18.102 Introduction to Functional Analysis Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

SOLUTIONS TO PROBLEM SET 5 FOR 18.102, SPRING 2009 WAS DUE 11AM TUESDAY 17 MAR.

RICHARD MELROSE

You should be thinking about using Lebesgue's dominated convergence at several points below.

PROBLEM 5.1

Let $f : \mathbb{R} \longrightarrow \mathbb{C}$ be an element of $\mathcal{L}^1(\mathbb{R})$. Define

(5.1)
$$f_L(x) = \begin{cases} f(x) & x \in [-L, L] \\ 0 & \text{otherwise.} \end{cases}$$

Show that $f_L \in \mathcal{L}^1(\mathbb{R})$ and that $\int |f_L - f| \to 0$ as $L \to \infty$. Solution. If χ_L is the characteristic function of [-N, N] then $f_L = f\chi_L$. If f_n is an absolutely summable series of step functions converging a.e. to f then $f_n\chi_L$ is absolutely summable, since $\int |f_n\chi_L| \leq \int |f_n|$ and converges a.e. to f_L , so $f_L \int \mathcal{L}^1(\mathbb{R})$. Certainly $|f_L(x) - f(x)| \to 0$ for each x as $L \to \infty$ and $|f_L(x) - f(x)| \le 1$ $|f_l(x)| + |f(x)| \le 2|f(x)|$ so by Lebesgue's dominated convergence, $\int |f - f_L| \to \overline{0}$.

PROBLEM 5.2

Consider a real-valued function $f : \mathbb{R} \longrightarrow \mathbb{R}$ which is locally integrable in the sense that

(5.2)
$$g_L(x) = \begin{cases} f(x) & x \in [-L, L] \\ 0 & x \in \mathbb{R} \setminus [-L, L] \end{cases}$$

is Lebesgue integrable of each $L \in \mathbb{N}$.

(1) Show that for each fixed L the function

(5.3)
$$g_L^{(N)}(x) = \begin{cases} g_L(x) & \text{if } g_L(x) \in [-N, N] \\ N & \text{if } g_L(x) > N \\ -N & \text{if } g_L(x) < -N \end{cases}$$

is Lebesgue integrable. (2) Show that $\int |g_L^{(N)} - g_L| \to 0$ as $N \to \infty$. (3) Show that there is a sequence, h_n , of step functions such that

(5.4)
$$h_n(x) \to f(x)$$
 a.e. in \mathbb{R}

(4) Defining

(5.5)
$$h_{n,L}^{(N)} = \begin{cases} 0 & x \notin [-L, L] \\ h_n(x) & \text{if } h_n(x) \in [-N, N], \ x \in [-L, L] \\ N & \text{if } h_n(x) > N, \ x \in [-L, L] \\ -N & \text{if } h_n(x) < -N, \ x \in [-L, L] \end{cases}.$$

RICHARD MELROSE

Show that $\int |h_{n,L}^{(N)} - g_L^{(N)}| \to 0$ as $n \to \infty$.

Solution:

- (1) By definition $g_L^{(N)} = \max(-N\chi_L, \min(N\chi_L, g_L))$ where χ_L is the characteristic function of -[L, L], thus it is in $\mathcal{L}^1(\mathbb{R})$.
- (2) Clearly $g_L^{(N)}(x) \to g_L(x)$ for every x and $|g_L^{(N)}(x)| \le |g_L(x)|$ so by Dom-inated Convergence, $g_L^{(N)} \to g_L$ in L^1 , i.e. $\int |g_L^{(N)} g_L| \to 0$ as $N \to \infty$ since the sequence converges to 0 pointwise and is bounded by 2|g(x)|.
- (3) Let $S_{L,n}$ be a sequence of step functions converging a.e. to g_L for example the sequence of partial sums of an absolutely summable series of step functions converging to g_L which exists by the assumed integrability. Then replacing $S_{L,n}$ by $S_{L,n}\chi_L$ we can assume that the elements all vanish outside [-N, N] but still have convergence a.e. to g_L . Now take the sequence

