
Lecture 19

April 27th, 2004

We give a slightly different proof of

Theorem. Let Ω a bounded domain in R
n, and 1 ≤ p < ∞.

W
1,p
0 (Ω) ⊆ C0,α(Ω), α = 1 −

n

p
, p > n,

and ∃C(n, p,Ω) such that for u ∈ W
1,p
0 (Ω)

||u||C0,α(Ω) ≤ C · ||u||W 1,p(Ω), ∀p > n,

in other words

sup
Ω

|u| + |u|C0,α(Ω) ≤ C ·
{

||u||Lp(Ω) + ||∇u||Lp(Ω)

}

, ∀p > n.

Note the inequality is stronger than the one we stated in the previous lecture.

Proof. We take u ∈ C1
0(Ω) as before, wlog (density argument). Extend u to R

n trivially, i.e set

u = 0 on R
n \ Ω. Let x, y ∈ Ω and σ = |x − y| and let p be the point

x + y

2
. Put B = B(p, σ) and

take z ∈ B. By the Fundamental Theorem of Calculus

u(x) − u(z) =

∫ 1

0

d

dt
u(x + (1 − t)z)dt

=

∫ 1

0

∇u(x + t(z − x)) · (z − x) dt.

Integrating over z ∈ B
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∣

∣

∫

B

u(z)dz − Vol(B)u(x)
∣

∣ ≤

∫

B

∫ 1

0

|∇u(x + t(z − x))| · |z − x|dtdz

≤ 2σ

∫

B

∫ 1

0

|∇u(x + t(z − x))|dtdz

= 2σ

∫ 1

0

(

∫

B

|∇u(x + t(z − x))|dz
)

dt.

Change variables to

z̄ := x + t(z − x), → dz̄ = tndz.

For z ∈ B(x, σ) ⇒ z̄ ∈ B(x, tσ) =: B̄. In the new variable we have now

∣

∣

∫

B

udz − Vol(B)u(x)
∣

∣ ≤ 2σ

∫ 1

0

t−n
(

∫

B̄

|∇u(z̄)|dz̄
)

dt.

By the Hölder Inequality for q such that
1

p
+

1

q
= 1

∫

B̄

|∇u(z̄)|dz̄
)

dt ≤
{

∫

B̄

1q
}

1
q ·

{

∫

B̄

|∇u(w)|pdw
}

1
p

= Vol(B(tσ))
1
q ||∇u||Lp(B̄)

≤ Vol(B(tσ))
1
q ||∇u||Lp(Ω)

= ω
1
q

n t
n
q σ

n
q ||∇u||Lp(Ω) ⇒

∣

∣

∫

B

udz − Vol(B)u(x)
∣

∣ ≤ 2σ1+ n
q ω

1
q

n

(

∫ 1

0

t−n · t
n
q dt

)

||∇u||Lp(Ω).

Divide now throughout by Vol(B) = ωnσn

∣

∣ 6

∫

B

u(z)dz − u(x)
∣

∣ ≤ σ1+ n
q
−nω

1
q
−1

n

(

∫ 1

0

t−n(1− 1
q
)dt

)

||∇u||Lp(Ω)

= σ1−n
p ω

− 1
p

n

(

∫ 1

0

t−n( 1
p
)dt

)

||∇u||Lp(Ω)
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and the integral evaluates to
[ t−

n
p
+1

1 − n
p

]

∣

∣

∣

∣

∣

1

0

which is finite iff p > n. We thus conclude

∣

∣ 6

∫

B

u(z)dz − u(x)
∣

∣ ≤ c(n, p) · σ1−n
p ||∇u||Lp(Ω).

We repeat the above computation with x replaced by y and use the triangle inequality, which gives

us

∣

∣u(x) − u(y)
∣

∣ ≤ 2c(n, p) · |x − y|1−
n
p ||∇u||Lp(Ω)

and subsequently

|u(x) − u(y)|

|x − y|1−
n
p

≤ 2c(n, p) · ||∇u||Lp(Ω).

And concluding

||u||Cα(Ω̄) = ||u||L∞(Ω) + sup
x6=y∈Ω

|u(x) − u(y)|

|x − y|1−
n
p

≤ C(n, p,Ω) · ||∇u||Lp(Ω).

since both C0 and L∞ norms coincide, being just supΩ, and finally because by our above computa-

tions we can also bound the L∞ norm in terms of the Lp norm of Du

|u(x)| ≤ 2c(n, p,diam(Ω)) · ||∇u||Lp(Ω)

so ||u||L∞(Ω) is bounded by the same rhs .

Compactness Theorems

Lemma. Let Ω be a bounded domain in R
n, and 1 ≤ p < ∞. Let S be a bounded set in Lp(Ω).

In other words,

∀ u ∈ S, ||u||Lp(Ω) ≤ MS .
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Suppose ∀ ǫ > 0, ∃ δ > 0 such that

∀ u ∈ S, ∀ |z| < δ

∫

Ω

|u(y + z) − u(y)|pdy < ǫ.

