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Introduction 
 
 The finite difference method represents a highly straightforward and logical 
approach to approximating continuous problems using discrete methods.  At its heart is a 
simple idea: substitute finite, discrete differences for derivatives in some way appropriate 
for a given problem, make the time and space steps the right size, run the difference 
method, and get an approximation of the answer. 
 Many of these finite difference methods can ultimately be written in a matrix 
form, with a finite difference matrix multiplying a vector of unknowns to equal a known 
quantity or source term.  In this paper, we will be examining the problem Au=f, where A 
represents a finite difference matrix operating on u, a vector of unknowns, and f 
represents a time-independent vector of source terms.  While this is a general problem, 
we will specifically examine the case where A is the finite difference approximation to 
the centered second derivative.  We will examine solutions arising when f is zero 
(Laplace’s equation) and when it is nonzero (Poisson’s equation). 
 The discussion would be quite straightforward if we wanted it to be; to find u, we 
would simply need to multiply both sides of the equation by A-1, explicitly finding  
u= A-1f.  While straightforward, this method becomes highly impractical as the mesh 
becomes fine and A becomes large, requiring inversion of an impractically large matrix.  
This is especially true for the 2D and 3D finite difference matrices, whose dimensions 
grow as the square and cube of the length of one edge of the square grid. 
 It is for this reason that relaxation methods became both popular and necessary.  
Many times in engineering applications, getting the exact answer is not necessary; getting 
the answer right to within a certain percentage of the actual answer is often good enough.  
To this end, relaxation methods allow us to take steps toward the right answer.  The 
advantage here is that we can take a few iterations toward the answer, see if the answer is 
good enough, and if it is not, iterate until it is.  Oftentimes, using such an approach, 
getting an answer “good enough” could be done with orders of magnitude less time and 
computational energy than with an exact method. 
 However, relaxation methods are not without their tradeoffs.  As will be shown, 
the error between the actual answer and the last iteration’s answer ultimately will decay 
to zero.  However, not all frequency components of the error will get to zero at the same 
rate.  Some error modes will get there faster than others.  What we seek is to make all the 
error components get to zero as fast as possible by compensating for this difference in 
decay rates.  This is the essence of multi-grid; multi-grid seeks to allow the error modes 
of the solution to decay as quickly as possible by changing the resolution of the grid to 
let the error decay properties of the grid be an advantage rather than a liability. 
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Basic Theory of the Jacobi Relaxation Method 
 
 Before going into the theory of the method, I first want to state that much of the 
following closely comes from an explanation in A Multi-grid Tutorial by William Briggs 
et al.  This text explained the material as clearly and concisely as one could hope for.  To 
a large extent, much of the “theory section” following will be reiteration of their 
explanation, but with emphasis on concepts which will be validated in the numerical 
experiments later.  In no way do I claim these derivations as my own.  The following is a 
derivation of the Jacobi method in matrix form, which is the relaxation method which 
will be used for the rest of the paper. 
 We can first express the matrix A as a sum of its diagonal component D and lower 
and upper triangular components L and U: 

 
ULD ++=A (1) 

 
so 
 

fuULD =++ )( (2) 
 

We can move the upper and lower triangular parts to the right side: 
 

fuULDu ++−= )( (3) 
 

We can then multiply both sides by D-1: 
 

))((1 fuULDu ++−= − (4) 
 
We can define 
 

)(1 ULDRJ +−= − (5) 
 
Therefore, we have defined the iteration in matrix form, and can write, in the notation of 
Briggs’s chapter in Multi-grid Methods: 
 

fDuRu J
1)0()1( −+= (6) 

 
Weighed Jacobi takes a fraction of the previous iteration and adds it to a fraction of the 
previous iteration with the Jacobi iteration applied: 
 

fDuRIu J
1)0()1( ])1[( −++−= ωωω (7) 

 
We can rewrite the above as  
 

fDuRu 1)0()1( −+= ωω (8) 
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where 
])1[( JRIR ωωω +−= (9) 

 
This iteration and its characteristics on the grid is the focus of this paper.  Before 
attempting to implement this method, it is first good to predict the behavior we expect to 
see theoretically.  One way to do this is to look at the eigenvalues of the matrix Rω.  The 
following again stems from Briggs, but some of the following was not explicitly 
explained and left as an “exercise” in the text. 
 