(5.6)
$$h_n(x) = \begin{cases} S_{k,n-k} & \text{on } [k,-k] \setminus [(k-1), -(k-1)], \ 1 \le k \le n, \\ 0 & \text{on } \mathbb{R} \setminus [-n,n]. \end{cases}$$

This is certainly a sequence of step functions - since it is a finite sum of step functions for each n – and on $[-L, L] \setminus [-(L-1), (L-1)]$ for large integral L is just $S_{L,n-L} \to g_L$. Thus $h_n(x) \to f(x)$ outside a countable

union of sets of measure zero, so also almost everywhere. (4) This is repetition of the first problem, $h_{n,L}^{(N)}(x) \to g_L^{(N)}$ almost everywhere and $|h_{n,L}^{(N)}| \leq N\chi_L$ so $g_L^{(N)} \in \mathcal{L}^1(\mathbb{R})$ and $\int |h_{n,L}^{(N)} - g_L^{(N)}| \to 0$ as $n \to \infty$.

PROBLEM 5.3

Show that $\mathcal{L}^2(\mathbb{R})$ is a Hilbert space – since it is rather central to the course I wanted you to go through the details carefully!

First working with real functions, define $\mathcal{L}^2(\mathbb{R})$ as the set of functions $f:\mathbb{R}\longrightarrow\mathbb{R}$ which are locally integrable and such that $|f|^2$ is integrable.

- (1) For such f choose h_n and define g_L, g_L^(N) and h_n^(N) by (5.2), (5.3) and (5.5).
 (2) Show using the sequence h_{n,L}^(N) for fixed N and L that g_L^(N) and (g_L^(N))² are in L¹(ℝ) and that ∫ |(h_{n,L}^(N))² (g_L^(N))²| → 0 as n → ∞.
- (3) Show that $(g_L)^2 \in \mathcal{L}^1(\mathbb{R})$ and that $\int |(g_L^{(N)})^2 (g_L)^2| \to 0$ as $N \to \infty$. (4) Show that $\int |(g_L)^2 f^2| \to 0$ as $L \to \infty$.
- (5) Show that $f, g \in \mathcal{L}^2(\mathbb{R})$ then $fg \in \mathcal{L}^1(\mathbb{R})$ and that

(5.7)
$$|\int fg| \leq \int |fg| \leq ||f||_{L^2} ||g||_{L^2}, \ ||f||_{L^2}^2 = \int |f|^2.$$

- (6) Use these constructions to show that $\mathcal{L}^2(\mathbb{R})$ is a linear space.
- (7) Conclude that the quotient space $L^2(\mathbb{R}) = \mathcal{L}^2(\mathbb{R})/\mathcal{N}$, where \mathcal{N} is the space of null functions, is a real Hilbert space.

(8) Extend the arguments to the case of complex-valued functions. Solution:

(1) Done. I think it should have been $h_{n,L}^{(N)}$.

PROBLEMS 5

(2) We already checked that $g_L^{(N)} \in \mathcal{L}^1(\mathbb{R})$ and the same argument applies to $(g_L^{(N)})^{,}$ namely $(h_{n,L}^{(N)})^2 \to g_L^{(N)}$ almost everywhere and both are bounded by $N^2\chi_L$ so by dominated convergence

(5.8)
$$(h_{n,L}^{(N)})^2 \to g_L^{(N)})^2 \le N^2 \chi_L \text{ a.e.} \implies g_L^{(N)})^2 \in \mathcal{L}^1(\mathbb{R}) \text{ and}$$

 $|h_{n,L}^{(N)})^2 - g_L^{(N)})^2| \to 0 \text{ a.e.} ,$

$$|h_{n,L}^{(N)}|^2 - g_L^{(N)}|^2| \le 2N^2 \chi_L \Longrightarrow \int |h_{n,L}^{(N)}|^2 - g_L^{(N)}|^2| \to 0.$$

