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5.5 Difference Matrices and Eigenvalues 

This brief section collects together useful notes on finite difference matrices, and 
also finite element matrices. Certainly those special matrices K, T, B, C from the 
start of the book are the building blocks for approximations to uxx and uyy . Second 
derivatives and fourth derivatives lead to symmetric matrices. First derivatives are 
antisymmetric. They present more difficulties. 

A symmetric matrix has orthogonal eigenvectors. For those special matrices, the 
eigenvectors are discrete samples of sines and cosines and eikx . The eigenvalues are 

ik�x −2+e−ik�xreal, and they often involve e . That is the discrete factor 2 cos k�x−2. 
Divided by (�x)2, it is close for small k to the factor −k2 from the second derivative 
of e ikx . The von Neumann approach using e ikx matches the eigenvectors of these 
matrices, and the growth factors G match the eigenvalues. 

For a one-sided (upwind) difference, the matrix eigenvalues are not always reliable. 
For a centered difference they do follow von Neumann. Compare 

� ⎡ � ⎡ 
−1 1 0 1 

� −1 1 ⎢ 1 � −1 0 −1 ⎢ 
�+ = � ⎢ �0 = � ⎢ 

� −1 1⎣ 2 � −1 0 −1 ⎣ 

−1 −1 0 

The eigenvalues of the triangular upwind matrix �+ are all −1 (useless). The eigen
values of the antisymmetric �0 are guaranteed to be imaginary like the factor ik from 
the derivative of eikx . The eigenvalues � = −1 for �+ do not make upwind differences 
useless. They only mean that the von Neumann test, which produces eik�x − 1, is 
better than relying on eigenvalues. 

As it stands, �+ is exactly in “Jordan form.” The matrix has only one line of 
eigenvectors, not n. It is an extreme example of a nondiagonalizable (and somehow 
degenerate) matrix. If the diagonals of −1’s and 1’s are extended to infinity, then 
Fourier and von Neumann produce vectors with components eikj�x and with eigen
values e ik�x − 1. In summary: For normal matrices, eigenvalues are a reliable guide. 
For other constant-diagonal matrices, better to rely on von Neumann. 

Briefly, the discrete growth factors G are exactly the eigenvalues when the matrices 
are called “normal ” and the test is AAT = ATA (for complex matrices take the 
conjugate transpose A�). This test is passed by all symmetric and antisymmetric 
and orthogonal matrices. 

Options for First Differences 

Upwind elements 
Streamline diffusion 
DG 
Boundary conditions 
Convection-diffusion 


