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Analogy
6 
When the going gets tough, the tough lower their standards. It is the creed 
of the sloppy, the lazy, and any who want results. This chapter introduces a 
technique, reasoning by analogy, that embodies this maxim. It works well 
with extreme-case reasoning. 

6.1 Tetrahedral bond angle 

What is the bond angle in methane, CH4? The carbon sits at the centroid of 
a regular tetrahedron, and the hydrogens sit at the vertices. Trignometry and 
analytic geometry solve this problem, but let’s try analogy. Three dimensions 
is hard to visualize and figure out, so lower your standards: Look for a simpler 
problem that preserves its essentials. What is essential is not always obvious, 
and you might solve several simpler variants before discovering those features. 

Let’s try the simplest change, going from three dimensions to two dimen
sions. The two-dimensional version of the problem is to find the bond angle in 
a planar molecule, for example NH3 smashed into a plane. The bond angle is 
one-third of a full circle or 120◦. The center of the bond angle is the centroid 
is the centroid of the object, so its location might be relevant in solving the 
problem. Who knows where a tetrahedron’s centroid is; but the triangle has 
a centroid one-third of the way from one edge to the opposite vertex. 

Here is a table with this data,

where d is the number of dimen
 d centroid θ 

sions. It’s hard to generalize from triangle 2 1/3 120◦ 
such sparse data, reflected by the tetrahedron 3 ? ? 
question marks in the tetrahedron 
row. Here is where extreme-cases 
reasoning helps. You can get free data by extending the analogy to a yet 
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more extreme problem. If two dimensions are easier than three, then one 
dimension should be easier than two. 

In one dimension, the object 
is a line. The centroid is one-half shape d centroid θ 

of the way between the endpoints. line 1 1/2 180◦ 
The bond angle is 180◦. And the triangle 2 1/3 120◦ 
table now is more complete. The tetrahedron 3 ? ? 
bond angle has several generaliza
tions to d = 3, depending on what 
pattern underlies it. For example, if the pattern is θ = (240 − 60d)◦, then 
θ(d = 3) = 60◦. Having made a conjecture, it is important to test your 
conjecture. To conjecture and not to test – the great mathematician and 
mathematics teacher George Polya [8] says that to do so is the mark of a sav
age! So: Is that conjecture reasonable? It’s dubious because, first, the angle 
is less than 90◦. If the molecule were CH6, with the carbon at the center of 
a cube and the hydrogens at the faces of a cube, then the bond angle would 
be exactly 90◦. With only four hydrogens, rather than six, the bond angle 
should be larger than 90◦. So 60◦ seems to be a dubious conjecture. For a 
second reason that it is dubious, the try a more extreme case: four dimen
sions. Then, according to the (240 − 60d)◦ conjecture, the bond angle would 
be zero, which is nonsense. So the conjecture is dubious on several grounds. 

Let’s make another conjecture. What about θ = 360◦/(d +1)? That con
jecture fits d = 1 and d = 2. For d = 3 it predicts θ = 90◦. By the reasoning 
that rejected the previous conjecture, this angle is too small. Furthermore, it 
means that for d = 4, the angle drops below 90◦. That’s also not reasonable. 

To help find another 
conjecture, it’s time for a shape d centroid θ cos θ 
new idea. Instead of guess
ing the bond angle directly, 
guess a function of it that 

line 

triangle 

tetrahedron 

1 
2 
3 

1/2 
1/3 
? 

180◦ 

120◦ 

? 

−1 
−1/2 

? 
makes it easier to guess. 
The bond angle, if we solve 
it honestly, will come from the dot product of two vectors (the vectors from 
a vertex to the centroid of the opposite face). Dot products produce cosines, 
so perhaps cos θ is easier to guess than θ itself. This idea adds a column to 
the table. 

One possible pattern for cos θ is −21−d, which fits the d = 1 and d = 2 
data. For d = 3 it predicts cos θ = −1/4, which means θ > 90◦, an excellent 
result. In the extreme case of d → ∞ it predicts that θ 90◦. Let’s check → 
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that result. The d-dimensional problem has a carbon at the center and d + 1 
hydrogens at the vertices of the object. That bond angle should be more than 
90◦: The problem with 90◦ bonds has 2d hydrogens, each at center of the 2d 
faces of a d-dimensional cube. And d + 1 hydrogens should be more spread 
out than 2d hydrogens. So the −21−d is not reasonable, although it got off 
to a good start. 

To find another conjecture, look at the pattern in the centroid column. It 
is 1/(d + 1). So 1/(d + 1) or 1/d might be a reasonable fit for cos θ. Perhaps 
cos θ = −1/d? That fits the d = 1 and d = 2 data, and predicts cos θ = −1/3 
and θ ≈ 109.47◦. The only problem is that this conjecture also predicts that 
θ → 90◦ as d →∞. So maybe that’s okay? 

Anyway, the more likely conjecture, because it respects the pattern in 
the centroid column, is that cos θ = −1/d. Let’s see if we can check that. 
Yes! But first see if we can check the centroid conjecture, since the cos θ 
one depends on it. And we can check that too. It says that the height is 
1/(d +1) of the way from the base. Hmm, d +1 – that’s how many hydrogens 
there are. And 1, the numerator, is how many hydrogens are not on the base. 
Indeed, the average height of the d + 1 vertices is 1/(d + 1) – which explains 
the centroid location. 

Now, knowing where the centroid is, look at a cross-section of the tetra
hedron. The cosine of the complement of θ is 

1/(d + 1) 1cos(180◦ − θ) = 
d/(d + 1) 

= 
d
. 

