
Lecture 16

April 13th, 2004

Elliptic regularity

Hitherto we have always assumed our solutions already lie in the appropriate Ck,α space and

then showed estimates on their norms in those spaces. Now we will avoid this a priori assumption

and show that they do hold a posteriori. This is important for the consistency of our discussion.

Precisely what we would like to show is —

A priori regularity. Let u ∈ C2(Ω) be a solution of Lu = f and assume 0 < α < 1. We

do not assume c(x) ≤ 0 but we do assume all the other assumptions on L in the previous Theorem

hold. If f ∈ Cα(Ω) then u ∈ C2,α(Ω)

• Here we mean the Cα norm is locally bounded, i.e for every point exists a neighborhood where

the Cα-norm is bounded. Had we written Cα(Ω̄) we would mean a global bound on sup
x,y

|f(x) − f(y)|

|x − y|α

(as in the footnote if Lecture 14).

• This result will allow us to assume in previous theorems only C2 regularity on (candidate)

solutions instead of assuming C2,α regularity.

Proof. Let u be a solution as above. Since the Theorem is local in nature we take any point in Ω

and look at a ball B centered there contained in Ω. We then consider the Dirichlet problem

L0v = f ′ on B,

v = u on ∂B.

where L0 := L − c(x) and f ′(x) := f(x) − c(x) · u(x). This Dirichlet problem is on a ball, with

”c ≤ 0”, uniform elliptic and with coefficients in Cα. Therefore we have uniqueness and existence

of a solution v in C2,α(B) ∩ C0(B̄). But u satisfies Lu = f or equivalently L0u = f ′ on all of Ω so
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in particular on B̄. By uniqueness on B therefore we have u|B̄ = v, and so u is C2,α smooth there.

As this is for any point and all balls we have u ∈ C2,α(Ω).

It is insightful to note at this point that these results are optimal under the above assumptions.

Indeed need C2 smoothness (or atleast C1,1) in order to define 2nd derivatives wrt L! If one takes

u in a larger function space, i.e weaker regularity of u, and defines Lu = f in a weak sense then

need more regularity on coefficients of L! Under the assumption of Cα continuity on the coefficients

indeed we are in an optimal situation.

Higher a priori regularity. Let u ∈ C2(Ω) be a solution of Lu = f and 0 < α < 1. We

do not assume c(x) ≤ 0 but we assume uniformly elliptic and that all coefficients are in Ck,α. If

f ∈ Ck,α then u ∈ Ck+2,α. If f ∈ C∞ then u ∈ C∞.

Proof. k = 0 was the previous Theorem.

The case k = 1. The proof relies in an elegant way on our previous results with the combination

of the new idea of using difference quotients. We would like to differentiate the u three times and

prove we get a Cα function. Differentiating the equation Lu = f once would serve our purpose but

it can not be done näively as it would involve 3 derivatives of u and we only know that u has two.

To circumvent this hurdle we will take two derivatives of the difference quotients of u, which we

define by (let e1, . . . , en denote the unit vectors in R
n)

∆hu :=
u(x + h · el) − u(x)

h
=: .

uh(x) − u(x)

h
.

Namely we look at

∆hLu =
Lu(x + h · el) − Lu(x)

h
=

f(x + h · el) − f(x)

h
= ∆huf.

Note ∆hv(x) −→h→0Dlv(x) if v ∈ C1 (which we don’t know a priori in our case yet).

Expanding our equation in full gives
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1

h

[

(aij(x + h · el) − aij(x) + aij(x))Diju
h − aij(x)Diju(x)

+bi(x + h · el)Diu(x + h · el) − bi(x)Diu(x) + c(x + h · el)u(x + h · el) − c(x)u(x)
]

= ∆haijDiju
h − aijDij∆

hu + ∆hbiDiu
h + biDi∆

hu + ∆hc · uh + c · ∆hu = ∆hf.

or succintly

L∆hu = f ′ := ∆hf − ∆haij · Diju
h − ∆hbi · Diu

h − ∆hc · uh

where uh := u(x + h · e1).

We now analyse the regularity of the terms. f ∈ C1,α so so is ∆hf , but not (bounded) uniformly

wrt h (i.e C1,α norm of ∆hf may go to ∞ as h decreases). On the otherhand ∆hf ∈ Cα(Ω)

uniformly wrt h (∀h > 0): ∆huf = f(x+h·el)−f(x)
h

= Dlf(x̄) for some x̄ in the interval, and rhs

has a uniform Cα bound as f ∈ C1,α on all Ω! (needed as x̄ can be arbitrary).

For the same reason ∆haij ,∆hbi,∆
hc ∈ Cα(Ω). By the k = 0 case we know u ∈ C2,α(Ω) and not

just in C2(Ω). ⇔ Diju
h ∈ Cα(Ω) uniformly.

Remark. We take a moment to describe what we mean by uniformity. We say a function

gh = g(h, ·) : Ω → R is uniformly bounded in Cα
wrt h when ∀Ω′⊂⊂ Ω exists c(Ω) such that

|gh|Cα(Ω′) ≤ c(Ω). Note this definition goes along with our local definition of a function being in

Cα(Ω) (and not in Cα(Ω̄)!).

