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SOLUTIONS TO PROBLEM SET 10

Problem P10.1 Let H be a separable, infinite dimensional Hilbert space. Show
that the direct sum of two copies of H is a Hilbert space with the norm

(23.18) H&H 3 (ur,u) — (| + lluz3) 2
either by constructing an isometric isomorphism
(23.19) T:H— H®H, 1-1 and onto, ||u|lg = ||Tullgen

or otherwise. In any case, construct a map as in (23.19).

Solution: Let {e;}ien be an orthonormal basis of H, which exists by virtue of
the fact that it is an infinite-dimensional but separable Hilbert space. Define the
map

(23.20) T:HBu&(Zuegllel,Zuegzel JEH®H
i=1 i=1

The convergence of the Fourier Bessel series shows that this map is well-defined
and linear. Injectivity similarly follows from the fact that Tw = 0 in the image
implies that (u,e;) = 0 for all ¢ and hence u = 0. Surjectivity is also clear from the
fact that

(23.21) S:H& H> (ul,ug) — Z ((ul,ei)egi_l + (UQ,ei)EQZ') € H

i=1

is a 2-sided inverse and Bessel’s identity implies isometry since ||S(uq,u2)|? =
[l ||* + [l

Problem P10.2 One can repeat the preceding construction any finite number
of times. Show that it can be done ‘countably often’ in the sense that if H is a
separable, infinite dimensional, Hilbert space then

(23.22) lo(H) = {u: N — H; |[ullf, ) = Y luillfr < o0}

has a Hilbert space structure and construct an explicit isometric isomorphism from
lo(H) to H.

Solution: A similar argument as in the previous problem works. Take an orthor-
mal basis e; for H. Then the elements E; ; € lo(H), which for each 4,7 consist of
the sequences with 0 entries except the jth, which is e;, given an orthonromal basis
for I3(H). Orthormality is clear, since with the inner product is

(23.23) (u, V)1, (m) = Z(uj, Vi) H-
J
Completeness follows from completeness of the orthonormal basis of H since if

v={v;} (v,E;;) =0 for all j implies v; = 0 in H. Now, to construct an isometric
isomorphism just choose an isomorphism m : N> — N then

(23.24) Tu=v, vj = Z(u, em(i,j))€i € H.

i
I would expect you to go through the argument to check injectivity, surjectivity
and that the map is isometric.



Problem P10.3 Recall, or perhaps learn about, the winding number of a closed
curve with values in C* = C \ {0}. We take as given the following fact:* If Q =
[0,1]Y and f : Q@ — C* is continuous then for each choice of b € C satisfying
exp(2mib) = f(0), there exists a unique continuous function F' : Q — C satisfying

(23.25) exp(2miF(q)) = f(q), VY ¢ € Q and F(0) = b.

Of course, you are free to change b to b + n for any n € Z but then F' changes to
F + n, just shifting by the same integer.
(1) Now, suppose ¢ : [0,1] — C* is a closed curve — meaning it is continuous
and ¢(1) = ¢(0). Let C : [0,1] — C be a choice of F for N = 1 and
f = c. Show that the winding number of the closed curve ¢ may be defined
unambiguously as

(23.26) wn(c) = C(1) — C(0) € Z.

Solution: Let C’, be another choice of F' in this case. Now, g(t) =
C'(t) — C(t) is continuous and satisfies exp(2mg(t)) = 1 for all t € [0,1] so
by the uniqueness must be constant, thus C’(1) — C’(0) = C(1) — C(0) and
the winding number is well-defined.

(2) Show that wn(c) is constant under homotopy. That is if ¢; : [0,1] — C*,
1 = 1,2, are two closed curves so ¢;(1) = ¢;(0), i = 1,2, which are homotopic
through closed curves in the sense that there exists f : [0,1]? — C*
continuous and such that f(0,z) = ¢1(x), f(1,2) = ca(x) for all x € [0,1]
and f(y,0) = f(y,1) for all y € [0,1], then wn(c;) = wn(cg).

Solution: Choose F' using the ‘fact’ corresponding to this homotopy f.
Since f is periodic in the second variable — the two curves f(y,0), and f(y, 1)
are the same — so by the uniquess F(y,0) — F(y, 1) must be constant, hence
wn(ez) = F(1,1) — F(1,0) = F(0,1) — F(0,0) = wn(ey).

(3) Consider the closed curve Ly, : [0,1] 3 2 —— €*™@ Id,,«,, of n X n matrices.
Using the standard properties of the determinant, show that this curve is
not homotopic to the identity through closed curves in the sense that there
does not exist a continuous map G : [0,1]> — GL(n), with values in the
invertible n x n matrices, such that G(0,z) = L,(z), G(1,z) = Id,,xy, for
all z € [0,1], G(y,0) = G(y,1) for all y € [0, 1].

Solution: The determinant is a continuous (actually it is analytic) map
which vanishes precisely on non-invertible matrices. Moreover, it is given
by the product of the eigenvalues so

(23.27) det(L,) = exp(2mwizn).

This is a periodic curve with winding number n since it has the ‘lift’ zn.
Now, if there were to exist such an homotopy of periodic curves of matrices,
always invertible, then by the previous result the winding number of the
determinant would have to remain constant. Since the winding number for
the constant curve with value the identity is O such an homotopy cannot
exist.

