
Lecture 23

May 11th, 2004

Lp
Theory

Take f any measurable function on a domain Ω ⊆ R
n and define the distribution function of f

µf (t) := |{x ∈ Ω : |f(x)| > t}|. We use alternatively | · | and λ(·) to denote the Lebesgue measure.

Proposition. Assume f ∈ Lp(Ω) for some p > 0.

I) µf (t) ≤ t−p

∫

Ω

|f |pdx.

II)

∫

Ω

|f |pdx = p

∫ ∞

0

tp−1µf(t)dt.

In order for the second equation to make sense we need the distribution function to be measurable

and indeed it is as f itself is.

Proof. First

∫

Ω

|f |pdx ≥
∫

{f>t}

|f |pdx ≥ tpλ({x : f(x) > t}) = tpµf (t).

Second, assume first p = 1. By Fubini’s Theorem one can interchange order of integration in

∫

Ω

|f | =

∫

Ω

∫ |f(x)|

0

dtdx =

∫ ∞

0

∫

Ω

I{x∈Ω: f(x)>t}dxdt =

∫ ∞

0

µf (t)dt.

For general p

µfp(t) = |{x : fp(x) > t}| = |{x : f(x) >
p
√

t}| = µf (
p
√

t) =

and so
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p

∫ ∞

0

tp−1µf (t)dt =

∫ ∞

0

µfp(tp)d(tp) =

∫

Ω

|f |pdx.

Marcinkiewicz Interpolation Theorem. Let 1 ≤ q < r < ∞ and let T : Lq(Ω) ∩ Lr(Ω) −→

Lq(Ω) ∩ Lr(Ω) be a linear map. Suppose there exist constants T1, T2 such that

∀ f ∈ Lq(Ω) ∩ Lr(Ω) µTf (t) ≤
(T1||f ||Lq(Ω)

t

)q

, µTf (t) ≤
(T2||f ||Lr(Ω)

t

)r

, ∀ t > 0.

Then for any exponent in between q < p < r, T can be extended to a map Lp(Ω) −→ Lp(Ω) for all

f ∈ Lq(Ω) ∩ Lp(Ω). And moreover,

||Tf ||Lp(Ω) ≤
[ p

q − p
(2T1)

q +
p

r − p
(2T2)

r
]

1

p ||f ||Lp(Ω).

Otherwise stated: weak (q, q) & weak (r, r) =⇒ strong (p, p) p ∈ (q, r), though not for the

endpoints, the constants blow-up there (we say an operator is strong (p1, p2) if it maps functions

in Lp1 to functions in Lp2 . We say it is weak (p1, p2) if its domain is in Lp1 and its distribution

function satisfies the first inequality in the assumptions above with q replaced by p2).

Proof. Take f ∈ Lq(Ω) ∩ Lr(Ω), and let s > 0. Let

f1 :=

{

f(x) |f(x)| > s
0 |f(x)| ≤ s

f2 :=

{

0 |f(x)| > s
f(x) |f(x)| ≤ s

indeed one notices that f = f1 + f2. The trick will be to let this splitting of f vary by letting s

itself vary. So |Tf | ≤ |Tf1| + |Tf2|. If Tf(x) > t at some point x ∈ Ω then either Tf1 > t/2 or

Tf2 > t/2. This translates into
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µTf(t) ≤ µTf1
(t/2) + µTf2

(t/2)

≤
( T1

t/2

)q
∫

Ω

|f1|q +
( T2

t/2

)r
∫

Ω

|f2|r.

We choose the smaller exponent q for the terms where f is large (f1) and larger one r for where f

is small (f2), intuitively. This will make sense in a moment when it will be clear how this guarantees

that our two integrals — with different integration domains — are finite. By the Proposition we

have

∫

Ω

|Tf |pdx = p

∫ ∞

0

tp−1µTf (t)dt.

and once we substitute in the above inequality we get

∫

Ω

|Tf |pdx ≤ p

∫ ∞

0

tp−1
[( T1

t/2

)q
∫

Ω

|f1|q +
( T2

t/2

)r
∫

Ω

|f2|r
]

dt

= p(2T1)
q

∫ ∞

0

(

∫

{|f |>s}

|f1|q
)

tp−1−qdt + p(2T2)
r

∫ ∞

0

(

∫

{|f |≤s}

|f2|r
)

tp−1−rdt.

We chose s > 0 arbitrary in the above construction of fi. In particular we may let it vary. This

is a neat trick. We set s = t to get

p(2T1)
q

∫ ∞

0

(

∫

{|f |>s}

|f |q
)

sp−1−qds + p(2T2)
r

∫ ∞

0

(

∫

{|f |≤s}

|f |r
)

sp−1−rds

= p(2T1)
q

∫

Ω

|f |qdx
∫ |f |

0

sp−1−qds + p(2T2)
r

∫

Ω

|f |rdx
∫ ∞

|f |

sp−1−rds

= (2T1)
q p

q − p

∫

Ω

|f |p + (2T2)
r p

r − p

∫

Ω

|f |p.

Altogether

∫

Ω

|Tf |pdx ≤
[ p

q − p
(2T1)

q +
p

r − p
(2T2)

r
]

·
∫

Ω

|f |p.
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Remark. In Gilbarg-Trudinger, p.229, a different constant is achieved which is slightly stronger

than ours (as can be seen using the AM-GM Inequality). This is done by introducing an additional

constant A, letting t = As and later choosing A appropriately.

