Lecture 16

April 13th, 2004

Elliptic regularity

 \mathcal{H} itherto we have always assumed our solutions already lie in the appropriate $\mathcal{C}^{k,\alpha}$ space and then showed estimates on their norms in those spaces. Now we will avoid this a priori assumption and show that they do hold a posteriori. This is important for the consistency of our discussion. Precisely what we would like to show is —

A priori regularity. Let $u \in C^2(\Omega)$ be a solution of Lu = f and assume $0 < \alpha < 1$. We do not assume $c(x) \leq 0$ but we do assume all the other assumptions on L in the previous Theorem hold. If $f \in C^{\alpha}(\Omega)$ then $u \in C^{2,\alpha}(\Omega)$

• Here we mean the C^{α} norm is locally bounded, i.e for every point exists a neighborhood where the C^{α} -norm is bounded. Had we written $C^{\alpha}(\bar{\Omega})$ we would mean a global bound on $\sup_{x,y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}$ (as in the footnote if Lecture 14).

• This result will allow us to assume in previous theorems only C^2 regularity on (candidate) solutions instead of assuming $C^{2,\alpha}$ regularity.

Proof. Let u be a solution as above. Since the Theorem is *local* in nature we take any point in Ω and look at a ball B centered there contained in Ω . We then consider the Dirichlet problem

$$\begin{array}{rcl}
L_0 v &=& f' & \text{on} & B, \\
v &=& u & \text{on} & \partial B.
\end{array}$$

where $L_0 := L - c(x)$ and $f'(x) := f(x) - c(x) \cdot u(x)$. This Dirichlet problem is on a ball, with " $c \leq 0$ ", uniform elliptic and with coefficients in \mathcal{C}^{α} . Therefore we have uniqueness and existence of a solution v in $\mathcal{C}^{2,\alpha}(B) \cap \mathcal{C}^0(\bar{B})$. But u satisfies Lu = f or equivalently $L_0u = f'$ on all of Ω so in particular on \overline{B} . By uniqueness on B therefore we have $u|_{\overline{B}} = v$, and so u is $\mathcal{C}^{2,\alpha}$ smooth there. As this is for any point and all balls we have $u \in \mathcal{C}^{2,\alpha}(\Omega)$.

It is insightful to note at this point that these results are optimal under the above assumptions. Indeed need C^2 smoothness (or atleast $C^{1,1}$) in order to define 2^{nd} derivatives WRT L! If one takes u in a larger function space, i.e weaker regularity of u, and defines Lu = f in a weak sense then need more regularity on coefficients of L! Under the assumption of C^{α} continuity on the coefficients indeed we are in an optimal situation.

Higher a priori regularity. Let $u \in C^2(\Omega)$ be a solution of Lu = f and $0 < \alpha < 1$. We do not assume $c(x) \leq 0$ but we assume uniformly elliptic and that all coefficients are in $C^{k,\alpha}$. If $f \in C^{k,\alpha}$ then $u \in C^{k+2,\alpha}$. If $f \in C^{\infty}$ then $u \in C^{\infty}$.

Proof. k = 0 was the previous Theorem.

The case k = 1. The proof relies in an elegant way on our previous results with the combination of the new idea of using *difference quotients*. We would like to differentiate the u three times and prove we get a C^{α} function. Differentiating the equation Lu = f once would serve our purpose but it can not be done naïvely as it would involve 3 derivatives of u and we only know that u has two. To circumvent this hurdle we will take two derivatives of the difference quotients of u, which we define by (let $\mathbf{e_1}, \ldots, \mathbf{e_n}$ denote the unit vectors in \mathbb{R}^n)

$$\Delta^h u := \frac{u(x+h \cdot \mathbf{e}_{\mathbf{l}}) - u(x)}{h} =: \frac{u^h(x) - u(x)}{h}.$$

Namely we look at

$$\Delta^h Lu = \frac{Lu(x+h\cdot\mathbf{e}_{\mathbf{l}}) - Lu(x)}{h} = \frac{f(x+h\cdot\mathbf{e}_{\mathbf{l}}) - f(x)}{h} = \Delta^h u f.$$

Note $\Delta^h v(x) \xrightarrow{h \to 0} D_l v(x)$ if $v \in \mathcal{C}^1$ (which we don't know a priori in our case yet).

