Lecture 23

May 11th, 2004

LP Theory

Take f any measurable function on a domain Q C R" and define the distribution function of f
pp(t) == {x € Q:|f(x)| > t}|. We use alternatively |- | and A(-) to denote the Lebesgue measure.
Proposition.  Assume f € LP(Q) for some p > 0.
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In order for the second equation to make sense we need the distribution function to be measurable
and indeed it is as f itself is.

Proof. First

/ fPdx > / Pdx > PA({a: f(2) > 1)) = Pus().
Q {f>t}

Second, assume first p = 1. By Fubini’s Theorem one can interchange order of integration in

|f ()] o oo
/’f’ :// dtdx:/ /H{er: f(:c)>t}dth:/ pug (t)dt.
Q aJo 0o Ja 0

For general p
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Mareinkiewicz Interpolation Theorem. Let1 <q<r <oo andletT: LI(Q)NL" () —

L1(Q) N L™(2) be a linear map. Suppose there exist constants Ty, Ts such that
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Then for any exponent in between q < p < r, T can be extended to a map LP(Q) — LP(Q) for all

feLyQ)NLP(Q). And moreover,
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Otherwise stated: weak (q,q) & weak (r,r) = strong (p,p) p € (q,r), though not for the
endpoints, the constants blow-up there (we say an operator is strong (p1,p2) if it maps functions
in LP* to functions in LP2. We say it is weak (p1,p2) if its domain is in LP* and its distribution
function satisfies the first inequality in the assumptions above with ¢ replaced by ps).

Proof. Take f € L1(Q2) N L"(2), and let s > 0. Let
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indeed one notices that f = f; + fo. The trick will be to let this splitting of f vary by letting s

itself vary. So |Tf| < |T'fi|+ |T'fz|. If Tf(x) > t at some point z € 2 then either T'f; > t/2 or

T fo > t/2. This translates into



prs(t) < prp (8/2) + pry, (8/2)
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We choose the smaller exponent ¢ for the terms where f is large (f;) and larger one r for where f
is small (fs), intuitively. This will make sense in a moment when it will be clear how this guarantees

that our two integrals — with different integration domains — are finite. By the Proposition we

/ |Tf|Pdx = p/ tpil,qu(t)dt.
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and once we substitute in the above inequality we get

have
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We chose s > 0 arbitrary in the above construction of f;. In particular we may let it vary. This

is a neat trick. We set s =t to get
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Altogether

/Q|Tf|pd/X < [ﬁ(ZTl)q + Tp%p(QTQ)T] '/Q|f|p'
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Remark. In Gilbarg-Trudinger, p.229, a different constant is achieved which is slightly stronger
than ours (as can be seen using the AM-GM Inequality). This is done by introducing an additional

constant A, letting t = As and later choosing A appropriately.

Back to the Newtonian Potential

We defined the Newtonian Potential of f
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Claim. (Young’s Inequality) N : LP(Q2) — LP(Q2). Moreover continuously so- 3 C such

that ||[N fllzr) < Cllfllzr)-

Remark. For p =2 we proved in the past much more: A(Nf) = f € L2(2) = Nf e W?22(Q).
Also our previous estimates on the Newtonian Potential can actually be made to extend our Claim
to W1P(Q) regularity. These estimates can not give though W?2P(Q2) estimates (see the beginning

of the next Lecture).

Proof.
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since I'(x —y) ~ and therefore is integrable over R™. Therefore we have an upper bound

|z — gyt

on wP which we can integrate
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where we applied Fubini’s Theorem. [ ]

Theorem.  Let f € LP(QQ) for some 1 < p < 0o and let w = N f be the Newtonian Potential of

f. Then w € W2P(Q) and Aw = f a.e. and
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For p =2 we have even
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Proof. We prove just for p = 2, leaving the hard work for the next and last lecture. First we assume
f € C5e(R™). From long time ago: f € C°(R") = w € C*(R") and Aw = f (Holder Theory for
the Newtonian Potential).

Let B := Bp a ball containing suppf =
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We embark now on our main computation



/ |D%w|? :/ D;;wD;jw (summation) :—/ Dj(Dijw)Diw—l—/ D;;wD;wv;df
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The last equality results from our assumption that f vanishes on OB, i.e has compact support

inside . Now since f is smooth

Diw(z) = / DiI(x — y)f (y)dy <

Digw(o) = [ Dyl =) )y < g

Therefore as we let R — oo, the second term - which is integrated only over the sphere of radius
R in R"™ — tends to 0. Then we have in the limit the desired result (after substituting (1) for the
RHS).

Now if f € L?(Q), approximate it by functions f,, € C5°(R") (possible by the density argument

used in the past: C3°(Q2) = L2(Q)) such that fn, L% f. From the Claim above I|N fller) <
C|fl|Lr(0y, hence |IN(f; — fi)llzry < ClIfi — fillLo ey, from which wy, = N f, L% Nf = w,

Now Aw; = f; and by the C§°(£2) case applied to the Dirichlet Problem A(w; —w;) = f; — f;

/n|D2(Wi_wj)|2:/ﬂ|fi—fj|2-
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As the RHS tends to 0 for 4, j large we have that {D?w,,} converges in L?(2), i.e {w,} converges in

W22(Q). Since we already know its limit is w € L?(Q) we conclude that in fact w € W22(Q) | m



