
Lecture 15

April 8th, 2004

The Continuity Method

Let T : B1 → B2 be linear between two Banach spaces. T is bounded if

||T || = sup
x∈B1

||Tx||B2

||x||B1

< ∞ ⇔ ||Tx||B2
≤ c · ||x||B1

for some c > 0.

Continuity Method Theorem. Let B be a Banach space , V a normed space, L0, L1 : B → V

bounded linear operators. Assume ∃c such that Lt := (1 − t)L0 + tL1 satisfies

||x||B ≤ c · ||Ltx||V , ∀t ∈ [0, 1]. (∗)

Then – L0 is onto ⇔ L1 is.

Proof. Assume Ls is onto for some s ∈ [0, 1]; by (∗) Ls is also 1-to-1 ⇒ L−1
s exists. For t ∈ [0, 1], y ∈

V solving Ltx = y is equivalent to solving Ls(x) = y + (Ls − Lt)x = y + (t − s)L0x + (t − s)L1x.

By linearity now x = L−1
s y + (t − s)Ls

−1 ◦ (L0 − L1)x.

Define a linear map T : B → B, Tx = L−1
s y + (t − s)Ls

−1 ◦ (L0 − L1)x. One has ||Tx1 −

Tx2||B = ||(t − s)Ls
−1 ◦ (L0 − L1)(x1 − x2)||. (∗) now gives us a bound on Ls

−1: since Ls is onto

∀x ∈ B, ∃y ∈ B such that Lsy = x and so

||Ls
−1x||B ≤ c · ||Ls ◦ Ls

−1x||V

||Ls
−1x||B ≤ c · ||x||V ⇒ ||Ls

−1|| ≤ c.

As an application we see that

||Tx1 − Tx2||B ≤ (t − s)c · (||L0|| + ||L1||)||x1 − x2||,
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and for t close enough to s (precisely for t ∈ [s− 1
c(||L0||+||L1||)

, s+ 1
c(||L0||+||L1||)

]) we therefore have

a contraction mapping! Therefore T has a fixed point by the previous theorem which essentially

means that we can solve Ltx = y for any fixed y or that Lt is onto. Repeating this c(||L0||+ ||L1||)

many times we cover all t ∈ [0, 1].

Remark. Note as in the beginning of the proof that once such operators are onto they are in fact

invertible as long as (∗) holds.

Elliptic uniqueness

Let us summarize the properties we have establised for uniformly elliptic equations. Let Ω be a

bounded domain in R
n. Let L = aij(x)Dij + bi(x)Di + c(x) be uniformly elliptic, i.e

1

Λ
· δij ≤ aij(x) ≤ Λ · δij

and assume c(x) ≤ 0.

Let u ∈ C2(Ω) ∩ C0(Ω̄) be a solution of Lu = f ∈ Cα(Ω) with 0 < α < 1. Then we have the

following a priori estimates –

A. sup
Ω

|u| ≤ c(γ,Λ,Ω, n) · (sup
∂Ω

|u| + sup
Ω

|f |).

B. Under the additional assumptions

• in the case L has α − Hölder continuous coefficients with Hölder constant Λ,

• Ω has C2,α boundary

• u ∈ C2,α(Ω̄), f ∈ Cα(Ω̄),

we had the global Schauder estimate

||u||C2,α(Ω̄) ≤ c(γ,Λ,Ω, n)
(

||u||C0(Ω) + ||f ||Cα(Ω)

)

.

C. Under the assumptions of B, when c(x) ≤ 0
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||u||C2,α(Ω̄) ≤ c(sup
∂Ω

|u| + sup
Ω

|f |).

D. The above applies to the Dirichlet problem

Lu = f on Ω̄, u = ϕ on ∂Ω

and in particular when ϕ = 0 we get very simply

||u||C2,α(Ω̄) ≤ c · ||Lu||Cα(Ω̄).

Theorem. Let Ω be a C2,α domain, L uniformly elliptic with Cα(Ω̄) coefficients and (̧x) ≤ 0.

Look at all u ∈ C2,α(Ω̄) and assume f ∈ Cα(Ω̄). Then the Dirichlet problem Lu = f on Ω̄, u =

ϕ on ∂Ω has a unique solution u ∈ C2,α(Ω̄) provided that the Dirichlet problem for ∆ is solvable

∀f ∈ Cα(Ω̄), ∀ϕ ∈ C2,α(Ω̄)!

