
Lecture 13

April 1st, 2004

Now we would like to extend our estimates to general domains.

Proposition. Let Ω be a C2,α domain and u ∈ C2,α(Ω̄), with 0 < α < 1. Given ǫ > 0,∃ c = c(ǫ,Ω)

s.t. for k = 0, 1, β ∈ (0, 1) and k = 2, β < α

||u||Ck,β (Ω) ≤ c · ||u||C0(Ω) + ǫ · |u|C2,α(Ω).

Note this is a global estimate, i.e. upto the boundary.

We will use the remark from last time concerning domains with a portion of a hyperplane on

the boundary which will provide us with a needed estimate. We choose a C2,α injective function

Ψ which maps B(x, r) ∩ Ω (x ∈ ∂Ω) in such a manner as to map B(x, r) ∩ ∂Ω onto a portion of

a hyperplane. Its inverse S := Ψ−1 is also C2,α. Set ũ := u ◦ Ψ−1, the pulled-back function, and

T ′ := Ψ(Br/2(x) ∩ ∂Ω). For the domain in the image we have estimates as just mentioned

|ũ|Ck,β(Ψ(Br/2(x))∩T̃ ) ≤ c(ǫ) · |ũ|C0(Ψ(Br(x))) + ǫ · |ũ|C2,α(Ψ(Br/2(x))∩T̃ ). (1)

Let S = (S(1), . . . , S(n)). Now calculate

Diũ = Dlu · (S(l))i ≡ Dlu · Di(S(l)) summation over l understood

DjDiũ = DkDlu(S(k))j(S(l))i + DluDj(S(l))i

|u|C0(Br(x)) = |ũ|C0(Ψ(Br(x))).

Now

|ũ|Cα(Ψ(Br(x))) = sup
y1 6=y2

|ũ(y1) − ũ(y2)|

|y1 − y2|α
= sup

x1 6=x2

|u(x1) − u(x2)|

|Ψ(x1) − Ψ(x2)|α

≤ sup
x1 6=x2

|u|Cα(Br(x))
|x1 − x2|

α

|Ψ(x1) − Ψ(x2)|α
.
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Now since Ψ,Ψ−1 are C2,α they are in particular Lipschitz (C0,1), i.e ∃K > 0 s.t.

|Ψ(x1) − Ψ(x2)| ≤ K|x1 − x2|, |Ψ−1(y1) − Ψ−1(y2)| ≤ K|y1 − y2|,

or

1/K · |x1 − x2| ≤ |Ψ(x1) − Ψ(x2)| ≤ K · |x1 − x2|.

When plugged-in to our previous computation this yields

≤ |u|Cα(Br(x)) · K
−α.

Analogously we get

|u|Cα(Br(x)) ≤ |ũ|Cα(Br(x)) · K
α.

We also have analogously for the first derivatives

|Dũ|C0 ≤ |Du|C0 · K1

and

|Du|C0 ≤ |Dũ|C0 · K−1
1

where K1 depends on |Ψ|C1 .

And for the second derivatives ∃K2 depending on |Ψ|C2 (i.e depending on the domain Ω !) with

|D2ũ| ≤ K1 · |D
2u| + K2|Du| ≤ K ′||u||C2 .

Similarly

|D2u| ≤ K ′′||ũ||C2

Finally for C2,α norms, can again show norms on both sides are equivalent using K,K ′,K ′′. So

we conclude - for each point x ∈ ∂Ω we have a ball and the estimate (1) holds there. The above

long discussion yields that we have furthermore the desired estimate concerning the norms therein:

||u||Ck,β(Br/2(x)∩Ω) ≤ c · ||u||C0(Br(x)∩Ω) + ǫ · |u|C2,α(Br/2(x)∩Ω).
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Since Ω̄ is compact we can cover ∂Ω by finitely many balls. On the interior of each we have this

(desired) estimate. To complete the proof we therefore just need to make sure this estimate also

holds in the interior of Ω. We take a set Ω′ ⊂⊂ Ω and a number D > 0 s.t.

A) if x, y ∈ Ω and d(x, y) ≤ D then either

i) both x, y are both contained in one of the small ball covering the boundary of Ω.

There we have the desired estimate already.

or

ii) both x, y are in Ω′. Then we have the desired estimate as well from our interior

estimate from the previous lecture for the semi-norms, which extends to give the des-

ired estimate for the norms.

B) if d(x, y) > D we have
|D2u(x) − D2u(y)|

|x − y|α
≤ 1/Dα · 2 · |D2u|C0(Ω). And so also in this case

we get the desired estimate.

We now try to extend our results to the case of non-constant coefficients , which was in fact our

original goal.

Theorem. Let u ∈ C2,α(Ω), L = aij(x)Dij + bi(x)Di + c(x) (summation understood over double

indices), and suppose Lu = f ∈ Cα(Ω). Assume furthermore that L has coefficients in Cα(Ω) and

is uniformly elliptic, i.e

•
1

Λ
· δij ≤ aij(x) ≤ Λ · δij

• ||aij(x)||Cα(Ω), ||bi(x)||Cα(Ω), ||c(x)||Cα(Ω) < Λ.

Then ∀ Ω′⊂⊂ Ω, ∃ c = c(Λ, n,Ω′,Ω) such that

||u||C2,α(Ω′) ≤ c
(

||u||C0(Ω) + ||f ||Cα(Ω)

)

.