We first note that, by the properties of eigenvalues and by eq. 9,  

 
RJR ωλωλ ω +−= )1( (10) 

  
 Therefore, we first need to find λRJ.  We observe that: 
 

IAUL 2−=+ (11) 
 
Therefore, 
 

2−=+ AUL λλ (12) 
 
Noting that, for the 1D case, 
 

ID
2
11 =− (13) 

 
So, using eq. 5 and properties of eigenvalues, 
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−
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−

= A
ARJ
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λλ (14) 

 
Therefore, remembering eq. 10, 
 

2
1 A

R
ωλλ ω −= (15) 

 
The kth eigenvalue of the matrix A is: 
 

11),
2

(sin4)( 2 −≤≤= nk
n

kAk
πλ (16) 

 
So, by eq. 15, the eigenvalues λω are: 
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And the jth component of the kth eigenvector is: 
 

njnk
n

jk
jk ≤≤−≤≤⎟

⎠
⎞

⎜
⎝
⎛= 0,11,sin,

πω (18) 

 
We can make two quick observations here.  First, for ω between 0 and 1, the 

eigenvalues will always lie between -1 and 1, implying stability to the iteration.  Second, 
we remember that all vectors in the space of the matrix A can be represented as a 
weighed sum of the eigenvectors: 
 

∑
−

=

=
1

1

)0(
n

k
kkcu ω (19) 

 
In this case, since the eigenvectors are Fourier modes, there is an additional useful 

interpretation of the weighting coefficients ck of the linear combination of eigenvectors; 
these are analogous to the Fourier series coefficients in a periodic replication of the 
vector u.  The other key point to see here is that varying the value of ω allows us to adjust 
how the eigenvalues of A vary with the frequency of the Fourier modes.  Plotted below is 
the eigenvalue magnitude versus k, for n=32.  We can easily see that varying ω 
significantly changes the relative eigenvalue magnitude at various frequencies. 

 

 
Figure 1: Distribution of eigenvalue magnitude as ω is varied 
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 The implications of the graph above manifest themselves when we think of the 
homogenous case of Au=0.  If we were to use the Jacobi iteration in this case, and started 
from a vector as our “guess” at the final answer: 
 

⎟
⎠
⎞

⎜
⎝
⎛=

n
jku πsin)0( (20) 

 
where k is between 1 and n-1, we would have an error made of only one mode, i.e. the 
error would lie perfectly along a single eigenvector of the matrix A and ck would be zero 
for all k except the k which the vector u lay along.  A priori, in this simple case, we know 
that the solution should converge to 0 with enough steps, as there are no source or sink 
terms.   
 In practical situations, we won’t know the correct u, and the error will not be 
simply along one eigenvector.  Now, the importance of Figure 1 becomes clear: adjusting 
ω allows us to decide which error frequencies on the grid we want to decay quickly 
relative to others.  Picking the correct ω is somewhat application specific.  In Briggs’ 
example, he picks to have the eigenvalue magnitudes of the middle frequency and highest 
frequency match, so that the grid we work on will be decidedly favored towards either 
decay of high frequency modes or low frequency modes.  The motive for this choice will 
become apparent later.  For this condition, ω=2/3.  This value of ω will be used 
throughout the numerical experiments. 
 
Basic Theory of Multi-grid 
 
 There is an obvious disadvantage to the relaxation method so far:  while high 
frequency error components can quickly decay, the eigenvalues of lower frequency 
components approach 1, meaning that these lower frequency error components take many 
more iterations to be damped out than higher frequencies.  The essence of multi-grid is to 
use this feature to our advantage rather than to our detriment.  What if we were to 
somehow take a few iterations to first smooth out the high-frequency components on the 
fine grid, then downsample the problem onto a coarser grid where the lower frequency 
components would decay faster, then somehow go back up to the fine grid? 
 First, consider what happens to the kth mode when downsampled onto a grid half 
as fine as the original vector (i.e. downsampling by a factor of 2).  The kth mode on the 
fine grid becomes the kth mode on the coarse grid.  This also implies that the “more 
oscillatory” modes on the fine grid become aliased on the coarse grid.  A rigorous 
argument complete with Fourier series plots could be made here, but that is not the point.  
The implication is that now the error that refused to decay quickly on the fine grid has 
been frequency-shifted so that it has become high-frequency error on the coarse grid and 
will decay quickly. 
 All that is left to do is to define what it means to move from a fine grid to a coarse 
grid and eventually come back again, and how to correctly state the problem so that the 
answer achieved is accurate.  First, a few basic relationships need to be established.  
Again, this is not original thought, and closely follows the Briggs text.  First, the 
algebraic error of the current iteration is defined as  
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)()( nn uue −= (21) 
 

