Lecture 16

April 13t1, 2004

Elliptic regularity

Hitherto we have always assumed our solutions already lie in the appropriate C*® space and
then showed estimates on their norms in those spaces. Now we will avoid this a priori assumption
and show that they do hold a posteriori. This is important for the consistency of our discussion.

Precisely what we would like to show is —

A priori regularity. Let u € C3(Q) be a solution of Lu = f and assume 0 < o < 1. We

do not assume c(x) < 0 but we do assume all the other assumptions on L in the previous Theorem

hold. If f € C*(Q) then u € C**(Q)

e Here we mean the C* norm is locally bounded, i.e for every point exists a neighborhood where

the C*-norm is bounded. Had we written C*(Q) we would mean a global bound on sup W
x,y -

(as in the footnote if Lecture 14).
e This result will allow us to assume in previous theorems only C? regularity on (candidate)

solutions instead of assuming C%“ regularity.
Proof. Let u be a solution as above. Since the Theorem is local in nature we take any point in 2

and look at a ball B centered there contained in 2. We then consider the Dirichlet problem

Lov = f' on B,

v = uw on 0B.
where Ly := L — ¢(z) and f'(z) := f(z) — ¢(z) - u(x). This Dirichlet problem is on a ball, with
7¢ < 07, uniform elliptic and with coefficients in C®. Therefore we have uniqueness and existence

of a solution v in C*(B) N C%(B). But u satisfies Lu = f or equivalently Lou = f’ on all of Q so
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in particular on B. By uniqueness on B therefore we have u|z = v, and so u is C>* smooth there.

As this is for any point and all balls we have u € C%%(Q). [

It is insightful to note at this point that these results are optimal under the above assumptions.
Indeed need C? smoothness (or atleast C!'!) in order to define 2°¢ derivatives WRT L! If one takes
u in a larger function space, i.e weaker regularity of u, and defines Lu = f in a weak sense then
need more regularity on coefficients of I! Under the assumption of C* continuity on the coefficients

indeed we are in an optimal situation.

Higher a priori regularity. Let u € C%(Q) be a solution of Lu = f and 0 < o < 1. We
do not assume c(z) < 0 but we assume uniformly elliptic and that all coefficients are in C&*. If

f eCk thenu € CF+22. If f € C* then u € C®.

Proof. k = 0 was the previous Theorem.

The case k = 1. The proof relies in an elegant way on our previous results with the combination
of the new idea of using difference quotients. We would like to differentiate the u three times and
prove we get a C® function. Differentiating the equation Lu = f once would serve our purpose but
it can not be done naively as it would involve 3 derivatives of u and we only know that v has two.
To circumvent this hurdle we will take two derivatives of the difference quotients of u, which we
define by (let eq,..., e, denote the unit vectors in R™)

u(x+h-e) —u(z) ul(x) — u(z)

Ay = =:.
“ h h

Namely we look at

AhLu: Lu(‘r—i_h:l) —Lu(a:) _ f(-%'—i-h;]) _f(a:) — Ahuf.

Note AMv(x)"=8Dv(z) if v € C* (which we don’t know a priori in our case yet).

Expanding our equation in full gives



(a“(z+h-e1) —a”(z) + a”(2))Du" — a (x)Dyju(x)

SIS

+b'(z + h-e))Dju(x + h-e)) — b (x)Dsu(z) +c(z +h-e)u(z +h-e) — c(a:)u(a:)]
= A"a"Djjul — aDi; AMu+ A" D" + DA+ Ale - ul e Alu = A
or succintly
LAM = f = A" f — AP . Dyjul — APb; - Dl — Ale - u
where u" := u(z +h-e;).

We now analyse the regularity of the terms. f € C%® so so is A" f, but not (bounded) uniformly
WRT h (i.e C1® norm of A"f may go to oo as h decreases). On the otherhand A"f € C¥(Q)
uniformly WRT h (Vh > 0): Ahuf = w = D, f(z) for some Z in the interval, and RHS
has a uniform C* bound as f € C® on all Q! (needed as T can be arbitrary).

For the same reason A"a', AMb;, Ahc € C*(Q2). By the k = 0 case we know u € C>%(Q) and not

just in C?(2). < Dyu" € C*(Q) uniformly.