- (3) Now, as N → ∞, (g_L^(N))² → (g_L)² a.e. and (g_L^(N))² → (g_L)² ≤ f² so by dominated convergence, (g_L)² ∈ L¹ and ∫ |(g_L^(N))² (g_L)²| → 0 as N → ∞.
 (4) The same argument of dominated convergence shows now that g_L² → f²
- and $\int |g_L^2 \tilde{f}^2| \to 0$ using the bound by $\tilde{f}^2 \in \mathcal{L}^1(\mathbb{R})$.
- (5) What this is all for is to show that $fg \in \mathcal{L}^1(\mathbb{R})$ if $f, F = g \in \mathcal{L}^2(\mathbb{R})$ (for easier notation). Approximate each of them by sequences of step functions as above, $h_{n,L}^{(N)}$ for f and $H_{n,L}^{(N)}$ for g. Then the product sequence is in \mathcal{L}^1 – being a sequence of step functions – and

(5.9)
$$h_{n,L}^{(N)}(x)H_{n,L}^{(N)}(x) \to g_L^{(N)}(x)G_L^{(N)}(x)$$

almost everywhere and with absolute value bounded by $N^2\chi_L$. Thus by dominated convergence $g_L^{(N)}G_L^{(N)} \in \mathcal{L}^1(\mathbb{R})$. Now, let $N \to \infty$; this sequence converges almost everywhere to $g_L(x)G_L(x)$ and we have the bound

(5.10)
$$|g_L^{(N)}(x)G_L^{(N)}(x)| \le |f(x)F(x)|\frac{1}{2}(f^2 + F^2)$$

so as always by dominated convergence, the limit $g_L G_L \in \mathcal{L}^1$. Finally, letting $L \to \infty$ the same argument shows that $fF \in \mathcal{L}^1(\mathbb{R})$. Moreover, $|fF| \in \mathcal{L}^1(\mathbb{R})$ and

(5.11)
$$|\int fF| \le \int |fF| \le ||f||_{L^2} ||F||_{L^2}$$

where the last inequality follows from Cauchy's inequality - if you wish. first for the approximating sequences and then taking limits.

(6) So if $f, g \in \mathcal{L}^2(\mathbb{R})$ are real-value, f + g is certainly locally integrable and

(5.12)
$$(f+g)^2 = f^2 + 2fg + g^2 \in \mathcal{L}^1(\mathbb{R})$$

by the discussion above. For constants $f \in \mathcal{L}^2(\mathbb{R})$ implies $cf \in \mathcal{L}^2(\mathbb{R})$ is directly true.

(7) The argument is the same as for \mathcal{L}^1 versus L^1 . Namely $\int f^2 = 0$ implies that $f^2 = 0$ almost everywhere which is equivalent to f = 0 a@e. Then the norm is the same for all f + h where h is a null function since fh and h^2 are null so $(f+h)^2 = f^2 + 2fh + h^2$. The same is true for the inner product so it follows that the quotient by null functions

(5.13)
$$L^2(\mathbb{R}) = \mathcal{L}^2(\mathbb{R})/\mathcal{N}$$

is a preHilbert space.

However, it remains to show completeness. Suppose $\{[f_n]\}\$ is an absolutely summable series in $L^2(\mathbb{R})$ which means that $\sum_n ||f_n||_{L^2} < \infty$. It follows that the cut-off series $f_n\chi_L$ is absolutely summable in the L^1 sense since

(5.14)
$$\int |f_n \chi_L| \le L^{\frac{1}{2}} (\int f_n^2)^{\frac{1}{2}}$$

by Cauchy's inequality. Thus if we set $F_n = \sum_{k=1}^n f_k$ then $F_n(x)\chi_L$ converges almost everywhere for each L so in fact

(5.15)
$$F_n(x) \to f(x)$$
 converges almost everywhere.

