Lecture 22

May 6th, 2004

Define $u^+ := \max\{u, 0\}, \quad u^- := \min\{u, 0\}.$ For a generalized function $u \in W^{1,2}(\Omega)$ we say $u \le 0$ on $\partial\Omega$ if $u^+ \in W_0^{1,2}(\Omega)$. Similarly we say $u \le v$ on $\partial\Omega$ if $u - v \le 0$ on $\partial\Omega$. Finally define $\sup_{\partial\Omega} u := \inf\{c : u \le c \text{ on } \partial\Omega\}.$

Weak L² Maximum Principle

 \mathcal{W} e consider the divergence form equation

$$Lu := \mathcal{D}_i(a^{ij}\mathcal{D}_j u) + b^i\mathcal{D}_i u + cu = f,$$

with $c \leq 0$.

Theorem. Suppose $u \in W^{1,2}(\Omega)$. Assume

- $c \leq 0$
- L strictly elliptic with $(a^{ij}) > \gamma \cdot I, \ \gamma > 0$
- $||b^i||_{C^0(\Omega)} \leq \Lambda$
- $f \in W^{k,2}(\Omega)$

$$Then \begin{cases} If \ Lu \ge 0 \ then \ \sup_{\Omega} u \le \sup_{\partial\Omega} u^+. \\ If \ Lu \le 0 \ then \ \inf_{\Omega} u \ge \inf_{\partial\Omega} u^-. \\ If \ c = 0 \ then \ the \ above \ holds \ with \ |u| \ instead \ of \ u \end{cases}$$

The last conclusion follows from the first two since in that case u and -u each satisfy one inequality.

Proof. From the statement we have that u satisfies an inequality in the weak sense, the integral inequality

$$\forall v \in W_0^{1,2}(\Omega) \qquad -\int_{\Omega} a^{ij} \mathbf{D}_j u \mathbf{D}_i v + \int_{\Omega} (b^i \mathbf{D}_i u + cu) v \ge 0$$

or
$$\int_{\Omega} a^{ij} \mathbf{D}_j u \mathbf{D}_i v \le \int_{\Omega} b^i \mathbf{D}_i u v + \int_{\Omega} cuv.$$

Now restrict to v such that $u\cdot v\geq 0.$ Since $c\leq 0$

$$\int_{\Omega} a^{ij} \mathbf{D}_{j} u \mathbf{D}_{i} v \leq \int_{\Omega} b^{i} \mathbf{D}_{i} u v \leq \Lambda \int_{\Omega} v |\mathbf{D}u|.$$

If $\sup_{\Omega} u > \sup_{\partial\Omega} u^+$ then choose $k \in \mathbb{R}$ such that $\sup_{\partial\Omega} u^+ \leq k < \sup_{\Omega} u$. Now pick a specific v, $v := (u - k)^+$. This v is 0 everywhere except where u exceed k, and in particular where it exceeds the supremum of the boundary values. Indeed we have $v \in W_0^{1,2}(\Omega)$ as well as

$$Dv = \begin{cases} Du & \text{for } u > k \text{ (there } v > 0) \\ 0 & \text{for } u \le k \text{ (there } v = 0) \end{cases}$$

And so

$$\int_{\Omega} a^{ij} \mathbf{D}_j v \mathbf{D}_i v \leq \Lambda \int_{\Gamma} v |\mathbf{D}v|,$$

where $\Gamma := \text{supp} Dv \subseteq \text{supp} v$. Now by strict ellipticity the LHS majorizes $\lambda \int_{\Omega} |Dv|^2$ hence

$$\lambda ||\mathbf{D}v||_{L^{2}(\Omega)}^{2} = \lambda \int_{\Omega} |\mathbf{D}v|^{2} \le \Lambda \int_{\Gamma} v |\mathbf{D}v| \le \Lambda ||v||_{L^{2}(\Gamma)} ||\mathbf{D}v||_{L^{2}(\Omega)}$$

by the Hölder Inequality (HI) (for p = q = 2) and therefore

$$\begin{split} ||\mathbf{D}v||_{L^{2}(\Omega)} &\leq c(\lambda,\Lambda) \cdot ||v||_{L^{2}(\Gamma)} = c \cdot \left(\int_{\Gamma} v^{2}\right)^{\frac{1}{2}} \leq c \cdot \left(\left\{\int_{\Gamma} (v^{2})^{\frac{n}{n-2}}\right\}^{\frac{n-2}{n}} \left\{\int_{\Gamma} 1^{\frac{n}{2}}\right\}^{\frac{2}{n}}\right)^{\frac{1}{2}} \\ &= c \cdot \operatorname{Vol}(\Gamma)^{\frac{1}{n}} ||v||_{L^{\frac{2n}{n-2}}(\Gamma)} \end{split}$$