Back to the Newtonian Potential

We defined the Newtonian Potential of f

ω ≡ Nf :=

∫

Ω

Γ(x − y)f(y)dy =
1

n(2 − n)ωn

∫

Ω

1

|x − y|n−2
dy.

Claim. (Young’s Inequality) N : Lp(Ω) −→ Lp(Ω). Moreover continuously so– ∃ C such

that ||Nf ||Lp(Ω) ≤ C||f ||Lp(Ω).

Remark. For p = 2 we proved in the past much more: ∆(Nf) = f ∈ L2(Ω) ⇒ Nf ∈ W 2,2(Ω).

Also our previous estimates on the Newtonian Potential can actually be made to extend our Claim

to W 1,p(Ω) regularity. These estimates can not give though W 2,p(Ω) estimates (see the beginning

of the next Lecture).

Proof.

ω : = Γ ⋆ f =

∫

Ω

Γ(x − y)f(y)dy

=

∫

Ω

f(y)Γ(x − y)
1

p Γ(x − y)1−
1

p dy

≤
{

∫

Ω

|f(y)pΓ(x − y)|dy
}

1

p
{

∫

Ω

|Γ(x − y)|dy
}1− 1

p

≤ C ·
{

∫

Ω

|f(y)pΓ(x − y)|dy
}

1

p .

4



since Γ(x−y) ∼ 1

|x − y|n−1
and therefore is integrable over R

n. Therefore we have an upper bound

on ωp which we can integrate

∫

Ω

ωpdx ≤
∫

Ω

Cp
{

∫

Ω

|f(y)pΓ(x − y)|dy
}

dx

= Cp

∫

Ω

∫

Ω

|f(y)|p|Γ(x − y)|dxdy

= Cp

∫

Ω

|f(y)|p
(

∫

Ω

|Γ(x − y)|dx
)

dy

≤ C̃

∫

Ω

|f(y)|pdy.

where we applied Fubini’s Theorem.

Theorem. Let f ∈ Lp(Ω) for some 1 < p < ∞ and let ω = Nf be the Newtonian Potential of

f . Then ω ∈ W 2,p(Ω) and ∆w = f a.e. and

||D2w||Lp(Ω) ≤ c(n, p,Ω) · ||f ||Lp(Ω).

For p = 2 we have even

∫

R
n
|D2ω|2 =

∫

Ω

f2.

Proof. We prove just for p = 2, leaving the hard work for the next and last lecture. First we assume

f ∈ C∞
0 (Rn). From long time ago: f ∈ C∞

0 (Rn) ⇒ ω ∈ C∞(Rn) and ∆ω = f (Hölder Theory for

the Newtonian Potential).

Let B := BR a ball containing suppf ⇒

∫

BR

(Dω)2 =

∫

BR

f2 =

∫

Ω

f2 (1)

We embark now on our main computation
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∫

BR

|D2ω|2 =

∫

BR

DijωDijω (summation) = −
∫

BR

Dj(Dijω)Diω +

∫

∂BR

DijωDiωνjdθ

= −
∫

BR

Di(Djjω)Diω +

∫

∂BR

DijωDiωνjdθ

= −
∫

BR

Di(∆ω)Diω +

∫

∂BR

∂

∂ν
DωDωdθ

=

∫

BR

(∆ω)2 −
∫

∂BR

∆ω · ∂

∂ν
ωdθ +

∫

∂BR

∂

∂ν
Dω · Dωdθ

=

∫

BR

(∆ω)2 +

∫

∂BR

∂

∂ν
Dω · Dωdθ.

The last equality results from our assumption that f vanishes on ∂B, i.e has compact support

inside Ω. Now since f is smooth

Diω(x) =

∫

Ω

DiΓ(x − y)f(y)dy ≤ C

Rn−1
,

Dijω(x) =

∫

Ω

DijΓ(x − y)f(y)dy ≤ C

Rn
.

Therefore as we let R −→ ∞, the second term - which is integrated only over the sphere of radius

R in R
n – tends to 0. Then we have in the limit the desired result (after substituting (1) for the

rhs).

Now if f ∈ L2(Ω), approximate it by functions fm ∈ C∞
0 (Rn) (possible by the density argument

used in the past: C∞
0 (Ω) = L2(Ω)) such that fm −−−−→L2(Ω) f . From the Claim above ||Nf ||Lp(Ω) ≤

C||f ||Lp(Ω), hence ||N(fi − fj)||Lp(Ω) ≤ C||fi − fj ||Lp(Ω), from which ωm ≡ Nfm −−−−→L2(Ω) Nf ≡ ω.

Now ∆ωj = fj and by the C∞
0 (Ω) case applied to the Dirichlet Problem ∆(ωi − ωj) = fi − fj

∫

R
n
|D2(ωi − ωj)|2 =

∫

Ω

|fi − fj |2.
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As the rhs tends to 0 for i, j large we have that {D2ωm} converges in L2(Ω), i.e {ωm} converges in

W 2,2(Ω). Since we already know its limit is ω ∈ L2(Ω) we conclude that in fact ω ∈ W 2,2(Ω) !
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