Expanding our equation in full gives

$$\frac{1}{h} \Big[(a^{ij}(x+h\cdot\mathbf{e_l}) - a^{ij}(x) + a^{ij}(x)) \mathbf{D}_{ij} u^h - a^{ij}(x) \mathbf{D}_{ij} u(x) \\ + b^i(x+h\cdot\mathbf{e_l}) \mathbf{D}_i u(x+h\cdot\mathbf{e_l}) - b^i(x) \mathbf{D}_i u(x) + c(x+h\cdot\mathbf{e_l}) u(x+h\cdot\mathbf{e_l}) - c(x) u(x) \Big] \\ = \Delta^h a^{ij} \mathbf{D}_{ij} u^h - a^{ij} \mathbf{D}_{ij} \Delta^h u + \Delta^h b^i \mathbf{D}_i u^h + b^i \mathbf{D}_i \Delta^h u + \Delta^h c \cdot u^h + c \cdot \Delta^h u = \Delta^h f.$$

or succintly

$$L\Delta^{h}u = f' := \Delta^{h}f - \Delta^{h}a^{ij} \cdot D_{ij}u^{h} - \Delta^{h}b_{i} \cdot D_{i}u^{h} - \Delta^{h}c \cdot u^{h}$$

where $u^h := u(x + h \cdot \mathbf{e_1}).$

We now analyse the regularity of the terms. $f \in \mathcal{C}^{1,\alpha}$ so so is $\Delta^h f$, but not (bounded) uniformly WRT h (i.e $\mathcal{C}^{1,\alpha}$ norm of $\Delta^h f$ may go to ∞ as h decreases). On the other hand $\Delta^h f \in \mathcal{C}^{\alpha}(\Omega)$ uniformly WRT h ($\forall h > 0$): $\Delta^h u f = \frac{f(x+h\cdot\mathbf{e}_1)-f(x)}{h} = D_l f(\bar{x})$ for some \bar{x} in the interval, and RHS has a uniform \mathcal{C}^{α} bound as $f \in \mathcal{C}^{1,\alpha}$ on all Ω ! (needed as \bar{x} can be arbitrary).

For the same reason $\Delta^h a^{ij}$, $\Delta^h b_i$, $\Delta^h c \in \mathcal{C}^{\alpha}(\Omega)$. By the k = 0 case we know $u \in \mathcal{C}^{2,\alpha}(\Omega)$ and not just in $\mathcal{C}^2(\Omega)$. $\Leftrightarrow D_{ij}u^h \in \mathcal{C}^{\alpha}(\Omega)$ uniformly.

Remark. We take a moment to describe what we mean by uniformity. We say a function $g_h = g(h, \cdot) : \Omega \to \mathbb{R}$ is uniformly bounded in \mathcal{C}^{α} WRT h when $\forall \Omega' \subseteq \Omega$ exists $c(\Omega)$ such that $|g_h|_{C^{\alpha}(\Omega')} \leq c(\Omega)$. Note this definition goes along with our local definition of a function being in $\mathcal{C}^{\alpha}(\Omega)$ (and not in $\mathcal{C}^{\alpha}(\overline{\Omega})$!).

Putting the above facts together we now see that both sides of the equation $L\Delta^h u = f'$ are in $\mathcal{C}^{\alpha}(\Omega)$. And they are also in $\mathcal{C}^{\alpha}(\Omega')$ with RHS uniformly so with constant $c(\Omega')$.

By the interior Schauder estimate, $\forall \Omega'' \Subset \Omega'$ and for each h

$$||\Delta^{h}u||_{C^{2,\alpha}(\Omega'')} \leq c(\gamma,\Lambda,\Omega'') \cdot \left(||\Delta^{h}u||_{C^{0,\Omega'}(+)}||f'||_{C^{\alpha,\Omega'}()}\right) \leq \tilde{c}(\gamma,\Lambda,\Omega'',\Omega',\Omega,||u||_{C^{1}(\Omega)},\Omega'',\Omega',\Omega')$$

which is independent of h! If we assume the Claim below taking the limit $h \to 0$ we get $D_l u \in \mathcal{C}^{2,\alpha}(\Omega''), \forall l = 1, ..., n \ u \in \mathcal{C}^{3,\alpha}(\Omega''). \ \forall \Omega'' \subseteq \Omega' \subseteq \Omega \ \Leftrightarrow \ u \in \mathcal{C}^{3,\alpha}(\Omega).$

Claim. $||\Delta^h g||_{C^{\alpha}(A)} \leq c$ independently of $h \Leftrightarrow D_l g \in \mathcal{C}^{\alpha}(A)$.

First we we show $g \in C^{0,1}(A)$. This is tantamount to the existence of $\lim_{h\to 0} \Delta^h g(x)$ (since if it exists it equals $D_l u \gamma(x)$ - that's how we define the first *l*-directional derivative at *x*). Now $\{\Delta^h g\}_{h>0}$ is family of uniformly bounded (in $C^0(A)$) and equicontinuous functions (from the uniform Hölder constant). So by the Arzelà-Ascoli Theorem exists a sequence $\{\Delta^{h_i}g\}_{i=1}^{\infty}$ converging to some $\tilde{w} \in C^{\alpha}(A)$ in the $C^{\beta}(A)$ norm for any $\beta < \alpha$. But as we remarked above \tilde{w} necessarily equals $D_l g$ by definition.