Putting the above facts together we now see that both sides of the equation L∆hu = f ′ are in

Cα(Ω). And they are also in Cα(Ω′) with rhs uniformly so with constant c(Ω′).

By the interior Schauder estimate, ∀Ω′′ ⊂⊂ Ω′ and for each h

||∆hu||C2,α(Ω′′) ≤ c(γ,Λ,Ω′′) ·
(

||∆hu||C0,Ω′

(+)||f
′||

Cα,Ω′ (
)) ≤ c̃(γ,Λ,Ω′′,Ω′,Ω, ||u||C1(Ω),

which is independent of h! If we assume the Claim below taking the limit h → 0 we get Dlu ∈

C2,α(Ω′′),∀l = 1, . . . , n u ∈ C3,α(Ω′′). ∀Ω′′⊂⊂ Ω′ ⊂⊂ Ω ⇔ u ∈ C3,α(Ω).
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Claim. ||∆hg||Cα(A) ≤ c independently of h ⇔ Dlg ∈ Cα(A).

First we we show g ∈ C0,1(A). This is tantamount to the existence of limh→0 ∆hg(x) (since if it

exists it equals Dluγ(x) - that’s how we define the first l-directional derivative at x). Now {∆hg}h>0

is family of uniformly bounded (in C0(A)) and equicontinuous functions (from the uniform Hölder

constant). So by the Arzelà-Ascoli Theorem exists a sequence {∆hig}∞i=1 converging to some

w̃ ∈ Cα(A) in the Cβ(A) norm for any β < α. But as we remarked above w̃ necessarily equals Dlg

by definition.

Second, we show g ∈ C1(A) (i.e such that derivative is continuous not just bounded) and actually

∈ C1,α(A):

c ≥ ||∆hg||Cα(A) ≥ lim
h→0

∆hg(x) − ∆hg(y)

|x − y|α
=

Dlg(x) − Dlg(y)

|x − y|α
= |Dlg|Cα(A)

where we used that c is independent of h.

The case k ≥ 2. Let k = 2. By the k = 1 case we can legitimately take 3 derivatives as

u ∈ C3,α(Ω). One has

L(Dlu) = f ′ := Dlf − Dla
ij · Diju − Dlbi · Diu − Dlc · u

with Dlu, f ′ ∈ C1,α(Ω). So again by the k = 1 case we have now Dlu ∈ C3,α(Ω), hence u ∈ C4,α(Ω).

The instances k ≥ 3 are in the same spirit.

Boundary regularity

Let Ω be a C2,α domain, i.e whose boundary is locally the graph of a C2,α function. Let L be

uniformly elliptic with Cα coefficients and c ≤ 0.

Theorem. Let f ∈ Cα(Ω), ϕ ∈ C2,α(∂Ω), u ∈ C2(Ω)∩C0(Ω̄) satisfying
Lu = f on Ω,

u = ϕ on ∂∂Ω.

with 0 < α < 1. Then u ∈ C2,α(Ω̄).
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Proof. Our previous results give u ∈ C2,α(Ω) and we seek to extend it to those points in ∂Ω. Note

that even though u = ϕ on ∂Ω and ϕ is C2,α there this does not give the same property for u. It

just gives that u is C2,α in directions tangent to ∂Ω, but not in directions leading to the boundary.

The question is local: restrict attention to B(x0, R) ∩ Ω̄ for each x0 ∈ ∂Ω. We choose a C2,α

homeomorphism Ψ1 : R
n → R

n sending B(x0, R) ∩ ∂Ω to a portion of a (flat) hyperplane and

∂B(x0, R) ∩ Ω to the boundary of half a disc. We then choose another C2,α homeomorphism

Ψ2 : R
n → R

n sending the whole half disc into a disc (= a ball). Therefore Ψ2 ◦ Ψ1 maps our

original boundary portion into a portion of the boundary of a ball.

Similarly to previous computations of this sort we define the induced operator L̃ on the induced

domain Ψ2 ◦Ψ1(B(x0, R) ∩Ω) and define the induced functions ũ, ϕ̃, f̃ and we get a new Dirichlet

problem with all norms of our original objects equivalent to those of our induced ones. Note that

still c̃ := c ◦ Ψ1
−1 ◦ Ψ2

−1 ≤ 0, therefore by our theory exists a unique solution v ∈ C2,α(Ψ2 ◦

Ψ1(B(x0, R)∩Ω) ∪ Ψ2 ◦Ψ1(B(x0, R)∩∂Ω))∩C0(Ψ2 ◦Ψ1(B(x0, R)∩ Ω̄)) for the induced Dirichlet

problem . Now our ũ also solves it. So by uniqueness ũ = v and ũ has C2,α regularity as the

induced boundary portion, and by pulling back through C2,α diffeomorphisms we get that so does

u.

Remark. The assumption c ≤ 0 is not necessary although modifying the proof is non-trivial

without this assumption (exercise). We needed it in order to be able to use our existence result.

But since we already assume a solution exists we may use some of our previous results which do

not need c ≤ 0 and which secure C2,α regularity upto the boundary.
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