where u is the correct value of u, and u(n) is the resulting approximation after n steps. 
  

The residual is defined as the amount by which the current guess at u(n) fails to satisfy 
Au=f: 
 

)()( nn ufr A−= (22) 
 
Given these relationships, we can also state that  
 

)()( nn re =A (23) 
 
This fact lets us make the following statement about relaxation, as quoted from Briggs: 
 
“Relaxation on the original equation Au=f with an arbitrary initial guess v is equivalent to 
relaxing on the residual equation Ae=r with the specific initial guess e=0.” 
 

This makes intuitive sense by eqs. 21-23:  We don’t know the error, but we know 
that the error will be zero when the residual is zero.  Therefore, we can either iterate to 
solve Au=f or we can ask, what would the error vector have to be to yield the current 
residual?  If we know the error, we know the answer by simple rearrangement of eq. 21. 

In more mathematical terms, what the above statements are saying is the 
following: if we take a few iterations to get the current value of r, we could then 
reformulate the problem by taking that value of r, then solving the new problem Ae=r 
using Jacobi iteration, and read off the value of e after a few iterations.  This will give us 
a guess at what the error was before the problem was restated.  Rearrangement of eq. 21 
would then imply that if we just added the calculated value of e to the u(n) we had before 
restating the problem, we would get a refined guess at the true vector u. 
 Putting this fact together with the idea of moving from grid to grid, we can 
combine the overall idea into the following: 
 
1) Relax the problem for a few steps on the fine grid with Au=f 
2) Calculate the residual r=f-Au(n) 

3) Downsample the residual onto a coarser grid 
4) Relax on Ae=r for a number of steps, starting with a guess of e=0 
5) Upsample and interpolate the resulting e onto the fine grid 
6) Refine our guess at u by adding e on the fine grid to the original value of u(n) 

 
 The above method is the central theory of multi-grid and variations of it will show 
that there are significant gains to be made by changing the grid. 
 
Implementing a Multi-grid Solver – 1D 
 
 Up to this point, the paper has mostly been a reiteration and thorough explanation 
of the Briggs text, specifically highlighting points which will be of importance later.  At 
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this point, however, the subtleties and difficulties of actually implementing a multi-grid 
solver arise, and while a few of the upcoming points were explained in the Briggs text, 
much of the actual implementation required original struggling on my part.  It was quite 
difficult despite the clarity of the theoretical basis of multi-grid.  I also consulted with 
two students in Prof. Jacob White’s group to help me think about aspects of boundary 
conditions more clearly. 
 In the 1-D case, I sought to implement as simple of a solver as possible; I was far 
more interested in developing a more feature-rich 2D solver.  Therefore, in the 1-D case, 
I developed a solver which would solve Laplace’s equation only, and with zero boundary 
conditions.  In other words, I wanted to solve only the homogenous case to demonstrate 
that the error decays faster on the fine grid for high frequencies versus low frequencies, 
and that an inter-grid transfer would make error decay faster. 
 Since I only needed to deal with zero boundary conditions in this case, I was able 
to use the standard, second finite difference matrix with zero boundary conditions from 
class.  To demonstrate the multi-grid method, I designed one solver and its associated 
finite difference matrix for a 16 point grid problem, and another which would operate on 
an 8 point grid.  The finite difference method was the standard one from class. 
 The inter-grid transfers between the fine and coarse grids were the trickier parts.  
Briggs implements downsampling from the fine grid to the coarse grid by the following 
“full weighting” definition: 
 

( ) 1
2

12
4
1

12212
2 −≤≤++= +−

njvvvv h
j

h
j

h
j

h
j (24) 