Proof. Connect L and ∆ via a segment: [0, 1] → Lt := (1 − t)L + t∆. Since those operators are

all linear it is enough to prove for ϕ = 0 as we have seen previously. C2,α(Ω̄) is a Banach space

(Lecture 14), and so is its subspace B(Ω) := {u ∈ C2,α(Ω̄), u = 0 on ∂Ω}. As a matter of fact Lt is

a bounded operator B(Ω) → Cα(Ω̄) by the assumptions on the coefficients of L. And, by uniformly

elliptic we see from D above

||u||C2,α(Ω̄) = ||u||C2,α(B(Ω)) ≤ c · ||Ltu||Cα(Ω̄),

with c independent of t (depends just on L). Note Cα(Ω̄) is a Banach space and in particular a

vector space. The Continuity Method thus applies.

Strangely enough, we are now back to solving Dirichlet’s problem for ∆ in domains.

Our methods so far were good for providing solution in balls, spherically symmetric domains.

In other words we were able to solve (in C2,α(B(0, R))!) ∆u = f ∈ Cα(Ω̄) on B(0, R), u =

ϕ on ∂B(0, R) using the Poisson Integral Formula and estimates for the Newtonian Potential. We

used conformal mappings (inversion) to get indeed C2,α upto the boundary. We conclude therefore

that
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Corollary. We can solve the Dirichlet Problem for any L satisfying the assumptions of the

Theorem in balls.

Perron’s Method gives a solution in quite general domains but we will not go into its details as

later on our regularity theory (weak solutions, Sobolev spaces etc.) will give us those answers.

Elliptic C2,α regularity

Let B :=ball, T :=some connected boundary portion.

Theorem. Let L be uniformly elliptic with Cα coefficients and assume c(x) ≤ 0. Let u ∈

C2(Ω) ∩ C0(Ω̄) be a solution of the Dirichlet problem Lu = f ∈ Cα(B̄) in B, u = ϕ ∈ C0(∂B) ∩

C2,α(T ) on ∂B has a unique solution u ∈ C2,α(B ∪ T ) ∩ C0(B̄).

We know by the previous theorem that if ϕ ∈ C2,α(∂B) (and not just on T ) then unique solvability

would be equivalent to the unique solvability of ∆ on B which we have! Therefore this Theorem is

a slight generalization.

Proof. As was just outlined the crucial problem lies in the (possible) absence of regularity of ϕ

on part of the boundary. So we approximate ϕ by a sequence {ϕk} ⊂ C3(B̄) such that both

||ϕk − ϕ||C0(B̄) −→ 0 and ||ϕk − ϕ||C2,α(B̄) −→ 0. Solve Luk = f, in B, uk = ϕkon ∂B.

Now L(ui − uj) = 0, in B, ui − uj = ϕi − ϕj on ∂B. And by A above (as c(x) ≤ 0)

||ui − uj ||C0(B) ≤ C sup∂B |ϕi − ϕj |. So we conclude our solutions {uk} form a Cauchy sequence

wrt the C0 norm, i.e in the Banach space C0(B). Therefore we know ∃u ∈ C0(B) with ui −→
C0(B)u

(not just subconvergence!) and furthermore this u satisfies u = ϕ on pB.

Now we shift our look to the C2,α situation; by our interior estimates we have for any B′ ⊂⊂ B

||ui −uj ||C2,α(B′) ≤ c(||ui −uj ||C0(B) + ||0||Cα(B)).. That is our sequence is also a Cauchy sequence

in the Banach space C2,α(B′) ⇒ converges in C2,α(B′) (in particular limit is C2,α regular). This

limit must equal the limit u|′B we obtained through the C0 norm. We do this for any B′ ⊂⊂ B ⇒

get convergence in C2,α(B) ⇒ u satisfies Lu = f on B and has the desired C2,α regularity on B.
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We now turn to the boundary portion: ∀x0 ∈ T and ρ > 0 such that B(x0, ρ) ∩ ∂B ⊆ T

we have the usual boundary Schauder estimates (for smooth enough functions) which give us

||ui −uj ||C2,α(B(x0,ρ)∩B̄) ≤ c ·
(

||ui − uj ||C0(B) + ||ϕi −ϕj ||C2,α(B(x0,ρ)∩B̄)

)

. This means that in fact

ui −−−−−−−−−−−→
C2,α(B(x0,ρ)∩B̄) u and in particular u ∈ C2,α at x0. ∀x0 ∈ T .
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