
Lecture 17

April 15th, 2004

Higher boundary regularity

We extend our results to include the boundary.

Higher a priori regularity upto the boundary. Let u ∈ C2(Ω) ∩ C0(Ω̄) be a solution of

Lu = f on Ω,

u = ϕ on ∂Ω.

Assume uniformly elliptic and that all coefficients are in Ck,α(Ω̄) with 0 < α < 1 and that Ω is a

Ck+2,α domain. If f ∈ Ck,α(Ω̄) and ϕ ∈ Ck+2,α(∂Ω) then u ∈ Ck+2,α.

Proof. For k = 0 our previous results apply unchanged (the case c 6≤ 0 can be handled if one

believes the Remark above).

k = 1, the crucial case, we use once again difference quotients. As usual, localize to B+ :=

B(x0, R) ∩ Ω̄, x0 ∈ ∂Ω. Then flatten the boundary with the help of a C3,α diffeomorphism Ψ.

Assume the flat portion lies on the xn = 0 hyperplane. We get

L̃∆hũ = ∆hf̃ − ∆hãij · Dij ũ
h − ∆hb̃i · Diũ

h − ∆hc̃ · ũh.

We know the rhs is uniformly Cα(Ψ(B+)) bounded, while the lhs is only so for the directions

l = 1, . . . , n − 1, the tangent directions on Ψ(∂B+), since the equation u = ϕ holds there and may

be differentiated in those directions (and ϕ has 3 derivatives).

We therefore use Schauder estimates for ∆hũ which give it is uniformly bounded in C2,α(Ψ(B+′)),

∀B+′⊂⊂ B+ similarly to the higher regularity Theorem for the interior. This is so since the estimates

used there hold, in fact, upto the boundary. We get therefore Dlũ ∈ C2,α(Ψ(B+)), l = 1, . . . , n− 1.
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We treat the remaining derivative. We have DiDlũC
1,α(B̃+), i = 1, . . . , n, l = 1, . . . , n − 1 ⇔

Dnlũ = Dl(Dnũ) (mixed derivatives commute as ũ ∈ C2!). So all we have to show now is Dnnũ ∈

C1,α(B̃+).

From L̃ũ = f̃ we find

Dnnũ =
1

ãnn

(

f̃ − (L̃ − ãnn)ũ
)

.

From previous calculations of the form of ã we see that choosing Ψ appropriately we may diagonalize

it. Then uniformly elliptic gives
1

ãnn
> γ > 0. The rhs is C1,α(B̃+) ⇔ so is lhs ⇔ Dũ ∈

C2,α(Ψ(B+)) ⇔ u is C3,α near x0.

The cases k ≥ 2 are handled as in the interior Theorem.

This wraps up our discussion on Hölder spaces/norms.

Hilbert spaces

Let V be a vector space over the field R. Let (·, ·) be a map V × V → R such that

i) (x, y) = (y, x)

ii) (α1x1 + α2x, y) = α1(x1, y) + α2(x2, y), ∀αi ∈ R

iii) (x, x) > 0, ∀x 6= 0

Let ||x|| := (x, x)
1
2 . One can then demonstrate

||(x, y)|| ≤ ||x|| · ||y|| Schwarz inequality

||x + y|| ≤ ||x|| + ||y|| triangle inequality

The 2nd affirms that || · || defines a norm.

If || · || is complete
(

V, (·, ·)
)

is a Hilbert space.
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Let F : V → R be linear, i.e a linear functional on V . If sup
06=x∈V

|F (x)|

||x||
=: ||F ||V ⋆ < ∞, F is

bounded. Here V ⋆ = {bounded linear functional on V }. Similary for a Hilbert space H define

similarly H⋆.

We give the statement of the main theorem regarding Hilbert spaces . Like the Continuity

Method it will serve us as a strong tool for us to attack abstract questions, a tool from Functional

Analysis.

Riesz Representation Theorem. Let H be a Hilbert space , F ∈ H⋆. Then ∃ ! f ∈ H such

that

i) F (x) = (f, x), ∀x ∈ H

ii) ||F ||H⋆ = ||f ||H

In particular ⇔ H = H⋆.

Sobolev Spaces

Motivation

If ∆u = f, u ∈ C2(Ω) then ∀ϕ ∈ C1
0(Ω) ϕ∆u = ϕf and

−

∫

Ω

∇ϕ∇u =

∫

Ω

∆u · ϕ =

∫

Ω

f · ϕ.

This observation lies at the heart of weak formulations of the Laplace equation.

Define an inner product on C1
0(Ω) :=compactly supported functions in C1(Ω)

(ϕ1, ϕ2) :=

∫

Ω

∇ϕ1∇ϕ2.

(

C1
0(Ω), (·, ·)

)

is not complete: a sequence of functions may degenerate to a function which is not

everywhere differentiable though continuous. Denote by W
1,2
0 (Ω) the completion of C1

0(Ω) wrt
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this norm. It is nice to note that (·, ·) extends to an inner product on W
1,2
0 (Ω): represent any two

elements there as limits of sequences of elements in C1
0(Ω) and take the limit of the inner products

of those, which are well defined. Hence W
1,2
0 (Ω) is a Hilbert space.

At this stage we do not yet know how W
1,2
0 (Ω) looks like. Maye its elements are not even

functions.

We continue with the motivation for defining those spaces. Let F (ϕ) := −
∫

Ω
f ·ϕ, ∀ϕ ∈ C1

0(Ω).

F = F (f,Ω) extends to a linear functional on W
1,2
0 (Ω).