 
For a vector 7 components long, this operation can be implemented by a 

multiplication by the following matrix: 
 
     1 2 1 0 0 0 0 
    ¼ * 0 0 1 2 1 0 0         (25) 
     0 0 0 0 1 2 1 
 

Such a matrix would move the vector from a grid of seven points to a grid of three 
points.  This takes care of the coarsening operation; a scaled transpose of this matrix 
performs linear interpolation, and allows us to transfer data from the coarse grid to the 
fine grid.  That fact is the primary motivation for using the full weighting method rather 
than simply downsampling by taking every other point from the fine grid.   

Unfortunately, practical, non-ideal interpolators will also introduce error through 
the interpolation; this error will need to be smoothed out by relaxing again on the fine 
grid as it will likely have some higher-frequency components in the interpolation error 
best smoothed by the finer grid.  If one transposes the above matrix and scales it by 2, the 
linear interpolation scheme would be realized. 

As stated before, I only sought to confirm the idea that the higher frequency error 
will decay faster on the fine grid than the low frequency error.  In the graph below, I 
defined the initial “guess” as the sum of a low frequency (discrete frequency π/8) and a 
higher frequency (discrete frequency 15π/16).  It is obvious that the high frequency 
component decays much faster than the low frequency component. 
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Figure 2: High-frequency component of error decays faster than low frequency component 

 
The only other thing left to confirm in the 1D case was that a multi-grid approach 

showed some promise of benefit.  To demonstrate this, I used the same initial function 
and compared a relaxation of thirty steps on the fine grid with a relaxation of ten steps on 
the fine grid, ten on the coarser grid, and ten more to smooth out interpolation error at the 
end on the fine grid, giving both approaches the same total number of steps.  The results 
for the single grid approach versus the multi-grid approach are shown below. 

 

 
Figure 3: The advantage of the grid transfer quickly becomes apparent 

I must qualify the above plot with the following information.  There was a bit of a 
discrepancy with the definition of h in the finite difference method (i.e. the 1/h2 term in 
front of the matrix K).  Intuitively, as the grid coarsens, h should change.  This change 
was necessary and gave the best results in the 2D case.  However, in the 1D case I had to 
tweak this factor a bit; I had to multiply the proper K on the coarse grid by 4 to get the 
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expected advantage working with the grid transfer.  I couldn’t find the source of the 
discrepancy, and it might be a subtlety that I missed somewhere.  Nonetheless, even with 
this mysterious “gain factor,” the above experiment proves that faster convergence to the 
zero error state can happen with a grid transfer rather than simply staying on the fine grid 
for all steps. 
 
Implementing a Multi-grid Solver – 2D 
 
 The 2D case shares a number of similarities with the 1D case, but it carries a 
number of subtleties with it that make implementation of the method significantly more 
difficult than the 1D case.  The most difficult aspect to attack was getting the boundary 
conditions right.  I decided that I would stick to Dirichlet boundary conditions for this 
project, as their implementation was significant work, let alone think about Neumann 
conditions. 
 The 1D case was implemented minimally, only thoroughly enough to demonstrate 
the relative rates at which the different modes of the error in the homogenous case 
decayed and that grid transfers showed a hint of promise.  In the 2D case, I wanted to 
implement a more useful and practical solver.  Specifically, I wanted to be able to specify 
Dirichlet boundaries, source terms in the grid, and boundaries within the grid.  In the 
electrostatics case, this would be like saying that I wanted to be able to specify the 
boundary voltages of my simulation grid, any charge source in the medium, and the 
voltages of any electrodes existing internal to the grid. 
 Specifying charge sources is very easy: just specify them in f.  However, 
specifying boundary conditions is more difficult.  I decided to incorporate the boundary 
values by altering both the matrix A and the right-hand side f.  As we learned, the 2D 
finite difference matrix generally has the following form: 
 

 
Figure 4:The K matrices from Prof. Strang's new text 

 
 In order to properly implement the boundary condition, we must remember the 
equations underlying the K2D matrix: we are simply solving an N2 by N2 system of linear 
equations.  Therefore, if we fix u(p)=b for some value p and constant b, this means that in 
our system of linear equations, whenever the value u(p) shows up in one of the 
simultaneous equations, its value must be b.  The way to accomplish this is simple; we 
must alter Au=f to reflect this fact.  If we simply set the pth row of A to zero, and then set 
the pth column of that row to be 1 (i.e. set the pth diagonal entry to 1), the value at u(p) 
will be forced to f(p).  Therefore, assuming f was originally the zero vector, we must now 
satisfy that the pth entry of f now be equal to u(p), so now f(p)=b.  This has forced u(p)=b.   