Second, we show $g \in \mathcal{C}^1(A)$ (i.e such that derivative is continuous not just bounded) and actually $\in \mathcal{C}^{1,\alpha}(A)$:

$$c \ge ||\Delta^h g||_{C^{\alpha}(A)} \ge \lim_{h \to 0} \frac{\Delta^h g(x) - \Delta^h g(y)}{|x - y|^{\alpha}} = \frac{\mathcal{D}_l g(x) - \mathcal{D}_l g(y)}{|x - y|^{\alpha}} = |\mathcal{D}_l g|_{C^{\alpha}(A)}$$

where we used that c is independent of h.

The case $k \ge 2$. Let k = 2. By the k = 1 case we can legitimately take 3 derivatives as $u \in \mathcal{C}^{3,\alpha}(\Omega)$. One has

$$L(\mathbf{D}_l u) = f' := \mathbf{D}_l f - \mathbf{D}_l a^{ij} \cdot \mathbf{D}_{ij} u - \mathbf{D}_l b_i \cdot \mathbf{D}_i u - \mathbf{D}_l c \cdot u$$

with $D_l u, f' \in \mathcal{C}^{1,\alpha}(\Omega)$. So again by the k = 1 case we have now $D_l u \in \mathcal{C}^{3,\alpha}(\Omega)$, hence $u \in \mathcal{C}^{4,\alpha}(\Omega)$. The instances $k \geq 3$ are in the same spirit.

Boundary regularity

Let Ω be a $\mathcal{C}^{2,\alpha}$ domain, i.e whose boundary is locally the graph of a $\mathcal{C}^{2,\alpha}$ function. Let L be uniformly elliptic with \mathcal{C}^{α} coefficients and $c \leq 0$.

Theorem. Let $f \in \mathcal{C}^{\alpha}(\Omega), \varphi \in \mathcal{C}^{2,\alpha}(\partial\Omega), u \in \mathcal{C}^{2}(\Omega) \cap \mathcal{C}^{0}(\bar{\Omega})$ satisfying $\begin{array}{ll} Lu &= f & on & \Omega, \\ u &= \varphi & on & \partial\partial\Omega. \end{array}$ with $0 < \alpha < 1$. Then $u \in \mathcal{C}^{2,\alpha}(\bar{\Omega})$. *Proof.* Our previous results give $u \in C^{2,\alpha}(\Omega)$ and we seek to extend it to those points in $\partial\Omega$. Note that even though $u = \varphi$ on $\partial\Omega$ and φ is $C^{2,\alpha}$ there this does not give the same property for u. It just gives that u is $C^{2,\alpha}$ in directions tangent to $\partial\Omega$, but not in directions leading to the boundary.

The question is local: restrict attention to $B(x_0, R) \cap \overline{\Omega}$ for each $x_0 \in \partial \Omega$. We choose a $\mathcal{C}^{2,\alpha}$ homeomorphism $\Psi_1 : \mathbb{R}^n \to \mathbb{R}^n$ sending $B(x_0, R) \cap \partial \Omega$ to a portion of a (flat) hyperplane and $\partial B(x_0, R) \cap \Omega$ to the boundary of half a disc. We then choose another $\mathcal{C}^{2,\alpha}$ homeomorphism $\Psi_2 : \mathbb{R}^n \to \mathbb{R}^n$ sending the whole half disc into a disc (= a ball). Therefore $\Psi_2 \circ \Psi_1$ maps our original boundary portion into a portion of the boundary of a ball.

Similarly to previous computations of this sort we define the induced operator \tilde{L} on the induced domain $\Psi_2 \circ \Psi_1(B(x_0, R) \cap \Omega)$ and define the induced functions $\tilde{u}, \tilde{\varphi}, \tilde{f}$ and we get a new Dirichlet problem with all norms of our original objects equivalent to those of our induced ones. Note that still $\tilde{c} := c \circ \Psi_1^{-1} \circ \Psi_2^{-1} \leq 0$, therefore by our theory exists a unique solution $v \in \mathcal{C}^{2,\alpha}(\Psi_2 \circ \Psi_1(B(x_0, R) \cap \Omega)) \cup \Psi_2 \circ \Psi_1(B(x_0, R) \cap \partial \Omega)) \cap \mathcal{C}^0(\Psi_2 \circ \Psi_1(\overline{B(x_0, R)} \cap \overline{\Omega}))$ for the induced Dirichlet problem . Now our \tilde{u} also solves it. So by uniqueness $\tilde{u} = v$ and \tilde{u} has $\mathcal{C}^{2,\alpha}$ regularity as the induced boundary portion, and by pulling back through $\mathcal{C}^{2,\alpha}$ diffeomorphisms we get that so does u.

Remark. The assumption $c \leq 0$ is not necessary although modifying the proof is non-trivial without this assumption (exercise). We needed it in order to be able to use our existence result. But since we already assume a solution exists we may use some of our previous results which do not need $c \leq 0$ and which secure $C^{2,\alpha}$ regularity upto the boundary.