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RICHARD MELROSE

You should be thinking about using Lebesgue’s dominated convergence at several
points below.

PROBLEM 5.1
Let f: R — C be an element of £'(R). Define

£ = {f(.-r,) z€[-L,I)

5.1
(5.1) 0 otherwise.

Show that f, € £'(R) and that [|f, — f| = 0 as L — oc.

Solution. If yj is the characteristic function of [—N,N]| then f;, = fxp. If
fn is an absolutely summable series of step functions converging a.e. to f then
fnxw is absolutely summable, since [ |fuxr| < [|fa| and converges a.e. to fi,, so
fr [ L' (R). Certainly |f1,(z) — f(z)| — 0 for each x as L — oo and | fr,(z) — f(z)| <
|fi(z)] + | f(x)| < 2|f(x)| so by Lebesgue’s dominated convergence, [ |f — fi| = 0.

PROBLEM 5.2

Consider a real-valued function f : R — R which is locally integrable in the
sense that
f(il)') TE [_L: L]
".2 £€£) =
(5:2) 91.(x) {0 z € R\ [-L,L]
is Lebesgue integrable of each L € N.
(1) Show that for each fixed L the function
gr(x) if g (x) € [N, N]
(5.3) g9, (@) ={N  ifg®)>N
—N if gr(x) < =N
is Lebesgue integrable.

(2) Show that [ |g}f\r) —gr] > 0as N = cc.
(3) Show that there is a sequence, h,,, of step functions such that

(5.4) hp(z) = f(z) a.e. in R.
(4) Defining

0 xz & [-L,L]
(5.5 BV _ ho(z)  if hy(x) € [-N,N], ¢ € [-L, L]
-0) ‘n.l T r .
N if hy(z) > N, z € [-L, L]

—N  if hy(z) < =N, z € [-L, L]
1
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Show that [ |hs:‘\'2 — g™ > 0asn - oo.
Solution:

(1) By definition gfv] = max(—Nyxg,min(Nxyr,gr)) where x;, is the charac-
teristic funciton of —[L, L], thus it is in L(R).

(2) Clearly g}‘M(:.-:} — gr(x) for every z and |gfLN)(:r)| < |gr(z)| so by Dom-
inated Convergence, giN) — g in L', ie. [ |g£N) —grl > 0as N — o0
since the sequence converges to 0 pointwise and is bounded by 2|g(x)|.

(3) Let Sy, be a sequence of step functions converging a.e. to g, — for ex-
ample the sequence of partial sums of an absolutely summable series of
step functions converging to g; which exists by the assumed integrability.
Then replacing Sy, by Sp.nxr we can assume that the elements all van-
ish outside [—=N, N] but still have convergence a.e. to g,. Now take the
sequence

Skn—k  on [k, —k]\[(k—1),—(k—1)], 1<k <n,

(56) hn{iﬂ) = {0 on R \ [—n,nl.

This is certainly a sequence of step functions — since it is a finite sum of
step functions for each n - and on [-L,L] \ [-(L — 1), (L — 1)] for large
integral L is just Sp -1 — gr. Thus h,(z) — f(x) outside a countable
union of sets of measure zero, so also almost everywhere.

(4) This is repetition of the first problem, h.sl?;f(z:) — g}JN) almost everywhere

and |h£lN£| < Nxy so gim € LY(R) and _f|hf:\2 —g(LN}| —+0asn—oo.

PROBLEM 5.3

Show that £2(RR) is a Hilbert space — since it is rather central to the course I
wanted you to go through the details carefully!

First working with real functions, define £2(R) as the set of functions f : R — R
which are locally integrable and such that |f|* is integrable.

(1) For such f choose h,, and define g;,, gfv) and hi,m by (5.2), (5.3) and (5.5).

(2) Show using the sequence hfi\r L} for fixed N and L that gim and (gim)"" are

in £'(R) and that [ |(h{))% = (g}"))?| = 0 as n = oo
(3) Show that (g)2 € £'(R) and that [|(g™)2 — (91)2| = 0 as N — .

