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PROBLEM SET 3 FOR 18.102, SPRING 2009


DUE 11AM TUESDAY 3 MAR.


RICHARD MELROSE 

This problem set is also intended to be a guide to what will be on the in-class 
test on March 5. In particular I will ask you to prove some of the properties of the 
Lebesgue integral, as below, plus one more abstract proof. Recall that equality a.e 
(almost everywhere) means equality on the complement of a set of measure zero. 

1. Problem 3.1 

1(R) are Lebesgue integrable functions on the line show that If f and g ∈ L � 
(1) If f(x) ≥ 0 a.e. then f ≥ 0. 
(2) If f(x) ≤ g(x) a.e. then f ≤ g. 
(3) If f is complex valued then its real part, Re f, is Lebesgue integrable and 

| Re f | ≤ |f |. 
(4) For a general complex-valued Lebesgue integrable function 

(1) | f | ≤ |f |. 

Hint: You can look up a proof of this easily enough, but the usual trick is to 
choose θ ∈ [0, 2π) so that eiθ f = (eiθf) ≥ 0. Then apply the preceeding 
estimate to g = eiθf. 

(5) Show that the integral is a continuous linear functional 

(2) : L1(R) −→ C. 

2. Problem 3.2 

If I ⊂ R is an interval, including possibly (−∞, a) or (a, ∞), we define Lebesgue 
integrability of a function f : I −→ C to mean the Lebesgue integrability of 

(1) f̃(x) = 
f(x) x ∈ I 

f̃ : R −→ C, 
0 x ∈ R \ I. 

The integral of f on I is then defined to be 

(2) f = f. ˜
I 

(1) Show that the space of such integrable functions on I is linear, denote it 
L1(I). 

(2) Show that is f is integrable on I then so is � |f |. 
(3) Show that if f is integrable on I and 

I |f | = 0 then f = 0 a.e. in the sense 
that f(x) = 0 for all x ∈ I \ E where E ⊂ I is of measure zero as a subset 
of R. 
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(4) Show that the set of null functions as in the preceeding question is a linear 
space, denote it N (I). 

(5) Show that 
I |f | defines a norm on L1(I) = L1(I)/N (I). 

(6) Show that if f ∈ L1(R) then � 

(3) g : I −→ C, g(x) = 
f(x) 
0 

x ∈ I 

x ∈ R \ I 

is integrable on I. 
(7) Show that the preceeding construction gives a	 surjective and continuous 

linear map ‘restriction to I’ 

(4)	 L1(R) −→ L1(I). 

(Notice that these are the quotient spaces of integrable functions modulo 
equality a.e.) 

3. Problem 3.3 

Really continuing the previous one. 

(1) Show that if I = [a, b) and f ∈ L1(I) then the restriction of f to Ix = [x, b) 
is an element of L1(Ix) for all a ≤ x < b. 

(2) Show that the function 

(1)	 F (x) = f : [a, b) −→ C 
Ix 

is continuous. 
(3) Prove that the function	 x−1 cos(1/x) is not Lebesgue integrable on the 

interval (0, 1]. Hint: Think about it a bit and use what you have shown 
above. 

4. Problem 3.4 

[Harder but still doable] Suppose f ∈ L1(R). 

(1) Show that for each t ∈ R the translates 

(1)	 ft(x) = f(x − t) : R −→ C 

are elements of L1(R). 
(2) Show that 

(2)	 lim |ft − f | = 0. 
t 0→

This is called ‘Continuity in the mean for integrable functions’. Hint: I will 
add one! 

(3) Conclude that for each f ∈ L1(R) the map (it is a ‘curve’) 

(3)	 R � t �−→ [ft] ∈ L1(R) 

is continuous. 
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5. Problem 3.5 

In the last problem set you showed that a continuous function on a compact 
interval, extended to be zero outside, is Lebesgue integrable. Using this, and the 
fact that step functions are dense in L1(R) show that the linear space of continuous 
functions on R each of which vanishes outside a compact set (which depends on the 
function) form a dense subset of L1(R). 

6. Problem 3.6 

(1) If	 g : R −→ C is bounded and continuous and f ∈ L1(R) show that 
gf ∈ L1(R) and that � � 

(1)	 |gf | ≤ sup |g| · |f |. 
R 

(2) Suppose now that G ∈ C([0, 1] × [0, 1]) is a continuous function (I use C(K) 
to denote the continuous functions on a compact metric space). Recall from 
the preceeding discussion that we have defined L1([0, 1]). Now, using the 
first part show that if f ∈ L1([0, 1]) then 

(2)	 F (x) = G(x, )f( ) ∈ C·	 ·
[0,1] 

(where is the variable in which the integral is taken) is well-defined for · 
each x ∈ [0, 1]. 

(3) Show that for each f ∈ L1([0, 1]), F is a continuous function on [0, 1]. 
(4) Show that 

(3)	 L1([0, 1]) � f �−→ F ∈ C([0, 1]) 

is a bounded (i.e. continuous) linear map into the Banach space of contin­
uous functions, with supremum norm, on [0, 1]. 
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