
Lecture 22

May 6th, 2004

Define u+ := max{u, 0}, u− := min{u, 0}. For a generalized function u ∈ W 1,2(Ω) we say

u ≤ 0 on ∂Ω if u+ ∈ W
1,2
0 (Ω). Similarly we say u ≤ v on ∂Ω if u − v ≤ 0 on ∂Ω. Finally define

sup
∂Ω

u := inf{c : u ≤ c on ∂Ω}.

Weak L2
Maximum Principle

We consider the divergence form equation

Lu := Di(a
ijDju) + biDiu + cu = f,

with c ≤ 0.

Theorem. Suppose u ∈ W 1,2(Ω). Assume

• c ≤ 0

• L strictly elliptic with (aij) > γ · I, γ > 0

• ||bi||C0(Ω) ≤ Λ

• f ∈ W k,2(Ω)

Then



















If Lu ≥ 0 then supΩ u ≤ sup∂Ω u+.

If Lu ≤ 0 then infΩ u ≥ inf∂Ω u−.

If c = 0 then the above holds with |u| instead of u.

The last conclusion follows from the first two since in that case u and −u each satisfy one

inequality.
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Proof. From the statement we have that u satisfies an inequality in the weak sense, the integral

inequality

∀ v ∈ W
1,2
0 (Ω) −

∫

Ω

aijDjuDiv +

∫

Ω

(biDiu + cu)v ≥ 0

or

∫

Ω

aijDjuDiv ≤

∫

Ω

biDiuv +

∫

Ω

cuv.

Now restrict to v such that u · v ≥ 0. Since c ≤ 0

∫

Ω

aijDjuDiv ≤

∫

Ω

biDiuv ≤ Λ

∫

Ω

v|Du|.

If supΩ u > sup∂Ω u+ then choose k ∈ R such that sup∂Ω u+ ≤ k < supΩ u. Now pick a specific v,

v := (u − k)+. This v is 0 everywhere except where u exceed k, and in particular where it exceeds

the supremum of the boundary values. Indeed we have v ∈ W
1,2
0 (Ω) as well as

Dv =

{

Du for u > k (there v > 0)
0 for u ≤ k (there v = 0)

.

And so

∫

Ω

aijDjvDiv ≤ Λ

∫

Γ

v|Dv|,

where Γ := suppDv ⊆ suppv. Now by strict ellipticity the lhs majorizes λ
∫

Ω
|Dv|2 hence

λ||Dv||2L2(Ω) = λ

∫

Ω

|Dv|2 ≤ Λ

∫

Γ

v|Dv| ≤ Λ||v||L2(Γ)||Dv||L2(Ω)

by the Hölder Inequality (HI) (for p = q = 2) and therefore

||Dv||L2(Ω) ≤ c(λ,Λ) · ||v||L2(Γ) = c ·
(

∫

Γ

v2
)

1
2

≤ c ·
(

{

∫

Γ

(v2)
n

n−2

}

n−2

n
{

∫

Γ

1
n
2

}
2
n

)
1
2

= c · Vol(Γ)
1
n ||v||

L
2n

n−2 (Γ)
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once again by the HI for p = n
n−2 , q = n

2 . On the other hand by the Sobolev Embedding

||v||
L

2n
n−2 (Ω)

≤ C||Dv||L2(Ω) and so over all

||v||
L

2n
n−2 (Ω)

≤ C||Dv||L2(Ω) ≤ C||v||L2(Ω)c · Vol(Γ)
1
n ||v||

L
2n

n−2 (Ω)

and therefore Vol(Γ)
1
n ≥ C̃ where the constant is independent of k ! (note v ∈ L2(Ω)). Let therefore

k → sup
Ω

u. Then we see u must still attain its maximum on a set of positive measure! But then

Dv = Du = 0 there! Which in turn contradicts this previous bound on the volume of Γ = supp(Dv).

So we conclude that there exists no k ∈ [sup
∂Ω

u+, sup
Ω

u), in other words sup
∂Ω

u+ ≥ sup
Ω

u. The

second case of the Theorem follows now since if Lu ≤ 0 then L(−u) ≥ 0 and the first case

applies.

Corollary. Let L be strictly elliptic with c ≤ 0. Assume u ∈ W
1,2
0 (Ω) satisfies Lu = 0 on Ω.

Then u = 0 on Ω.

An a priori Estimate

We improve slightly on the aesthetics of the higher regularity proved in the previous lecture for

the case c ≤ 0.

Theorem. Let u ∈ W
1,2
0 (Ω) ∩ W k+2,2(Ω) be a weak solution of Lu = f in Ω, and assume

• L strictly elliptic with (aij) > γ · I, γ > 0

• aij ∈ Ck,1(Ω̄)

• bi, c ∈ Ck−1,1(Ω̄) (for k = 0, C−1,1 := C0 = L∞)

• f ∈ W k,2(Ω)

• ∂Ω is Ck+2
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Then

||u||W k+2,2(Ω) ≤ c · ||Lu||W k,2(Ω).

Note that the assumption u ∈ W k+2,2(Ω) is superfluous once u ∈ W
1,2
0 (Ω) in light of our previous

results.