Thanks to the interpolation proposition we really only need to bound the C2,α semi-norm with

the above rhs since all the other semi-norms contained in the C2,α norm are bounded above by it

together with the C0 semi-norm which is part of the rhs already.
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We will try to make use of the Hölder constant of the coefficients to relate our situation to the

constant coefficients case. The idea is that locally the coefficients are almost constant, and the

degree to which this almost true is good enough for us (continuous wouldn’t be good enough).

In this spirit, rewrite Lu = f as

(aij(x) − aij(x0) + aij(x0))uij(x) + bi(x)ui(x) + c(x)u(x) = f,

or

aij(x0)uij(x) = −(aij(x) − aij(x0))uij(x) − bi(x)ui(x) − c(x)u(x) + f.

Calling the lhs L0u and the rhs F (x) we thus define a constant coefficient uniformly elliptic

operator and a function.

Let Ω′⊂⊂ Ω with x0 ∈ Ω′. Take B(x0, µ · D) ∈ Ω′, B(x0,D) ∈ Ω with µ > 0 small and denote

d := µ ·D. As mentioned above we only need to prove an estimate for the |D2u|Cα(Ω′). We observe

that for any y0 ∈ Ω′, and for d small enough

D2u(x0) − D2u(y0)

|x0 − y0|α
≤











c · (||u||C0(B(x0, d
2 )) + ||F ||Cα(B(x0, d

2 ))), if y0 ∈ B(x0,
d

2
)

2|u|C2(Ω′)

dα
+ ||F ||C0(Ω′)), if |x0 − y0| ≥

d

2
.

since when d is small enough, we can think of having a a uniform elliptic equation with almost

constant coefficients in B(x0,
d
2 ) and then apply our previous results. We therefore get

|D2u|Cα(Ω′) ≤ c′ · (||u||C0(Ω′) +
1

dα
|u|C2(Ω′) + sup

x0∈Ω′

||F ||Cα(B(x0, d
2 ))). (2)

We first estimate the last term which is of a local nature. Observe that for two Hölder functions

k, l ∈ Cα(Ω), |k · l|Cα(Ω) ≤ |k|Cα(Ω) · |l|C0(Ω) + |k|C0(Ω) · |l|Cα(Ω) ≤ C(Ω) · |k|Cα(Ω)|l|Cα(Ω), while for

the norms themselves we see from the first inequality that ||k · l||Cα(Ω) ≤ ||k||Cα(Ω) · ||l||Cα(Ω). So

||F ||Cα(B(x0, d
2 ))) ≤ ||aij(x) − aij(x0)||Cα(B(x0, d

2 )) · ||uij ||Cα(B(x0, d
2 ))+

+||bi||Cα(B(x0, d
2 )) · ||ui||Cα(B(x0, d

2 )) + ||c||Cα(B(x0, d
2 ))||u||Cα(B(x0, d

2 )) + ||f ||Cα(B(x0, d
2 )).
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Remember that the Cα norm includes the C0 and Cα semi-norms. We have

||aij(x)−aij(x0)||Cα(B(x0, d
2 )) = sup |aij(x)−aij(x0)|+ |aij(x)−aij(x0)|Cα ≤ c · ||aij ||Cα(Ω′)|x−x0|

α

=⇒

||F ||Cα(B(x0, d
2 )) ≤ c ·Λdα(||D2u||Cα(B(x0, d

2 )) + ||Du||Cα(B(x0, d
2 )) + ||u||Cα(B(x0, d

2 ))) + ||f ||Cα(B(x0, d
2 ))

and using interpolation for the 2nd and 3rd terms we find

≤ c · Λdα(|u|C2,α(B(x0, d
2 )) + |u|C0(Ω′)) + ||f ||Cα(B(x0, d

2 )). (3)

We now come back to the 2nd term of (2).

We now let x0 range over all points of Ω′. For each x0 we will find different d,D such that (2)

above holds.

It so happens that this inequality is useless unless we can not control from below the term

involving d−α. The problem is that as x0 → ∂Ω, d = d(x0) → 0. To overcome this we assume

we chose Ω′ such that Ω′⊂⊂ Ω′′ ⊂⊂ Ω and such that dist(∂Ω′, ∂Ω′′) ≥ δ0 > 0. Then for problematic

points x0 → ∂Ω and y0 6∈ B(x0,
d
2 ) we can replace the term

2|u|C2(Ω′)

dα by
2|u|C2(Ω′)

(d+δ0)α . Therefore we

have overcome the problem by means of introducting a constant c′′ depending on Ω′ (and Ω) and

we can replace (2) by

|D2u|Cα(Ω′) ≤ c′ · (||u||C0(Ω′) + c′′|u|C2(Ω′′) + sup
x0∈Ω′

||F ||Cα(B(x0, d
2 ))). (4)

The 2nd term can be bounded above using our interpolation theory:

|u|C2(Ω′′) ≤ c(ǫ1) · ||u||C0(Ω) + ǫ1 · |u|C2,α(Ω′′) (5)

with ǫ1 > 0 of our choice. And so we have all in all

|u|C2,α(Ω′) ≤ c′·
(

||u||C0(Ω)+c(ǫ1)·||u||C0(Ω)+ǫ1·|u|C2,α(Ω′′)+cΛdα(|u|C2,α(Ω′)+|u|C0(Ω′))+||f ||Cα(Ω′)

)

.

Now choose d small enough such that cΛdα <
1

4
and ǫ1 <

1

4
·
|u|C2,α(Ω′)

|u|C2,α(Ω′′)
.
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Remark. This Theorem gives still just a Schauder type interior estimate. Next time we will try

to extend it to the boundary.
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