We want to show that $f \in \mathcal{L}^2(\mathbb{R})$ where it follows already that f is locally integrable by the completeness of L^1 . Now consider the series

(5.16)
$$g_1 = F_1^2, \ g_n = F_n^2 - F_{n-1}^2$$

The elements are in $\mathcal{L}^1(\mathbb{R})$ and by Cauchy's inequality for n > 1,

$$\int |g_n| = \int |F_n^2 - F_{n-1}|^2 \le ||F_n - F_{n-1}||_{L^2} ||F_n + F_{n-1}||_{L^2} \le ||f_n||_{L^2} 2\sum_k ||f_k||_{L^2}$$

where the triangle inequality has been used. Thus in fact the series g_n is absolutely summable in \mathcal{L}^1

(5.18)
$$\sum_{n} \int |g_{n}| \leq 2(\sum_{n} ||f_{n}||_{L^{2}})^{2}.$$

So indeed the sequence of partial sums, the F_n^2 converge to $f^2 \in \mathcal{L}^1(\mathbb{R})$. Thus $f \in \mathcal{L}^2(\mathbb{R})$ and moreover

(5.19)
$$\int (F_n - f)^2 = \int F_n^2 + \int f^2 - 2 \int F_n f \to 0 \text{ as } n \to \infty.$$

Indeed the first term converges to $\int f^2$ and, by Cauchys inequality, the series of products $f_n f$ is absulutely summable in L^1 with limit f^2 so the third term converges to $-2 \int f^2$. Thus in fact $[F_n] \to [f]$ in $L^2(\mathbb{R})$ and we have proved completeness.

(8) For the complex case we need to check linearity, assuming f is locally integrable and $|f|^2 \in \mathcal{L}^1(\mathbb{R})$. The real part of f is locally integrable and the approximation $F_L^{(N)}$ discussed above is square integrable with $(F_L^{(N)})^2 \leq |f|^2$ so by dominated convergence, letting first $N \to \infty$ and then $L \to \infty$ the real part is in $\mathcal{L}^2(\mathbb{R})$. Now linearity and completeness follow from the real case.

Problem 5.4

Consider the sequence space

(5.20)
$$h^{2,1} = \left\{ c : \mathbb{N} \ni j \longmapsto c_j \in \mathbb{C}; \sum_j (1+j^2) |c_j|^2 < \infty \right\}.$$

(1) Show that

(5.21)
$$h^{2,1} \times h^{2,1} \ni (c,d) \longmapsto \langle c,d \rangle = \sum_{j} (1+j^2)c_j \overline{d_j}$$

is an Hermitian inner form which turns $h^{2,1}$ into a Hilbert space.

PROBLEMS 5

(2) Denoting the norm on this space by $\|\cdot\|_{2,1}$ and the norm on l^2 by $\|\cdot\|_2$, show that

(5.22)
$$h^{2,1} \subset l^2, \ \|c\|_2 \le \|c\|_{2,1} \ \forall \ c \in h^{2,1}.$$

Solution:

(1) The inner product is well defined since the series defining it converges absolutely by Cauchy's inequality:

(5.23)
$$\begin{aligned} \langle c,d\rangle &= \sum_{j} (1+j^2)^{\frac{1}{2}} c_j (1+j^2)^{\frac{1}{2}} d_j, \\ &\sum_{j} |(1+j^2)^{\frac{1}{2}} c_j \overline{(1+j^2)^{\frac{1}{2}}} d_j| \leq (\sum_{j} (1+j^2)|c_j|^2)^{\frac{1}{2}} (\sum_{j} (1+j^2)|d_j|^2)^{\frac{1}{2}}. \end{aligned}$$

It is sesquilinear and positive definite since

(5.24)
$$||c||_{2,1} = (\sum_{j} (1+j^2)|c_j|^2)^{\frac{1}{2}}$$

only vanishes if all c_j vanish. Completeness follows as for l^2 – if $c^{(n)}$ is a Cauchy sequence then each component $c_j^{(n)}$ converges, since $(1+j)^{\frac{1}{2}}c_j^{(n)}$ is Cauchy. The limits c_j define an element of $h^{2,1}$ since the sequence is bounded and

