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PROBLEM SET 9 FOR 18.102, SPRING 2009


DUE 11AM TUESDAY 28 APR.


RICHARD MELROSE 

Corrections to earlier versions 

My apologies for all these errors. Here is a list – they are fixed below (I hope). 
(1) In P9.2 (2), and elsewhere, C∞(S) should be C0(S), the space of continuous 

functions on the circle – with supremum norm. 
(2) In (P9.2.9) it should be u = Fv, not u = Sv. 
(3) Similarly, before (P9.2.10) it should be u = Fv. 
(4) Discussion around (P9.2.12) clarified. 
(5) Last part of P10.2 clarified. 

This week I want you to go through the invertibility theory for the operator 

d2 

(P9.1) Qu = (− + V (x))u(x)
dx2 

acting on periodic functions. Since we have not developed the theory to handle this 
directly we need to approach it through integral operators. 

Before beginning, we need to consider periodic functions. 

1. P9.1: Periodic functions 

Let S be the circle of radius 1 in the complex plane, centered at the origin, 
S = {z; |z| = 1}. 

(1) Show that there is a 1-1 correspondence 

(P9.1.1) C0(S) = {u : S −→ C, continuous} −→ 

{u : R −→ C; continuous and satisfying u(x + 2π) = u(x) ∀ x ∈ R}. 

(2) Show that there is a 1-1 correspondence 

(P9.1.2) L2(0, 2π) ←→ {u ∈ L1 (R); u� 
(0,2π) 

∈ L2(0, 2π)loc

and u(x + 2π) = u(x) ∀ x ∈ R}/NP 

where NP is the space of null functions on R satisfying u(x + 2π) = u(x) 
for all x ∈ R. 

(3) If we denote by L2(S) the space on the left in (P9.1.2) show that there is a 
dense inclusion 

(P9.1.3) C0(S) −→ L2(S). 

So, the idea is that we can think of functions on S as 2π-periodic functions on 
R. 
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2. P9.2: Schrödinger’s operator 

Since that is what it is, or at least it is an example thereof: 

(P9.2.1) 
d2u(x)

+ V (x)u(x) = f(x), x ∈ R,− 
dx2 

(1) First we will consider the special case V = 1. Why not V = 0? – Don’t try 
to answer this until the end! 

(2) Recall how to solve the differential equation


d2u(x)

(P9.2.2) − 

dx2 
+ u(x) = f(x), x ∈ R, 

where f(x) ∈ C0(S) is a continuous, 2π-periodic function on the line. Show 
that there is a unique 2π-periodic and twice continuously differentiable 
function, u, on R satisfying (P9.2.2) and that this solution can be written 
in the form 

(P9.2.3) u(x) = (Sf)(x) = A(x, y)f(y) 
0,2π 

where A(x, y) ∈ C0(R2) satisfies A(x + 2π, y + 2π) = A(x, y) for all (x, y) ∈
R. 

Extended hint: In case you managed to avoid a course on differential 
equations! First try to find a solution, igonoring the periodicity issue. To 
do so one can (for example, there are other ways) factorize the differential 
operator involved, checking that 

d2u(x) dv du
(P9.2.4) − 

dx2 
+ u(x) = −( 

dx 
+ v) if v = 

dx 
− u 

since the cross terms cancel. Then recall the idea of integrating factors to 
see that 

du dφ 
dx 
− u = e x 

dx
, φ = e−x u, 

(P9.2.5) 
dv dψ 

+ v = e−x , ψ = e x v. 
dx dx 

Now, solve the problem by integrating twice from the origin (say) and hence 
get a solution to the differential equation (P9.2.2). Write this out explicitly 
as a double integral, and then change the order of integration to write the 
solution as 

(P9.2.6) u�(x) = A�(x, y)f(y)dy 
0,2π 

where A� is continuous on R× [0, 2π]. Compute the difference u�(2π)−u�(0) 
and du� 

(2π) − du� 
(0) as integrals involving f. Now, add to u� as solution dx dx 

to the homogeneous equation, for f = 0, namely c1ex + c2e−x , so that the 
new solution to (P9.2.2) satisfies u(2π) = u(0) and du (2π) = du (0). Now, dx dx 
check that u is given by an integral of the form (P9.2.3) with A as stated. 

(3) Check, either directly or indirectly, that A(y, x) = A(x, y) and that A is 
real. 