One might wonder if we should also set the pth column to zero.  We should not, as 
the columns allow the forced value of u(p) to propagate its information into other parts of 
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the grid.  Physically, at least in electrostatics, there is no intuition of having a source at a 
point where there is a boundary condition, because the boundary manifests itself as a 
source in this implementation.  Therefore, if there is a boundary at u(p), f(p) will be zero 
at that point before we put the constraint on the point.   
 The above method works excellently for interior boundary points.  The actual grid 
boundaries, where Dirichlet conditions were sought, are not as straightforward.  Some 
finite difference methods deal with these points implicitly by never explicitly defining 
grid points at the edges.  Instead, I decided to explicitly define these points and alter the 
A matrix, creating a matrix format which deviated from that in the figure above. 
 The difficulties in the above implementation arise when the difference matrix of 
“K2D” “looks” outside the grid implicitly when it touches the edges of the grid.  This is 
easier to see in the 1D K matrix.  The first and last rows of K are missing -1’s in that 
matrix.  Implicitly, this means that the finite difference operator looked “off the grid” and 
found zero, unless a nonzero value shows up to make a non-zero entry in f.  I decided to 
explicitly define the boundary values instead of trying to keep up with these issues. 
 First, the ordering definition of u and A must be defined.  For my implementation, 
u(0) was the upper-left corner of the grid and u(N) was the lower-left corner.  u(N+1) was 
the point right of u(0), and u(2N) was the point to the right of u(N).  u(N2-N+1) was the 
upper-right corner, and u(N2) was the lower-right corner. 
 Therefore, to define explicit boundaries, I needed to set the first N values of u to 
the Dirichlet conditions.  Therefore, when constructing A, by the reasoning from the 
interior boundary points described above, the upper-left corner of A was a block identity 
matrix of size N, and f(1…N) was set to the boundary value.  This construction dealt with 
the left edge easily.  I constructed the rest of A by using the traditional 2D stencil from 
class. In order to account for the top and bottom edges, I made sure to set those 
corresponding rows in A to zero, except with a 1 on the diagonal and the corresponding 
value of f to the boundary condition.  When I reached the lower-right corner, I augmented 
A with another block identity matrix of size N, and set f to the boundary condition at 
those points.  A matrix density plot is shown below to illustrate this construction.  
Approaching the boundaries explicitly made them easier to track, but an algorithm to 
construct a general A for a given mesh size was quite difficult; that is the tradeoff. 
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Figure 5: Sparsity pattern of my altered finite difference matrix which allows for explicit boundary 
definition.  Notice the periodic gaps along the diagonal representing the top and bottom edges of the 
grid. 

 With boundary conditions properly incorporated, the last topic to address was that 
of inter-grid transfers: what matrix downsamples the original data to a coarser grid?  
Which matrix transfers from the coarse grid to the fine grid?  The proper way to phrase 
the question is this: what is the proper way to transfer data from one grid to another? 
 In going from a coarse grid to a fine grid, the central problem is interpolation. 
The central ideas of interpolation and downsampling were discussed in the 1-D section.  
The 2D implementation is highly similar, but with a little more complexity than the 1D 
case due to slightly trickier boundaries on the edges.  I decided that I would again seek to 
do downsampling as a weighted averaging of neighboring points rather than by injection.  
Again, the reason for this approach was so that simply transposing the downsampling 
matrix would yield the linear interpolation matrix for upsampling and linear interpolation. 
 Such a downsampling matrix was rather straightforward to implement for the 
interior points of the grid.  Incorporating the edges would have been somewhat trickier, 
and the averaging scheme used, if simply allowed to include the edges, would have 
changed the boundary values themselves, which is to be avoided at all costs.  Therefore, I 
took the following approach. 
 