once again by the HI for $p = \frac{n}{n-2}$, $q = \frac{n}{2}$. On the other hand by the Sobolev Embedding $||v||_{L^{\frac{2n}{n-2}}(\Omega)} \leq C||\mathbf{D}v||_{L^2(\Omega)}$ and so over all

$$||v||_{L^{\frac{2n}{n-2}}(\Omega)} \le C||\mathsf{D}v||_{L^{2}(\Omega)} \le C||v||_{L^{2}(\Omega)}c \cdot \mathrm{Vol}(\Gamma)^{\frac{1}{n}}||v||_{L^{\frac{2n}{n-2}}(\Omega)}$$

and therefore $\operatorname{Vol}(\Gamma)^{\frac{1}{n}} \geq \tilde{C}$ where the constant is independent of k ! (note $v \in L^2(\Omega)$). Let therefore $k \to \sup_{\Omega} u$. Then we see u must still attain its maximum on a set of positive measure! But then Dv = Du = 0 there! Which in turn contradicts this previous bound on the volume of $\Gamma = \operatorname{supp}(Dv)$. So we conclude that there exists no $k \in [\sup_{\partial\Omega} u^+, \sup_{\Omega} u)$, in other words $\sup_{\partial\Omega} u^+ \geq \sup_{\Omega} u$. The second case of the Theorem follows now since if $Lu \leq 0$ then $L(-u) \geq 0$ and the first case applies.

Corollary. Let L be strictly elliptic with $c \leq 0$. Assume $u \in W_0^{1,2}(\Omega)$ satisfies Lu = 0 on Ω . Then u = 0 on Ω .

An a priori Estimate

We improve slightly on the aesthetics of the higher regularity proved in the previous lecture for the case $c \leq 0$.

Theorem. Let $u \in W_0^{1,2}(\Omega) \cap W^{k+2,2}(\Omega)$ be a weak solution of Lu = f in Ω , and assume

- L strictly elliptic with $(a^{ij}) > \gamma \cdot I, \ \gamma > 0$
- $a^{ij} \in \mathcal{C}^{k,1}(\bar{\Omega})$
- $b^i, c \in \mathcal{C}^{k-1,1}(\bar{\Omega})$ (for $k = 0, \ \mathcal{C}^{-1,1} := \mathcal{C}^0 = L^{\infty}$)
- $f \in W^{k,2}(\Omega)$
- $\partial \Omega$ is \mathcal{C}^{k+2}

Then

$$||u||_{W^{k+2,2}(\Omega)} \le c \cdot ||Lu||_{W^{k,2}(\Omega)}.$$

Note that the assumption $u \in W^{k+2,2}(\Omega)$ is superfluous once $u \in W_0^{1,2}(\Omega)$ in light of our previous results.

Also note that this is exactly analogous to what we did in our Hölder theory study; there we proved $Lu = f \in \mathcal{C}^{k,\alpha}(\Omega), \ c \leq 0$ implies $||u||_{C^{k+2,\alpha}(\Omega)} \leq c||f||_{C^{k,\alpha}(\Omega)}$.

Proof. Case k = 0. We want to prove $||u||_{W^{2,2}(\Omega)} \leq c \cdot ||Lu||_{W^{2,2}(\Omega)}$. and we already know that

$$||u||_{W^{2,2}(\Omega)} \le c \cdot \left(||u||_{L^{2}(\Omega)} + ||Lu||_{W^{2,2}(\Omega)} \right),$$

so we now try to demonstrate $||u||_{L^2(\Omega)} \leq c||Lu||_{W^{2,2}(\Omega)}$ for all $u \in W^{2,2}(\Omega) \cap W_0^{1,2}(\Omega)$. If not, pick a sequence $\{u_m\} \subseteq W^{2,2}(\Omega) \cap W_0^{1,2}(\Omega)$ with $||u_m||_{L^2(\Omega)} = 1$, $||Lu_m||_{W^{2,2}(\Omega)} \xrightarrow{m \to \infty} 0$ and hence by what we know

$$||u_m||_{W^{2,2}(\Omega)} \le c.$$

Since $W^{2,2}(\Omega)$ is a Hilbert space exists a subsequence which converges weakly to $u \in W^{2,2}(\Omega)$ (note Alouglou's Theorem applies as we have separability and every Hilbert space is a reflexive Banach space). Since $W^{2,2}(\Omega) \hookrightarrow L^2(\Omega)$ is a compact embedding we actually have $u_m \to u \in L^2(\Omega)$ (i.e strongly). But now $||Lu_m||_{L^2(\Omega)} \to 0$, hence Lu = 0 weakly. Since $c \leq 0$ this implies by our previous work u = 0! In contradiction with $||u_m||_{L^2(\Omega)} = 1$ as $u_m \to u$ in $L^2(\Omega)$ so $||u||_{L^2(\Omega)} = 1$ allora ...

