of zero everywhere.

The results are obviously different. Trial 3 yielded an answer visually very close

to the correct answer of 0. It is clear that going beyond simply one coarsening operation
yielded great benefits. The natural next step would be to try a fourth, coarser grid, and
continue coarsening. One could coarsen the grid all the way to a single point. Also,

 19

trying a multitude of different step distribution schemes in order to maximize efficiency
of steps at each grid could be tried too.

One could easily write a book about these concerns, but going far down either of
these paths would step outside the scope of this introduction to multi-grid and its benefits.
Instead, it would be more appropriate to confirm this limited-multi-grid system on other
problems.

As stated earlier, a key goal of my 2D implementation was the ability to impose
boundary conditions within the grid. I designed my Jacobi relaxer, as described earlier,
to support internal boundaries as well. I implemented the system so that I could simply
use Windows Paint ® to draw whatever regions I wanted to specify as at a particular
“voltage.” As an appropriate example, I decided to determine the potential distribution
resulting from having an electrode in the shape of the letters “MIT” in the grid, with 0
volt boundary conditions on the edge of the grid. The bitmap used to create the boundary
conditions is shown below. The black letters are defined to be 1 volt, the white area zero
volts.

Shown below is a plot of the relaxation solution (still staying all the time on the
fine grid) of the solution to the problem.

Figure 15: "Electrodes" in shape "MIT" relaxed on fine grid

 20

 Finally, just to prove that the ability to add charge into the simulation was added,
I added a line of charge the under the “electrodes” used to write “MIT” to underline the
word.

Figure 16: MIT electrodes with a line of charge underlining them

 Placement of arbitrary charge within the medium with arbitrary boundary
conditions was supported as well. The figure below shows the gains made with a 930
step double-grid method vs. a single grid method; the point is to show that the charge
placement was supported across multiple grids.

Figure 17: Multi-grid support included for arbitrary charge distributions as well

 21

 As for multi-grid support of internal boundary conditions (i.e. if we wanted to
relax the MIT electrode problem with multi-grid), I did not quite get around to that. I
thought I had it done, but I discovered too late that I had forgotten a subtle aspect. When
relaxing on Ae=r, I forgot to pin internal values of e at the boundaries to zero, as by
definition there would never be error at one of the internal boundaries. Without doing
this, the compensated error approximation from the coarse grid will attempt to force the
value at the boundary to deviate from the correct internal boundary condition.

This could be fixed by changing the matrix A by making the rows corresponding
to these points zero, except for a 1 on the diagonal. Additionally, r at that point would
need to be 0, but I had already thought of and taken care of that and had implemented that
aspect. As simple as the fix sounds, I had an elaborate setup in the algorithm for the
current system, and making the change would have meant tearing the whole system down
and building it back up, which was unrealistic as late as I found the problem. However, I
did determine the source of the problem and its likely fix.

Conclusion

 The most convincing figure of the paper is replicated below.

 This figure truly sums up the power of multi-grid. In the same number of steps,
the approach with the largest utilization of coarsening got closest to the right answer.
One can be more quantitative about the true efficiency of the method: what is the
computational tradeoff between doing a few more iterations on the fine grid and moving
to a coarse grid? Do the benefits of moving outweigh the computational costs of
downsampling and interpolation? What is the best way to design a multi-grid cycle
scheme? How long should one spend on a coarse grid versus a fine one? These are all
excellent questions of multi-grid, and there is no definitive right answer.
 As for the tradeoff between interpolation and downsampling versus spending time
on a fine grid, making an absolutely definitive answer is difficult. However, multiplying
by the Jacobi matrix for an iteration and multiplying by an upsampling or downsampling
matrix consist of matrix multiplications of relatively the same size and density, making
the intergrid transfers relatively cheap and insignificant compared to large numbers of

 22

steps of relaxation computation. It is more likely that the tradeoffs will come from
determining the proper amount of time to spend at each grid. A possible way to do this
would be to look at the FFT of the residual, try to predict the spectral content of the error,
and adaptively decide which grid to move to based on that result. Other ways would be
to look for patterns in the particular class of data being examined. Such design issues
would make excellent projects in and of themselves.
 What is definite, however, is that multi-grid can yield astonishing results in the
right circumstances and can give excellent answers in a fraction of the time that a single-
grid relaxation would need. If an exact solution is not necessary, and the grid is huge,
multi-grid is an excellent way to go.

References

Briggs, William, et al. A Multigrid Tutorial, Second Edition. © 2000 by Society for
Industrial and Applied Mathematics.

Jaydeep Bardhan and David Willis, two great advisors from Prof. Jacob White’s group.

Prof. Gilbert Strang, for his draft of his new textbook.

 23

	
	The Fundamentals and Advantages of Multi-grid Techniques
	Introduction
	Basic Theory of the Jacobi Relaxation Method
	Downsampling
	Upsampling
	Numerical Experiments in 2-D
	Conclusion
	References