(4) Show that [ |(gz)? — /2| = 0 as L = co.
(5) Show that f, g € L?(R) then fg € £'(R) and that

(5.7) [ g1 < [ 1561 < Uslaelalia, 1A1E= = [ 127

(6) Use these constructions to show that £2(R) is a linear space.
(7) Conclude that the quotient space L*(R) = £*(R)/N, where N is the space
of null functions, is a real Hilbert space.
(8) Extend the arguments to the case of complex-valued functions.
Solution:

(1) Done. I think it should have been hi?’;}
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(5.11)
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(5.12)

(7)
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We already checked that g{M € L'(R) and the same argument applies to
( )) namely (h“\)) — gi almost everywhere and both are bounded

by NZ%xy, so by dominated convergence
()% = i) < N?xp ae. = gi™)? € £'(R) and

WD) - g8 = 0 ae. ,

(N N N
|h1: !) ) )l = QN-X" = ,[!hrr L gFL ])2] - 0.

Now, as N = o0, (g5")? = (g2)* a.e. and (g;"))* = (92)* < f* s0 by
dominated convergence, (gz) € £ and [ |(g{N] —(91)*| = 0as N — o0.
The same argument of dominated convergence shows now that g7 — f2
and [ |g7 — f?| = 0 using the bound by f? € £!'(R).

What this is all for is to show that fg € L'(R) if f, F = g € L*(R) (for
easier notation) Approximate each of them by sequences of step functions
as above, hn ;. for f and H, (N } for g. Then the product sequence is in £! -
being a sequence of step functlons and

rN) (@) HSY (2) = ¢V (2)G Y (2)

almost everywhere and with absolute value bounded by N?y,. Thus by

dominated convergence g,N)G(N) € LY(R). Now, let N — oc; this sequence
converges almost everywhere to gr(z)Gp () and we have the bound

87 @G @) < 1@ @52+ F?)

so as always by dominated convergence, the limit g;G; € L£'. Finally,
letting L — oo the same argument shows that fF € L'(R). Moreover,
|fF| € L'(R) and

[ 1E1< 1R < 1l e

where the last inequality follows from Cauchy’s inequality — if vou wish,
first for the approximating sequences and then taking limits.
Soif f, g € L2(R) are real-value, f + g is certainly locally integrable and

(f+9)°=f+2fg+¢* € L'(R)

by the discussion above. For constants f € £2(R) implies ¢f € £L3(R) is
directly true.

The argument is the same as for £' versus L'. Namely [ f? = 0 implies
that f2 = 0 almost everywhere which is equivalent to f = 0 a@é. Then the
norm is the same for all f + h where h is a null function since fh and h?
are null so (f +h)? = f2+2fh+ h%. The same is true for the inner product
so it follows that the quotient by null functions

L*(R) = L*(R)/N
is a preHilbert space.

However, it remains to show completeness. Suppose {[f.]} is an ab-

solutely summable series in L?*(R) which means that Y ||fallrz < oco. It
n
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follows that the cut-off series f, vy, is absolutely summable in the L' sense

since
[ital <zh(f 22

by Cauchy’s inequality. Thus if we set F, = z fr then F,,(x)x, converges

almost everywhere for each L so in fact
F,(z) — f(z) converges almost everywhere.

We want to show that f € £L2(R) where it follows already that f is locally
integrable by the completeness of L'. Now consider the series

g|:F121gn—F F-

n—1-

The elements are in £'(R) and by Cauchy’s inequality for n > 1,

= / |F2 = Foct [ < [1Fn = FacalliallFa + Facllze < falle2 3 M1 fillee
k

where the triangle inequality has been used. Thus in fact the series g, is

absolutely summable in £!

3 f gl < 203" 1fullz2)?

So indeed the sequence of partial sums, the F? converge to f> € L'(R).
Thus f € £2(R) and moroever

/ F,—f)? fF- /fz—Q/F,,fAUdsn—)oc

Indeed the first term converges to [ f? and, by Cauchys inequality, the
series of products f,f is absulutely summable in L' with limit f? so the
third term converges to —2 [ f2. Thus in fact [F),] = [f] in L*(R) and we
have proved completeness.