Corollary. Let $\Omega \subseteq \mathbb{R}^n$ be a bounded domain with \mathcal{C}^{k+2} boundary. Then the map

$$\Delta : W^{k+2,2}(\Omega) \cap W^{1,2}_0(\Omega) \longrightarrow W^{k,2}(\Omega)$$

is an isomorphism.

Proof. Injective: By the previous Corollary if $L(u_1 - u_2) = 0$ on Ω and $u_1 - u_2 \in W_0^{1,2}(\Omega)$ then $u_1 - u_2 = 0$. This actually applies also to any two such functions in $W^{1,2}(\Omega)$ with equal boundary values.

Surjective: Let $f \in W^{k,2}(\Omega)$. We can find a solution Lu = f with u in $W_0^{2,2}(\Omega)$ by Riesz Representation Theorem and our regularity theory. So Δ^{-1} exists and by our above Theorem satisfies

$$||\Delta^{-1}f||_{W^{k+2,2}(\Omega)} \le C \cdot ||f||_{W^{k,2}(\Omega)}.$$

So Δ^{-1} is continuous. From the definition of Δ we see that

$$||\Delta u||_{W^{k,2}(\Omega)} \le ||u||_{W^{k+2,2}(\Omega)}$$

(note no constant on RHS) we see also Δ itself is a continuous map between those spaces (WRT to their topologies).

Corollary. For appropriate L (see above Theorems) with $c \leq 0$

$$L: W^{k+2,2}(\Omega) \cap W^{1,2}_0(\Omega) \longrightarrow W^{k,2}(\Omega)$$

is an isomorphism.

Proof. Injective: Exactly as above.

Surjective: We employ the Continuity Method (CM) which will work out exactly as in the Schauder case. Consider the family of equations

$$L_t u := (1-t)\mathrm{D}u + tLu = f.$$

Recall that the CM will provide for the surjectivity of L based on the surjectivity of Δ (proved above) once we can prove

$$||u||_{W^{k+2,2}(\Omega)} \le c \cdot ||L_t u||_{W^{k,2}(\Omega)}$$

with c independent of t. And this is indeed the case since each of the L_t satisfies the assumptions of the previous Theorem.

Negative Sobolev Spaces

What happens for the k = -1 case? Where does Δ map to? Δu is not defined as a function, though it is as a distribution: given $v \in W_0^{1,2}(\Omega)$ one can define

$$\Delta u(v) := -\int_{\Omega} \nabla u \cdot \nabla v$$

which realizes Δu as a linear functional on $W_0^{1,2}(\Omega)$, in other words

$$\Delta: W_0^{1,2}(\Omega) \longrightarrow (W_0^{1,2}(\Omega))^{\star}.$$

The motivation for this definition lies in the fact that when we look at the equation $-\int_{\Omega} \nabla u \cdot \nabla v =$

 $\int_{\Omega} \Delta uv \text{ we actually mean } \int_{\Omega} v \cdot (\Delta u d\mathbf{x}) \text{ and } \Delta u d\mathbf{x} \text{ gives a distribution under the identification of}$

distributions with measures.

Recall the inner product as we defined it in $W_0^{1,2}(\Omega)$ is

$$(u,v) = + \int_{\Omega} \nabla u \cdot \nabla v.$$

By the Riesz Representation Theorem given any element $F \in (W_0^{1,2}(\Omega))^*$ there exists a unique $u \in W_0^{1,2}(\Omega)$ such that F(v) = (u, v), so

$$F(v) = (u, v) = + \int_{\Omega} \nabla u \cdot \nabla v = (-\Delta u)(v),$$

as distributions. Therefore Δ is surjective. Injectivity follows from the definition of Δ . Continuity of the inverse is also provided for by the Riesz Representation Theorem

$$||u||_{W_0^{1,2}(\Omega)} = ||-\Delta u||_{(W_0^{1,2}(\Omega))^*}.$$

We conclude from this short discussion that $\Delta : W_0^{1,2}(\Omega) \longrightarrow (W_0^{1,2}(\Omega))^* =: W^{-1,2}(\Omega)$ is an isomorphism of Hilbert Spaces. This is a natural extension to our previous results, and adopting this notation they all extend now to the case k = -1.