Problem P10.4 Consider the closed curve corresponding toL,, above in the case
of a separable but now infinite dimensional Hilbert space:

(23.28) L:]0,1] 32+ *™*1dy € GL(H) C B(H)

40f course, you are free to give a proof — it is not hard.



taking values in the invertible operators on H. Show that after identifying H with
H @ H as above, there is a continuous map

(23.29) M :[0,1]> — GL(H @ H)

with values in the invertible operators and satisfying
(23.30) '
M(0, ) = L(x), M(L,2)(ur,us) = ("™ ur, uz), M(y,0) = M(y,1), ¥,y € [0,1].

Hint: So, think of H @ H as being 2-vectors (u1,us) with entries in H. This allows
one to think of ‘rotation’ between the two factors. Indeed, show that

(23.31) U(y)(u1,uz2) = (cos(my/2)uy + sin(mwy/2)ug, — sin(wy/2)uy + cos(my/2)uz)
defines a continuous map [0,1] > y — U(y) € GL(H @ H) such that U(0) = Id,
U(1)(u1,u2) = (ug, —u1). Now, consider the 2-parameter family of maps

(23.32) U~ (y)Va(2)U (y) Vi ()

where V;(z) and Va(z) are defined on H @ H as multiplication by exp(2miz) on the
first and the second component respectively, leaving the other fixed.

Solution: Certainly U(y) is invertible since its inverse is U(—y) as follows in
the two dimensional case. Thus the map W (z,y) on [0,1]? in (23.32) consists
of invertible and bounded operators on H & H, meaning a continuous map W :
[0,1]> — GL(H ® H). When x = 0 or = = 1, both V;(z) and vz(z) reduce to the
identiy, and hence W(0,y) = W(1,y) for all y, so W is periodic in z. Moreove at
y =0 W(z,0) = Va(z)Vi(z) is exactly L(x), a multiple of the identity. On the
other hand, at x = 1 we can track composite as

2mix 4mx
(751 (& (751 (%) u9 e U1
(1) = (") = (i) — () = (7))

This is what is required of M in (23.30).
Problem P10.5 Using a rotation similar to the one in the preceeding problem (or
otherwise) show that there is a continuous map

(23.34) G:[0,1)> — GL(H @ H)
such that
(23.35) G(0,2)(u1,u2) = (ez’rmul,e*%”w),
G(Ll’)(ul,l@) = (u17u2)7 G(ya 0) = G(y7 1) v T,y € [07 1]

Solution: We can take
Id 0 e2miT
@30 G0 =0 (g ) o ()0 )

By the same reasoning as above, this is an homotopy of closed curves of invertible
operators on H @ H which satisfies (23.35).

Problem P10.6 Now, think about combining the various constructions above in
the following way. Show that on Io(H) there is an homotopy like (23.34), G :
[0,1)2 — GL(I2(H)), (very like in fact) such that

(23.37)  G(0,2) {ur}ie, = {exp((—1)"2miz)ur},
G(LI’) = Id, G(ya 0) = é(ya 1) v T,y € [07 ]-]



Solution: We can divide l3(H) into its odd an even parts
(23.38) D: ZQ(H) DU+ ({Ugi_l}, {Ugi}) S lQ(H) D lg(H) «— HDH.

and then each copy of lo(H) on the right with H (using the same isometric isomor-
phism). Then the homotopy in the previous problem is such that

(23.39) G(z,y) = D™'G(y,z)D

accomplishes what we want.

Problem P10.7: Eilenberg’s swindle For an infinite dimenisonal separable Hilbert
space, construct an homotopy — meaning a continuous map G : [0,1]> — GL(H)
— with G(0,z) = L(x) in (23.28) and G(1,z) = Id and of course G(y,0) = G(y,1)
for all =,y € [0, 1].

Hint: Just put things together — of course you can rescale the interval at the end
to make it all happen over [0,1]. First ‘divide H into 2 copies of itself’ and deform
from L to M(1,z) in (23.30). Now, ‘divide the second H up into l3(H)’ and apply
an argument just like the preceding problem to turn the identity on this factor into
alternating terms multiplying by exp(+4miz) — starting with —. Now, you are on
H @ l3(H), ‘renumbering’ allows you to regard this as l5(H) again and when you
do so your curve has become alternate multiplication by exp(+4miz) (with + first).
Finally then, apply the preceding problem again, to deform to the identity (always
of course through closed curves). Presto, Eilenberg’s swindle!

Solution: By rescaling the variables above, we now have three homotopies, always
through periodic families. On H & H between L(x) = ¢?™*Id and the matrix

e Id 0
(23.40) ( 0 d) .
Then on H @ l3(H) we can deform from
647ri:1: 1d 0 e47ri9c 1d 0
(23.41) < o d) to < 0 o x))

with G(0,z) in (23.37). However we can then identify
(23.42) H@ZQ(H) = lg(H), (u,v) — w = {w]‘}, wy =u, Wiyl =v;, J > L

This turns the matrix of operators in (23.41) into G(0,z)~'. Now, we can apply
the same construction to deform this curve to the identity. Notice that this really
does ultimately give an homotopy, which we can renormalize to be on [0, 1] if you
insist, of curves of operators on H — at each stage we transfer the homotopy back
to H.