Also note that this is exactly analogous to what we did in our Hölder theory study; there we

proved Lu = f ∈ Ck,α(Ω), c ≤ 0 implies ||u||Ck+2,α(Ω) ≤ c||f ||Ck,α(Ω).

Proof. Case k = 0. We want to prove ||u||W 2,2(Ω) ≤ c · ||Lu||W 2,2(Ω). and we already know that

||u||W 2,2(Ω) ≤ c ·
(

||u||L2(Ω) + ||Lu||W 2,2(Ω)

)

,

so we now try to demonstrate ||u||L2(Ω) ≤ c||Lu||W 2,2(Ω) for all u ∈ W 2,2(Ω)∩W
1,2
0 (Ω). If not, pick

a sequence {um} ⊆ W 2,2(Ω)∩W
1,2
0 (Ω) with ||um||L2(Ω) = 1, ||Lum||W 2,2(Ω) −−−−→

m→∞ 0 and hence by

what we know

||um||W 2,2(Ω) ≤ c.

Since W 2,2(Ω) is a Hilbert space exists a subsequence which converges weakly to u ∈ W 2,2(Ω)

(note Alouglou’s Theorem applies as we have separability and every Hilbert space is a reflexive

Banach space). Since W 2,2(Ω) →֒ L2(Ω) is a compact embedding we actually have um → u ∈ L2(Ω)

(i.e strongly). But now ||Lum||L2(Ω) → 0, hence Lu = 0 weakly. Since c ≤ 0 this implies by our

previous work u = 0 ! In contradiction with ||um||L2(Ω) = 1 as um → u in L2(Ω) so ||u||L2(Ω) = 1

allora . . .

Corollary. Let Ω ⊆ R
n be a bounded domain with Ck+2 boundary. Then the map

∆ : W k+2,2(Ω) ∩ W
1,2
0 (Ω) −→ W k,2(Ω)

is an isomorphism.
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Proof. Injective: By the previous Corollary if L(u1 − u2) = 0 on Ω and u1 − u2 ∈ W
1,2
0 (Ω) then

u1 − u2 = 0. This actually applies also to any two such functions in W 1,2(Ω) with equal boundary

values.

Surjective: Let f ∈ W k,2(Ω). We can find a solution Lu = f with u in W
2,2
0 (Ω) by Riesz

Representation Theorem and our regularity theory. So ∆−1 exists and by our above Theorem

satisfies

||∆−1f ||W k+2,2(Ω) ≤ C · ||f ||W k,2(Ω).

So ∆−1 is continuous. From the definition of ∆ we see that

||∆u||W k,2(Ω) ≤ ||u||W k+2,2(Ω)

(note no constant on rhs ) we see also ∆ itself is a continuous map between those spaces (wrt to

their topologies).

Corollary. For appropriate L (see above Theorems) with c ≤ 0

L : W k+2,2(Ω) ∩ W
1,2
0 (Ω) −→ W k,2(Ω)

is an isomorphism.

Proof. Injective: Exactly as above.

Surjective: We employ the Continuity Method (CM) which will work out exactly as in the

Schauder case. Consider the family of equations

Ltu := (1 − t)Du + tLu = f.

Recall that the CM will provide for the surjectivity of L based on the surjectivity of ∆ (proved

above) once we can prove

||u||W k+2,2(Ω) ≤ c · ||Ltu||W k,2(Ω)
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with c independent of t. And this is indeed the case since each of the Lt satisfies the assumptions

of the previous Theorem.

Negative Sobolev Spaces

What happens for the k = −1 case? Where does ∆ map to? ∆u is not defined as a function,

though it is as a distribution: given v ∈ W
1,2
0 (Ω) one can define

∆u(v) := −

∫

Ω

∇u · ∇v

which realizes ∆u as a linear functional on W
1,2
0 (Ω), in other words

∆ : W
1,2
0 (Ω) −→ (W 1,2

0 (Ω))⋆.

The motivation for this definition lies in the fact that when we look at the equation −

∫

Ω

∇u ·∇v =

∫

Ω

∆uv we actually mean

∫

Ω

v · (∆udx) and ∆udx gives a distribution under the identification of

distributions with measures.

Recall the inner product as we defined it in W
1,2
0 (Ω) is

(u, v) = +

∫

Ω

∇u · ∇v.

By the Riesz Representation Theorem given any element F ∈ (W 1,2
0 (Ω))⋆ there exists a unique

u ∈ W
1,2
0 (Ω) such that F (v) = (u, v), so

F (v) = (u, v) = +

∫

Ω

∇u · ∇v = (−∆u)(v),

as distributions. Therefore ∆ is surjective. Injectivity follows from the definition of ∆. Continuity

of the inverse is also provided for by the Riesz Representation Theorem

||u||W 1,2

0
(Ω) = ||−∆u||(W 1,2

0
(Ω))⋆ .
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We conclude from this short discussion that ∆ : W
1,2
0 (Ω) −→ (W 1,2

0 (Ω))⋆ =: W−1,2(Ω) is an

isomorphism of Hilbert Spaces. This is a natural extension to our previous results, and adopting

this notation they all extend now to the case k = −1.
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