Remark. We take a moment to describe what we mean by uniformity. We say a function
gn = g(h,) : Q@ — R is uniformly bounded in C* WRT h when VQ' C  exists ¢(Q2) such that

lgn|ce @y < (). Note this definition goes along with our local definition of a function being in

C*(Q) (and not in C*(Q)!).

Putting the above facts together we now see that both sides of the equation LA"u = f’ are in
C*(€2). And they are also in C*(£2") with RHS uniformly so with constant ¢(€).

By the interior Schauder estimate, VQ)” € € and for each h

1A u|za ) < e(y, A, Q") - (||Ahu||c°»ﬂ’<+)||f’||ca,nf<)) <&y, A, Q7Y Q| [ullor @),

which is independent of h! If we assume the Claim below taking the limit A — 0 we get Dyu €
C2NVI=1,...,n u €C>¥Q"). V'€V CQ & ucl>N). [ |
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Claim. [|[A"g||caa) < ¢ independently of h < Dyg € C*(A).

First we we show g € C%1(A). This is tantamount to the existence of limj_o Ag(x) (since if it
exists it equals D;u7y(z) - that’s how we define the first I-directional derivative at ). Now {A”"g}n~0
is family of uniformly bounded (in C°(A)) and equicontinuous functions (from the uniform Holder
constant). So by the Arzela-Ascoli Theorem exists a sequence {Ahig}°, converging to some

W € C*(A) in the CP(A) norm for any 3 < a.. But as we remarked above @ necessarily equals D;g
by definition.

Second, we show g € C!(A) (i.e such that derivative is continuous not just bounded) and actually

€ Cho(A):
o Alg(z) — AP Dig(z) — D
¢ > A gllon () > lim g(z) . 9(y) _ Dig(z) Oig(y) — Diglee
=0 |z —yl |z —y|
where we used that c¢ is independent of h. ]

The case k£ > 2. Let £k = 2. By the £k = 1 case we can legitimately take 3 derivatives as

u € C3%(Q2). One has
L(Dlu) = f/ = le — Dlaij . Diju — lez . Dlu — DlC U
with Dyu, f/ € CH*(). So again by the k = 1 case we have now D;ju € C**(£2), hence u € C**(Q).
The instances k > 3 are in the same spirit. [ |
Boundary regularity

Let Q be a C*>® domain, i.e whose boundary is locally the graph of a C>“ function. Let L be

uniformly elliptic with C* coefficients and ¢ < 0.

~

on Q,

Theorem. Let f € C*(Q), ¢ € C>%(0Q),u € C2(Q)NC’(Q) satisfying [;u 5 on 999

with 0 < a < 1. Then u € C>%(Q).



Proof. Our previous results give u € C>(£2) and we seek to extend it to those points in 9. Note
that even though u = ¢ on 9 and ¢ is C* there this does not give the same property for u. It
just gives that u is C%¢ in directions tangent to 2, but not in directions leading to the boundary.

The question is local: restrict attention to B(wzg, R) N Q for each o € 9Q. We choose a C%
homeomorphism ¥; : R" — R" sending B(zg, R) N I to a portion of a (flat) hyperplane and
OB(z0, R) N Q to the boundary of half a disc. We then choose another C*“ homeomorphism
U, : R" — R" sending the whole half disc into a disc (= a ball). Therefore U5 o ¥y maps our
original boundary portion into a portion of the boundary of a ball.

Similarly to previous computations of this sort we define the induced operator L on the induced
domain W5 o ¥y (B(z9, R) N Q) and define the induced functions i, ¢, f and we get a new Dirichlet
problem with all norms of our original objects equivalent to those of our induced ones. Note that
still ¢ := co \I/fl o \Il271 < 0, therefore by our theory exists a unique solution v € CQ’O‘(\I/Q o
Uy (B(zo, R)NQ) U Vg0V, (B(xg, R)N0N)) NCO(Vy0W, (B(xo, R)NQ)) for the induced Dirichlet
problem . Now our @ also solves it. So by uniqueness & = v and @ has C*>® regularity as the

induced boundary portion, and by pulling back through C*¢ diffeomorphisms we get that so does

u. |

Remark. The assumption ¢ < 0 is not necessary although modifying the proof is non-trivial
without this assumption (exercise). We needed it in order to be able to use our existence result.
But since we already assume a solution exists we may use some of our previous results which do

not need ¢ < 0 and which secure C?® regularity upto the boundary.