(4) Conclude that the operator S extends by continuity to a bounded operator 
on L2(S). 
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(5) Check, probably indirectly rather than directly, that 

(P9.2.7) S(e ikx) = (k2 + 1)−1 e ikx , k ∈ Z. 

(6) Conclude, either from the previous result or otherwise that S is a compact 
self-adjoint operator on L2(S). 

(7) Show that if g ∈ C0(S)) then Sg is twice continuously differentiable. Hint: 
Proceed directly by differentiating the integral. 

(8) From (P9.2.7) conclude that S = F 2 where F is also a compact self-adjoint 
operator on L2(S) with eigenvalues (k2 + 1)− 1 

2 . 
(9) Show that F : L2(S) −→ C0(S). 

(10) Now, going back to the real equation (P9.2.1), we assume that V is contin­
uous, real-valued and 2π-periodic. Show that if u is a twice-differentiable 
2π-periodic function satisfying (P9.2.1) for a given f ∈ C0(S) then 

(P9.2.8)	 u + S((V − 1)u) = Sf and hence u = −F 2((V − 1)u) + F 2f 

and hence conclude that 

(P9.2.9) u = Fv where v ∈ L2(S) satisfies v + (F (V − 1)F )v = Ff 

where V − 1 is the operator defined by multiplication by V − 1. 
(11) Show the converse, that if v ∈ L2(S) satisfies 

(P9.2.10) v + (F (V − 1)F )v = Ff, f ∈ C0(S) 

then u = Fv is 2π-periodic and twice-differentiable on R and satisfies 
(P9.2.1). 

(12) Apply the Spectral theorem to F (V − 1)F (including why it applies) and 
show that there is a sequence λj in R \ {0} with |λj | → 0 such that for all 
λ ∈ C \ {0}, the equation 

(P9.2.11) λv + (F (V − 1)F )v = g, g ∈ L2(S) 

has a unique solution for every g ∈ L2(S) if and only if λ =� λj for any j. 
(13) Show that for the λj the solutions of 

(P9.2.12)	 λj v + (F (V − 1)F )v = 0, v ∈ L2(S), 

are all continuous 2π-periodic functions on R. 
(14) Show that the corresponding functions u = Fv where v satisfies (P9.2.12) 

are all twice continuously differentiable, 2π-periodic functions on R satis­
fying 

d2u
(P9.2.13) − 

dx2 
+ (1 − sj + sj V (x))u(x) = 0, sj = 1/λj . 

(15) Conversely, show that if u is a twice continuously differentiable, 2π-periodic 
function satisfying 

d2u
(P9.2.14) − 

dx2 
+ (1 − s + sV (x))u(x) = 0, s ∈ C, 

and u is not identically 0 then s = sj for some j. 
(16) Finally, conclude that Fredholm’s alternative holds for the equation (P9.2.1) 

Theorem 1. For a given real-valued, continuous 2π-periodic function V 
on R, either (P9.2.1) has a unique twice continuously differentiable, 2π­
periodic, solution for each f which is continuous and 2π-periodic or else 
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there exists a finite, but positive, dimensional space of twice continuously 
differentiable 2π-periodic solutions to the homogeneous equation 

(P9.2.15) 
d2w(x)

+ V (x)w(x) = 0, x ∈ R,− 
dx2 

and (P9.2.1) has a solution if and only if 
(0,2π) fw = 0 for every 2π­

periodic solution, w, to (P9.2.15). 

3. Not to be handed in, just for the enthusiastic 

Check that we really can understand all the 2π periodic eigenfunctions of the 
Schrödinger operator using the discussion above. First of all, there was nothing 
sacred about the addition of 1 to −d2/dx2 , we could add any positive number 
and get a similar result – the problem with 0 is that the constants satisfy the 
homogeneous equation d2u/dx2 = 0. What we have shown is that the operator 

d2u
(P9.2.1) u �−→ Qu = − 

dx2 
u + V u 

applied to twice continuously differentiable functions has at least a left inverse 
unless there is a non-trivial solution of 

d2u
(P9.2.2) − 

dx2 
u + V u = 0. 

Namely, the left inverse is R = F (Id +F (V −1)F )−1F. This is a compact self-adjoint 
operator. Show – and there is still a bit of work to do – that (twice continuously 
differentiable) eigenfunctions of Q, meaning solutions of Qu = τu are precisely the 
non-trivial solutions of Ru = τ−1u. 

What to do in case (P9.2.2) does have a non-trivial solution? Show that the 
space of these is finite dimensional and conclude that essentially the same result 
holds by working on the orthocomplement in L2(S). 
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