Downsampling 
 

1) Calculate the residual 
2) Remove the edges from the fine grid residual data 
3) Design a downsampling matrix to transform the inner grid residual data from the 

fine grid to the twice-as-coarse grid 
4) Apply the downsampling matrix to the interior residual data 
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5) Append zeros around downsampled residual data grid to represent the fact that the 
residuals are by definition zero at the edges where we have defined the exterior 
boundaries. 

 
Upsampling 
 

1) Remove the zeros from the coarse grid’s edges (this is after we have relaxed the 
residual problem on the coarser grid) 

2) Apply the scaled, transposed downsampling matrix to the interior points to get the 
interpolated guess at the error on the fine grid 

3) Pad the resulting upsampled interior points with zeros since there is no refinement 
in the error at the known boundaries 

4) Add the upsampled guess at the error to the original guess at u 
 

The downsampling operator was defined explicitly in Briggs, though in an index form 
rather than matrix form.  I implemented the operation as a matrix in order to speed up 
computation in MatLab.  Briggs defines the downsampling operation as follows in 2D 
(v2h is the vector represented on the coarse grid, vh is the grid on the fine grid): 
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I implemented it instead as a matrix operator.  In order to implement the above 

operation, the following stencil was used: 
 

))121)()3(()242)()3)((121((
16
1 zerosMzerosM −−  (27) 

 
M was the number of interior points in one edge of the fine grid from which the 

mapping was supposed to take place. As a final point, the stencil was not simply 
replicated along the diagonal, rather to implement the correct operation it was 
implemented in a staggered pattern (similar to 1D) as shown in the sparsity pattern 
below. 

 

 12



 
Figure 6: Sparsity pattern for the downsampling matrix; stencil is replicated in the matrix in a 
staggered fashion 

 
Briggs describes the indexed form of the 2-D linear interpolation operator, and it is 

simply implemented by transposing the above matrix and scaling by 4. 
 
Numerical Experiments in 2-D 
 
 Finally, with all the tools in place for 2-D, numerical experiments could be 
undertaken.  A convincing example that the system was working properly would be 
solution of a problem with a known solution.  To this end, I decided to compare the 
multi-grid solver’s solution to the actual solution to Laplace’s equation with the 
following boundary conditions: 

 
 

 
Figure 7: Boundary conditions for the known solution to Laplace's equation 

  
 The solution to Laplace’s equation in this case can be expressed as a sum of sines 
and hyperbolic sines.  I will not go through the derivation here for that answer, but I 
wrote a loop in MatLab to compute a partial sum of the relevant terms to produce the 
correct answer so that it could be compared to the multi-grid solver’s output.  The two 
solutions produced are very similar.  The Gibbs phenomenon is apparent in the partial 
sum of sines.  They are plotted below. 
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Figure 8: Fourier expansion of actual solution.  Right edge converges to 1; perspective of plot is 

misleading. 

 

 
Figure 9: My solver's output after 1000 steps on the fine grid 
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 The next obvious experiment is to see  how quickly the relaxation error decays to 
zero.  The decay of pure modes was examined for the 1-D case.  Now however, the solver 
was considerably more powerful, so examining more sophisticated problems would be 
interesting.  In general, we don’t know the final solution; we only know the residual after 
a step.  So, from now on, instead of discussing error, we will examine how the norm of 
the residual decays. 
 An interesting case to examine would be a unit spatial impulse.  The Fourier 
expansion of an impulse has equal weights on all frequencies, so examining how an 
initial guess of an “impulse” decays to zero everywhere in homogenous conditions would 
be insightful.  The following plots show a unit impulse located at 67,67 on a 133 by 133 
grid after various numbers of steps. 

Figure 10: Decay of a unit impulse.  Notice that after 30 steps, the solution is much "smoother" than 
after 10.  This is because the higher-frequency modes have been filtered out by the fine grid. 