(5.25)
$$\sum_{j=1}^{N} (1+j^2)^{\frac{1}{2}} |c_j|^2 = \lim_{n \to \infty} \sum_{j=1}^{N} (1+j^2) |c_j^{(n)}|^2 \le A$$

where A is a bound on the norms. Then from the Cauchy condition $c^{(n)} \to c$ in $h^{2,1}$ by passing to the limit as $m \to \infty$ in $||c^{(n)} - c^{(m)}||_{2,1} \le \epsilon$.

(2) Clearly $h^{2,2} \subset l^2$ since for any finite N

(5.26)
$$\sum_{j=1}^{N} |c_j|^2 \sum_{j=1}^{N} (1+j)^2 |c_j|^2 \le ||c||_{2,1}^2$$

and we may pass to the limit as $N \to \infty$ to see that

$$(5.27) ||c||_{l^2} \le ||c||_{2,1}.$$

Problem 5.5

In the separable case, prove Riesz Representation Theorem directly.

Choose an orthonormal basis $\{e_i\}$ of the separable Hilbert space H. Suppose $T: H \longrightarrow \mathbb{C}$ is a bounded linear functional. Define a sequence

(5.28)
$$w_i = \overline{T(e_i)}, \ i \in \mathbb{N}.$$

(1) Now, recall that $|Tu| \leq C ||u||_H$ for some constant C. Show that for every finite N,

(5.29)
$$\sum_{j=1}^{N} |w_i|^2 \le C^2.$$

(2) Conclude that $\{w_i\} \in l^2$ and that

(5.30)
$$w = \sum_{i} w_i e_i \in H$$

RICHARD MELROSE

(3) Show that

(5.31)
$$T(u) = \langle u, w \rangle_H \ \forall \ u \in H \text{ and } ||T|| = ||w||_H.$$

Solution:

(1) The finite sum
$$w_N = \sum_{i=1}^N w_i e_i$$
 is an element of the Hilbert space with norm

$$||w_N||_N^2 = \sum_{i=1} |w_i|^2$$
 by Bessel's identity. Expanding out

(5.32)
$$T(w_N) = T(\sum_{i=1}^N w_i e_i) = \sum_{i=1}^N w_i T(e_i) = \sum_{i=1}^N |w_i|^2$$

and from the continuity of T,

(5.33)
$$|T(w_N)| \leq C ||w_N||_H \Longrightarrow ||w_N||_H^2 \leq C ||w_N||_H \Longrightarrow ||w_N||^2 \leq C^2$$

which is the desired inequality.

(2) Letting $N \to \infty$ it follows that the infinite sum converges and

(5.34)
$$\sum_{i} |w_{i}|^{2} \leq C^{2} \Longrightarrow w = \sum_{i} w_{i}e_{i} \in H$$

since $||w_N - w|| \leq \sum_{j>N} |w_i|^2$ tends to zero with N. (3) For any $u \in H$ $u_N = \sum_{i=1}^N \langle u, e_i \rangle e_i$ by the completness of the $\{e_i\}$ so from the continuity of T

(5.35)
$$T(u) = \lim_{N \to \infty} T(u_N) = \lim_{N \to \infty} \sum_{i=1}^N \langle u, e_i \rangle T(e_i)$$
$$= \lim_{N \to \infty} \sum_{i=1}^N \langle u, w_i e_i \rangle = \lim_{N \to \infty} \langle u, w_N \rangle = \langle u, w \rangle$$

where the continuity of the inner product has been used. From this and Cauchy's inequality it follows that $||T|| = \sup_{\|u\|_{H}=1} |T(u)| \leq ||w||$. The converse follows from the fact that $T(w) = ||w||_{H}^{2}$.

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6