Since cos θ = − cos(180◦ − θ), the result is 

1 cos θ = − . 
d 

The final verifications are elegant arguments, ones that we might not have 
thought of on first try. That’s okay. Here’s what friends who went to the US 
Math Olympiad training session told me they were taught: Find the answer 
by any cheap method that you can find; once you know, or are reasonably 
sure of the answer, you often can then find a more elegant method and never 
mention the original cheap methods. 

I agree with that philosophy, except for one point. It is worthwhile men
tioning the cheap methods, because, just as they were useful in this problem, 
they will be useful in other problems. 
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6.2 Steiner’s plane problem 
A famous problem is Steiner’s plane problem: Into how many regions do five 
planes divide space? There are lots of answers to this question, some boring. 
If the planes are parallel, for example, they make six regions. If the planes 
are not parallel, the number grows. But the number of regions depends on 
how ‘unparallel’ the planes are. So assume that the planes are in a random 
orientation, to remove the chance of a potential region being wiped out by a 
silly coincidence. 

Five planes are hard to imagine and hard to build. An analogous problem 
is the same question with four planes. That’s still hard, however. So try three 
planes. That’s also hard, so try two planes. That’s easy: four regions. Don’t 
forget the more extreme case of one plane: two regions. And more free data 
comes from the most extreme case of zero planes: one region. So, starting 
with n = 0 planes, the number of regions is: 1, 2, 4, . . . . Are those powers of 
two, and is the next number in the sequence 8? Start with two planes making 
four regions. Place the third plane to cut the other two, so that it splits each 
region into two pieces – making eight regions total. So 8 is indeed the next 
number. Is 16 and then 32 next? That is represented in the following table: 

n 0 1 2 3 4 5 

r 1 2 4 8 16? 32? 

So we have a conjecture, an educated guess, for n = 5. Its conjectural nature 
is reflected in the question marks. But how to test it? We still cannot easily 
visualize four planes, let alone five planes. 

Analogy comes to the rescue again. If fewer planes were easier to solve 
than more planes, fewer dimensions might also help. So let’s study the same 
problem in two dimensions. What is the analogous problem that preserves 
the essentials? It cannot be placing n planes in a plane. Rather, we should 
also reduce the dimensionality of the placed object: Place n lines in a plane, 
in random orientations and positions. How many planar regions does that 
make? Having learnt the lesson of free data, start with n = 0 lines giving 1 
region. One line makes two regions; two lines makes four regions. It looks 
like powers of two again. 

Let’s test it with three lines. Here’s a picture. They make seven regions, 
not eight. So the conjecture fails. Let’s do four lines and count carefully. 
That’s 11 regions, remote from the next power of two, which would have 
been 16. Here are the results for the two-dimensional region: 
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n 0 1 2 3 4 5 

r 1 2 4 7 11 ? 

Let’s combine the two- and three-dimensional data: 

n 0 1 2 3 4 5 

r2 1 2 4 7 11 ? 

r3 1 2 4 8 16? 32? 

Now once again, use extreme cases and get free data. With data for two and 
three dimensions, why not include data for one dimension?! In one dimension 
the problem is, after putting n points on a line, how many regions (line 
segments) do they make? That’s a fencpost problem, so be careful not to be 
off by one. When n = 0, there’s only one segment – the whole infinite line. 
Each dot divides one segment into two, so it increases r by one. So there will 
be r = n + 1 regions. 

n 0 1 2 3 4 5 n 

r1 1 2 3 4 5 6 n + 1 

r2 1 2 4 7 11 ? 

r3 1 2 4 8 16? 32? 

Now we have lots of data! Can you spot a pattern? Look at the connected 
entries, where 4 + 7 = 11: 

n 0 1 2 3 4 5 n 

r1 1 2 3 4 5 6 n + 1 

r2 1 2 4 7 11 ? 

r3 1 2 4 8 16? 32? 

That pattern holds wherever there is data to check it against. For example, 
If that’s true, then in two dimensions when 3 + 4 = 7. Or 4 + 4 = 8. n = 5, 

then r = 16. In three dimensions, when n = 4, there are r = 15 regions (one 
less than the prediction of r = 2n). And with five planes, there will be 26 
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regions. So, that’s our conjecture, which now has lots going for it. Let’s now 
be even more extreme and get one more row of free data: 0 dimensions. In 0 
dimensions, the object is a point, and there’s only one point no matter how 
many -1-dimensional objects subdivide it. So r = 1 always. Then: 

n 0 1 2 3 4 5 n 

r0 1 1 1 1 1 1 1 

r1 1 2 3 4 5 6 n + 1 

r2 1 2 4 7 11 ? 

r3 1 2 4 8 16? 32? 

And the new row, for 0 dimensions, continues the pattern. 
For fun let’s fit polynomials to the data we have – before making the 

conjectured leap. The zeroth row is fit by r = 1, a zeroth-degree polyno
mial. The first row is fit by r = n + 1, a first-degree polynomial. A natural 
generalization of this pattern is that the second row should be fit by a second-
degree polynomial: a quadratic. A quadratic requires three data points, so 
use n = 0 . . . 2. The polynomial that fits r2 for these points is 

r2(n) = 1 2 + 
2
1 
n + 1.

2
n 

Does this quadratic fit the other, certain data points? For n = 3, it predicts 
r = 7, which is right. For n = 4 it predicts r = 11, which is also right. So we 
can probably trust its prediction for n = 5, which is r = 16 – in agreement 
with the prediction from adding numbers. 

Carrying this system farther, the third row should be fit by a cubic, which 
needs four points for its fit. The cubic, as you can check, that fits the first 
four points is 

r3(n) = 
6
1 
n 3 + . . . 1 

It predicts r(4) = 15 and r(5) = 26, so once again the previous conjectures 
for r(5) get new support. And therefore so does the theory that predicted 
them. 

But why is it true? That problem is left as an exercise for the reader. 
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