 15



 
Figure 11: Stalling of residual decay on the fine grid 

 We can see that the residual decays very quickly initially, but the decay rate then 
stalls.  This is because the error that is left is lower-frequency error which does not decay 
quickly on the fine grid.  This is seen in the figure, as after twenty and thirty iterations, 
the solution looks very smooth. 
 The question to ask now is, how much better could the answer be after a number 
of steps if we employ a multi-grid approach?  In the following experiment, three grid 
coarseness levels were available.  Grid 1 was the fine grid.  Grid 2 was the “medium” 
grid, and was twice as coarse as Grid 1.  Grid 3 was the “coarse” grid, and was twice as 
coarse as grid 2. 
 An experiment similar to the one in Figure 10 was attempted with the unit 
impulse.  Three relaxations were performed, starting with homogenous conditions and a 
unit impulse initial condition. 
 
 Trial 1: Relax with 2500 steps on Grid 1 
 Trial 2:   

a) Relax with 534 steps on Grid 1 
b) Move to Grid 2 and relax for 534 steps 
c) Move back to Grid 1, incorporate the refinement from (b), and relax  
    for 1432 steps for a total of 2500 steps 

 Trial 3: 
  a) Relax with 300 steps on Grid 1 
  b) Relax with 300 steps on Grid 2 
  c) Relax with 300 steps on Grid 3 
  d) Move back to Grid 2, incorporate refinement from (c) and relax for 800  
      steps 
  e) Move back to Grid 1, incorporate refinement from (d) and relax for 800  
      steps for a total of 2500 steps 
  
 This scheme was chosen because it gave all methods the total number of steps.  
Additionally, for trial 2 and trial 3, the ratio of forward relaxations (i.e. relaxation after 
moving from fine to coarse) to backwards relaxation was constant at 3/8.  The detail after 
2500 steps is shown below for all three cases. 
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Figure 12:  The three-grid scheme outperforms both the single and dual grid schemes. 

  
 

 It is clearly visible that given the same number of steps, the three-grid scheme 
outperforms the single grid scheme and the dual grid scheme.  However, it is not a given 
that this result will always be the case.  If the error, for example, was known to be almost 
purely high-frequency, the advantage of the grid transfers might be outweighed by the 
computation power necessary to keep making the transfers and interpolations.   

The case shown above for the unit impulse is a case where the frequencies are 
equally weighted in the initial conditions.  As a second trial, I examined how the 
residuals decayed for an initial condition with more low-frequency content.  This case 
was again homogenous with boundary conditions of zero, but the initial “guess” was 1 
everywhere except at the boundaries.  I repeated the experiment with these initial 
conditions, and the results are shown below. 
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Figure 13: Decay of residuals for the three schemes.  The only fair comparison across methods is 
after all three trials have made it back to the fine grid (i.e. after the last spike in residual on the green 
line which comes from the interpolation error).  The three-grid method is the most accurate after 
2500 steps. 

 
Figure 14: Detail of the final residual values for the three methods.  The three-grid method clearly 

wins out over the others.  This is a more drastic out-performance than before since the initial 
condition contained more low frequency error, which was better managed on the coarser grids. 

Once again, the three-grid scheme wins.  It is important to note that in the first 
figure, the “norm” during the steps while the problem’s residual resides in the coarser 
grid is not comparable to the norm of vectors in other grids, as the norm is vector-size 
dependent.  Therefore, the only truly fair points on the graph to compare the methods are 
when all methods are on the same grids, namely the very beginning and very end (shown 
in detail in Figure 14).   
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There are two ways to interpret the results.  We can get a better answer with the 
same number of steps by using the three-grid cycle. Alternatively, we could stop earlier 
with the three-grid cycle and settle for the value that the other methods would have 
produced with more steps.  The tradeoff is completely problem dependent. 

I was suspicious as to how much difference the above residuals made in the 
appearance of the answer, especially given the much higher initial values of the residuals.  
The difference after trials 1, 2 and 3 is stark and is shown below.  Remember, with an 
infinite number of steps, all three methods would converge to a value of zero everywhere. 

 
 
 
The results are obviously different.  Trial 3 yielded an answer visually very close 

to the correct answer of 0.  It is clear that going beyond simply one coarsening operation 
yielded great benefits.  The natural next step would be to try a fourth, coarser grid, and 
continue coarsening.  One could coarsen the grid all the way to a single point.  Also, 
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trying a multitude of different step distribution schemes in order to maximize efficiency 
of steps at each grid could be tried too.   

