
Lecture 14

April 6,th 2004

Extending interior Schauder estimates to flat boundary part

Theorem. u ∈ C2,α(Ω∩T ), Lu = f, u = 0 on T , with 0 < α < 1. Assume coefficients are bounded

in C2,α(Ω∩T ) as well as uniformly elliptic. Then ∀Ω′ ∩T ′ ⊂⊂ Ω∩T, ∃ c = c(Λ, n,Ω′,Ω, T ′, T ) such

that

||u||C2,α(Ω′∩T ′) ≤ c
(

||u||C0(Ω∩T ) + ||f ||Cα(Ω∩T )

)

.

Proof. As in the last remark we see that our proof consisted of perturbing the equation at any

x0 ∈ Ω′ and relying on our constant coefficients estimates and interpolation methods. Both of these

hold upto the flat boundary from our previous work.

Global Schauder estimates

Theorem. Let Ω be a C2,α domain and u ∈ C2,α(Ω̄)⋆ with 0 < α < 1. Let L be uniformly elliptic

with Cα(Ω̄) bounds on coefficients . Let

Lu = f, f ∈ Cα(Ω̄),
u = ϕ on ∂Ω.

Then ∃ c = c(Ω,Λ, n) such that

||u||C2,α(Ω) ≤ c
(

||u||C0(Ω) + ||f ||Cα(Ω) + ||ϕ||C2,α(∂Ω)

)

.

⋆ We note that Gilbarg-Trudinger intend by this notation locally Hölder while we will take it

henceforth to mean globally Hölder in the sense that we assume supx0 6=y0∈Ω̄
D2

u(x0)−D2
u(y0)

|x0−y0|α
is

finite.
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Here we let ||ϕ||C2,α(∂Ω) := inf
ϕ̃:Ω→R

||ϕ̃||C2,α(Ω).

Proof. It is enough to prove for the case of zero boundary values: if we can solve the Dirichlet

problem

Lv = f − Lϕ =: f ′ ∈ Cα on Ω̄,

v = 0 on ∂Ω.

we can also solve our original one by setting v + ϕ solves the original equation. And if we have

the above announced estimates for v then by the triangle inequality (for the relevant norms) and

the uniform ellipticity (which gives ||Lϕ||Cα(Ω) ≤ c · ||ϕ||C2,α(Ω)) the same estimates will hold for

u, possibly with a different constant.

So indeed we may assume ϕ = 0.

By definition of a C2,α domain ∃Ψ,Ψ−1 ∈ C2,α(Rn → R
n) mapping each small portion of the

boundary of Ω, say B(x0, R) ∩ ∂Ω for x0 ∈ ∂Ω to flat boundary. We set as in computations

in the past ũ := u ◦ Ψ−1 and then Dũ = Du ◦ Ψ−1′, D2ũ = D2u · Ψ−1′ + Du · D2Ψ−1. These

computations convince us once more that the relevant norms on a, b, c and ã, b̃, c̃ are equivalent

using Ψ,Ψ−1 ∈ C2,α (e.g we find ||b̃||Cα(Ω) ≤ ||b||Cα(Ω)(|Ψ|C1,α(+)|Ψ|C2,α(Ω) ≤ C · Λ).

We have for the flat boundary

||ũ||C2,α(Ψ(B(x0, 1
2
R)∩Ω̄)) ≤ c

(

||ũ||C0(Ψ(B(x0,R)∩Ω̄)) + ||f̃ ||Cα(Ψ(B(x0,R)∩Ω̄))

)

.

Now by our above work we know this holds also for u in B(x0, R) ∩ Ω̄

||u||C2,α(B(x0, 1
2
R)∩Ω̄) ≤ c

(

||u||C0(B(x0,R)∩Ω̄) + ||f ||Cα(B(x0,R)∩Ω̄)

)

.

Now we patch up the estimates over a countable cover of ∂Ω by small balls {B(xi,
1
2Ri)}. ∂Ω being

compact we may choose a finite subcover say after relabeling {B(xi,
1
2
Ri)}

N
i=1. Finally we adjoin

to these estimates an interior estimate for some Ω′ such that Ω \ ∪N
i=1B(xi,

1
2Ri)⊂⊂ Ω′ ⊂⊂ Ω. And

having this we are done by analysing the different cases that might arise in a similar fashion to

previous proofs.
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Banach Spaces

Let V be a vector space equipped with a norm || · || : V → R i.e i) ||x|| ≥ 0 with equality

⇔ x = 0; ii) ||αx|| = |α|||x||; iii) ∆− inequality. With a norm we have a metric d(x, y) := ||x−y||

and we can talk about topology induced from it, convergence etc.

Cauchy sequence: {xi} such that d(xn, xm) −→N→∞ 0, ∀m,n ≥ N.

Banach space: a normed space complete wrt the norm metric ⇔ every Cauchy sequence con-

verges (wrt the norm metric) in V (limit in V ).

We mention in passing a few examples.

• The Bolzano-Weierstrass theorem showing (Rn, | · |) is complete carries over to show

finite dimensional normed spaces are Banach.

• (C0(Ω), || · ||L1) is incomplete, so is not Banach;

• On the other handwhile (C0(Ω), || · ||C0(Ω)) and in general (Ck,α(Ω), || · ||Ck,α) are Banach,

as can be demonstrated using the Arzelà-Ascoli theorem [cf. Peterson, Riemannian Geometry,

Chapter 10].

• Sobolev spaces are yet another example.

Contraction Mapping Theorem. Let B a Banach space and T : B → B a contraction mapping

(wrt to the norm metric). Then T has a unique fixed point.

Proof. Here the assumption translates into ||Tx − Ty|| ≤ θ · ||x − y|| for θ ∈ [0, 1). The idea is to

look at the sequence {xn := T nx0} and show it is Cauchy using the ∆-inquality . Let x ∈ V be its

limit; we see that

Tx = T lim xn = lim Txn (by continuity of T!) = limxn+1 = x.

As for uniqueness, if x, y are two fixed points,
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||x − y|| = ||Tx − Ty|| ≤ θ||x − y|| ⇒ ||x − y|| = 0

and by the norm properties x = y.
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