Claim. F is bounded.

||F || = sup
ϕ∈W

1,2
0

(Ω)=C1
0
(Ω)

ϕ 6=0

|F (ϕ)|

||ϕ||
W

1,2
0

= sup
ϕ∈C1

0
(Ω)

ϕ 6=0

|F (ϕ)|

||ϕ||
W

1,2
0

since C1
0(Ω) is dense in its completion W

1,2
0 (Ω).

|F (ϕ)|

||ϕ||
W

1,2
0

=
|
∫

Ω
ϕ · f |

(

∫

Ω
|∇ϕ|2

)
1
2

≤

(

∫

Ω
ϕ2

)
1
2

·
(

∫

Ω
f2

)
1
2

(

∫

Ω
|∇ϕ|2

)
1
2

.

Using the Poincaré inequality

∫

Ω

ϕ2 ≤ c(Ω) ·

∫

Ω

|∇ϕ|2 we find a bound depending on Ω, f but not

on ϕ.

Hence by the Riesz Representation Theorem exists u ∈ W
1,2
0 (Ω), though we do not know it is a

function or even if so whether it has any regularity, such that

F (ϕ) = (u, ϕ)

by def.
// ∖

by def.
∖

−

∫

Ω

f · ϕ

∫

Ω

∇u∇ϕ.
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We do not know if u ∈ C1
0(Ω), just that u ∈ W

1,2
0 (Ω). We have a weak formulation of

∆u = f on Ω,

u = 0 on ∂Ω.

for any f ∈ L2(Ω)! Our plan is now: if f has certain regularity , u has that regularity +2.

The philosophy is instead of classically solving the ∆-equation with an exact explicit solution like

Poisson’s Integral Formula etc. we just enlarge our function spaces. Then the existence of a solution

in the enlarged space becomes trivial (following Riesz). The work comes down to showing that the

solution actually lies back in our original space of functions! That is regularity theory in a nutshell.

We will focus on that in the sequel.

Weak derivatives

For u, vi ∈ L1
loc

(Ω) say ”vi = Diu” if

∫

Ω

vϕ = −

∫

Ω

u · Diϕ, ∀ϕ ∈ C1
0(Ω).

If such v exists ∀i = 1, . . . , n then u is weakly differentiable in Ω with ∇u =weak (v1, . . . , vn).

If each Dju satisfies the above conditions we say u is twice weakly differentiable. We will omit

the quotations marks in what follows.

The derivative does not exist pointwise in general. But by the Lesbegues Theorem it does exist

pointwise almost everywhere (a.e).

Definition

We are now in a position to define Sobolev spaces. Let ||u||Lp(Ω) :=
(

∫

Ω
|u|p

)
1
p

. Define

Lp(Ω) := {equivalence classes of measurable functions such that || · ||Lp(Ω) < ∞}

where f ∼ g if f = g a.e.
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Define

W k(Ω) := {k-times weakly differentiable functions} ∩ L1
loc(Ω) ⊆ L1

loc(Ω),

Similarly define the Sobolev spaces

W k,p(Ω) ≡ Lk,p(Ω) = {u ∈ W k(Ω),Dαu ∈ Lp(Ω)
all multi-

indices α, |α| ≤ k
⊆ L1

loc(Ω)},

equipped with the norm

|| · ||W k(p)Ω :=
{

∑

|α|≤k

∫

Ω

|Dα · |p
}

1
p

(still need to prove it is a norm!). An equivalent norm is given by

∑

|α|≤k

∫

Ω

||Dα · ||L0(Ω).

Lp(Ω) is a Banach space ! (Riesz-Fischer Theorem). Also W k,p(Ω) = Lk,p(Ω) are.

Claim. C∞(Ω) ∩ W k,p(Ω) is dense in W k,p(Ω). i.e. we could have defined W k,p(Ω) as the

completion of C∞(Ω) wrt || · ||W k(p)Ω.

Given u ∈ W k,p(Ω) mollify it to

uh(x) :=

∫

R
n

1

hn
ρ
( |x − y|

h

)

u(y)dy,

with ρ a smooth bump function on R with mass 1 and support in [− 1
2 , 1

2 ]. Now u ∈ C∞(Ω)∩W k,p(Ω)

and uh → u in the W k,p(Ω) norm.

We now define Sobolev spaces of compactly supported objects

W
k,p
0 (Ω) := completion of Ck

0 (Ω) wrt || · ||W k,p(Ω).
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Note functions in Ck
0 (Ω) vanish on ∂Ω so in a sense W

1,p
0 (Ω) (respectively W

k,p
0 (Ω)) can be thought

of as (weak) functions which vanish on ∂Ω (whose first k − 1 derivatives vanish on ∂Ω).

Equivalence of norms

For ϕ ∈ W
1,2
0 (Ω) we defined two norms. One using the inner product

∫

Ω

∇ϕ1 · ∇ϕ2 on C1
0(Ω)

which gave us the norm

||ϕ|| =
{

∫

Ω

|∇ϕ|2
}

1
2

and another norm

||ϕ||′ =
{

∑

|α|≤1

∫

Ω

|Dαϕ|2
}

1
2

=
{

∫

Ω

|ϕ|2 +
n

∑

i=1

|Diϕ|2
}

1
2

≤ ||ϕ||L2(Ω) + ||∇ϕ||L2(Ω).

These norms are indeed equivalent since we are assuming compact support! The Poincaré in-

equality shows || · ||′ ≤ (1 + c(Ω)) · || · ||. This inequality fails grossly for non-compactly supported

functions, e.g the constant function. Since || · || ≤ || · ||′ the norms are equivalent.

Remark. in both of the above norms we define first the norms of functions which are also in

C1
0(Ω) and then we extend the norm to the completion by means of norms of limits of sequences

whose elements are all in C1
0(Ω) (those are dense).
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