One could easily write a book about these concerns, but going far down either of 
these paths would step outside the scope of this introduction to multi-grid and its benefits.  
Instead, it would be more appropriate to confirm this limited-multi-grid system on other 
problems. 

As stated earlier, a key goal of my 2D implementation was the ability to impose 
boundary conditions within the grid.  I designed my Jacobi relaxer, as described earlier, 
to support internal boundaries as well.  I implemented the system so that I could simply 
use Windows Paint ® to draw whatever regions I wanted to specify as at a particular 
“voltage.”  As an appropriate example, I decided to determine the potential distribution 
resulting from having an electrode in the shape of the letters “MIT” in the grid, with 0 
volt boundary conditions on the edge of the grid.  The bitmap used to create the boundary 
conditions is shown below.  The black letters are defined to be 1 volt, the white area zero 
volts. 

 
 

Shown below is a plot of the relaxation solution (still staying all the time on the 
fine grid) of the solution to the problem.   

 
Figure 15: "Electrodes" in shape "MIT" relaxed on fine grid 
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 Finally, just to prove that the ability to add charge into the simulation was added, 
I added a line of charge the under the “electrodes” used to write “MIT” to underline the 
word. 

 
Figure 16: MIT electrodes with a line of charge underlining them 

 Placement of arbitrary charge within the medium with arbitrary boundary 
conditions was supported as well.  The figure below shows the gains made with a 930 
step double-grid method vs. a single grid method; the point is to show that the charge 
placement was supported across multiple grids. 

 
Figure 17: Multi-grid support included for arbitrary charge distributions as well 
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 As for multi-grid support of internal boundary conditions (i.e. if we wanted to 
relax the MIT electrode problem with multi-grid), I did not quite get around to that.  I 
thought I had it done, but I discovered too late that I had forgotten a subtle aspect.  When 
relaxing on Ae=r, I forgot to pin internal values of e at the boundaries to zero, as by 
definition there would never be error at one of the internal boundaries.  Without doing 
this, the compensated error approximation from the coarse grid will attempt to force the 
value at the boundary to deviate from the correct internal boundary condition.   

This could be fixed by changing the matrix A by making the rows corresponding 
to these points zero, except for a 1 on the diagonal.  Additionally, r at that point would 
need to be 0, but I had already thought of and taken care of that and had implemented that 
aspect.  As simple as the fix sounds, I had an elaborate setup in the algorithm for the 
current system, and making the change would have meant tearing the whole system down 
and building it back up, which was unrealistic as late as I found the problem.  However, I 
did determine the source of the problem and its likely fix. 
 
Conclusion 
 
 The most convincing figure of the paper is replicated below. 

 
 This figure truly sums up the power of multi-grid.  In the same number of steps, 
the approach with the largest utilization of coarsening got closest to the right answer.  
One can be more quantitative about the true efficiency of the method: what is the 
computational tradeoff between doing a few more iterations on the fine grid and moving 
to a coarse grid?  Do the benefits of moving outweigh the computational costs of 
downsampling and interpolation?  What is the best way to design a multi-grid cycle 
scheme?  How long should one spend on a coarse grid versus a fine one?  These are all 
excellent questions of multi-grid, and there is no definitive right answer. 
 As for the tradeoff between interpolation and downsampling versus spending time 
on a fine grid, making an absolutely definitive answer is difficult.  However, multiplying 
by the Jacobi matrix for an iteration and multiplying by an upsampling or downsampling 
matrix consist of matrix multiplications of relatively the same size and density, making 
the intergrid transfers relatively cheap and insignificant compared to large numbers of 
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steps of relaxation computation.  It is more likely that the tradeoffs will come from 
determining the proper amount of time to spend at each grid.  A possible way to do this 
would be to look at the FFT of the residual, try to predict the spectral content of the error, 
and adaptively decide which grid to move to based on that result.  Other ways would be 
to look for patterns in the particular class of data being examined.  Such design issues 
would make excellent projects in and of themselves. 
 What is definite, however, is that multi-grid can yield astonishing results in the 
right circumstances and can give excellent answers in a fraction of the time that a single-
grid relaxation would need.  If an exact solution is not necessary, and the grid is huge, 
multi-grid is an excellent way to go. 
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