For the complex case we need to check linearity, assuming f is locally
integrable and | f|* € £'(R). The real part of f is locally integrable and the
approximation FLM discussed above is square integrable with (F £N1)2 <
|f|* so by dominated convergence, letting first N — oo and then L — oo
the real part is in £*(R). Now linearity and completeness follow from the
real case.

PROBLEM 5.4

Consider the sequence space

(5.20)

(1)
(5.21)

B =8c:N3jr ¢ eCY (1+52)e < oo
J

Show that
h*t x b2 3 (e,d) — { Z{l +j%)eid;

is an Hermitian inner form which turns h*! into a Hilbert space.
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(2) Denoting the norm on this space by || - [|2; and the norm on I* by || - ||2,
show that
(5.22) B2 C 12, lells < llellaa ¥ ¢ € h21.
Solution:

(1) The inner product is well defined since the series defining it converges ab-
solutely by Cauchy’s inequality:

(e,d) =Y (1+ %) c;(1+52)Ed;,
J

(5.23) [ ) . .
DI+ 221+ 23] < Qo1+ 57)les)2 Qo1+ 57)1dy ) 2.
J J J
It is sesquilinear and positive definite since
5 1
(5.24) llellaa = O (1+5%)|ej|) 2
J
only vanishes if all ¢; vanish. Completeness follows as for 2 -if ™ isa
Cauchy sequence then each component c_(?-") converges, since (1 + j )%ci-")
is Cauchy. The limits ¢; define an element of h®! since the sequence is
bounded and
N N
& L2 22 o
(5.25) le(l +5%)lej* = lim -ZI(I +77)VP < A

where A is a bound on the norms. Then from the Cauchy condition ¢! — ¢
in h*! by passing to the limit as m — oo in [|c(™ — c™||5; <e.
(2) Clearly h*? C I? since for any finite N

N N
(5.26) Z le;|? Z(l +3)%le;l* < llell.q

J=1 i=1
and we may pass to the limit as N — oo to see that
(5.27) llellez < llellz.1-

PROBLEM 5.5

In the separable case, prove Riesz Representation Theorem directly.
Choose an orthonormal basis {e;} of the separable Hilbert space H. Suppose
T : H — C is a bounded linear functional. Define a sequence

(528) w; = T(E.g), i € N.
(1) Now, recall that |Tu| < C|u||z for some constant C. Show that for every
finite N,
N
(5.29) > lwil? < €2
j=1

(2) Conclude that {w;} € I* and that
(5.30) w = Zwiei € H.
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(3) Show that

(5.31)

T(u) = (u,wyy Y u € H and ||T|| = ||w|| g

Solution:

N

(1) The finite sum wy = Y w;e; is an element of the Hilbert space with norm

(5.32)

(5.33)

(2)
(5.34)

i=1

N
lwn |3 = > |wi|? by Bessel's identity. Expanding out

=

N n N
T(wy) =T()_ wie;) = Y wiT(e)) = Y |wif?
i=1 i=1 §=1
and from the continuity of T,

IT(wn)| < Cllwnlla = llwslli < Cllwnlla = [l < C*

which is the desired inequality.
Letting N — oo it follows that the infinite sum converges and
Z lwi* < C* = w= Z wie; € H
. -

)

since ||jwy —w|| < 3 |w;|? tends to zero with N.
>N
A‘r
For any u € H uy = 3 (u, ¢;)e; by the completness of the {e¢;} so from the
i=1
continuity of T

N
T(u) = lim T(uy)= lim Y (u,e;)T(e;)

i=1

N
= l\}1_1;:100 ;(u,wie,—_} = Agl_r’r;o(u,wN) = (u, w)

where the continuity of the inner product has been used. From this and
Cauchy’s inequality it follows that [|T'|| = supy,,,=1 |T(u)| < [|w]|. The
converse follows from the fact that T(w) = ||wl|%.
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