Then S is precompact in Lp(Ω) (denoted S ⊂⊂ Lp(Ω)), i.e every sequence of functions in S has

convergent subsequence (”subconverges”), or equivalently S̄ is compact.

This is an Arzelà-Ascoli type theorem: bounded equicontinuous family is precompact. We just

have to show somehow that the integral equicontinuity-type condition implies equicontinuity.

Proof. Mollify u as done previously in the course

uh =

∫

R
n

ρh(x − y)u(y)dy, ρh(z) =
1

hn
ρ(

|z|

h
).

Set Sh := {uh, u ∈ S}.

We compute

uh =

∫

R
n

ρh(x − y)u(y)dy =

∫

R
n

ρh(x − y)|u(y)|dy

=

∫

R
n

ρ
1
q

h ρ
1
p

h |u(y)|dy

≤
{

∫

R
n

ρh

}
1
q ·

{

ρh|u(y)|
1
p dy

≤ ||u||Lp(Ω).

Now

uh(x + z) − uh(x) =

∫

R
n

[

ρh(x + z − y) − ρh(x − y)
]

u(y)dy

=

∫

R
n

[

ρh(x − y)
[

u(y + z) − u(y)
]

dy

and the same estimate as above yields

uh(x + z) − uh(x) ≤ 1 ·
{

∫

Ω

|u(y + z) − u(y)|p
}

1
p ≤ ǫ

1
p .
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Now by our assumption for δ > 0 small enough and |z| < δ we will attain any desired ǫ on the

rhs. Note
∫

R
n ρh = 1 is fixed for all h by our choice of ρ. Hence by definition we see that Sh is an

equicontinuous family, and bounded wrt the Lp(Ω) norm as inside S, hence by the Arzelà-Ascoli

theorem Sh is precompact in the space Lp(Ω).

Now limh→0 Sh → S as we have seen in previous lectures. So as the above estimates are inde-

pendent of h, S is precompact itself in Lp(Ω).

Theorem (Kodrachov) Let Ω be bounded in R
n.

(I) p < n : W
1,p
0 (Ω) ⊆ Lq(Ω) ∀ 1 ≤ q <

np

n − p
.

(II) p > n : W
1,p
0 (Ω) ⊆ C0,α(Ω̄) ∀ 0 < α < 1 −

n

p
.

and moreover W
1,p
0 (Ω) is compactly embedded in each of the rhss.

We have then a curious situation– W
1,p
0 (Ω) ⊆ L

np

n−p ⊆ Lq for 1 ≤ q < np
n−p

but the first

inclusion is only continuous! Only for q stricly smaller than np
n−p

is it compact... And similarly for

the case p > n.

For the sake of clarity: we say B1 ⊆ B2 is compactly embedded if for every bounded set S in B1,

i(S) ⊆ B2 is precompact, where i : B1 → B2 is the inclusion map.

Proof. Case q = 1. By the density argument we mentioned repeatedly we assume wlog S ⊆ C1
0(Ω)

and that MS = 1. Let u ∈ S. Then ||u||Lp(Ω) ≤ 1, ||Du||Lp(Ω) ≤ 1. Hence ||u||L1(Ω) =
∫

Ω
|u(x)| ≤

{
∫

Ω
1}

1
q {

∫

Ω
|u|p}

1
p ≤ Vol(Ω)

1
q · 1, in other words S is also bounded in L1. Once we show the

condition of the Lemma holds then we will have precompactness in L1(Ω). And indeed

u(y + z) − u(y) =

∫ 1

0

du

dt
(y + tz)dt =

∫ 1

0

∇u(y + tz) · zdt ⇒

∫

Ω

|u(y + z) − u(y)|dy ≤ |z|Vol(Ω)
1
q ||∇u||Lp(Ω) ≤ c|z|.
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Case 1 < q < np
n−p

. We try to find some estimates for the Lq(Ω) norm using the indispensible

Hölder Inequality. Naturally we will be able to take care of boundedness of all such q together if

we allude to the fact that the Λ
np

n−p (Ω) is bounded, indeed the Lp norms are increasing in p– first

choose λ such that qλ + q(1 − λ)
n − p

np
= 1

{

∫

|u|q} ={

∫

|u|qλ · |u|q(1−λ)} ≤
{

∫

(

|u|qλ
)

1
qλ

}qλ

·
{

∫

(

|u|q(1−λ)
)

np

n−p
1

q(λ−1)

}q(1−λ)( n−p

np
)

⇒

||u||Lq(Ω) ≤ ||u||λL1(Ω) · ||u||
1−λ

L
np

n−p (Ω)

≤ ||u||λL1(Ω) · c · ||∇u||1−λ
Lp(Ω)

≤ ||u||λL1(Ω) · c · 1

≤ c(n, p,Vol(Ω)),

where we applied our Theorem from the previous lecture. Now note that we are done using the

q = 1 case: S is bounded in Lq(Ω) and hence a subsequence converges in Lq(Ω), but then by the

above inequality it will also converge in Lq(Ω)!

Case p > n. By the Theorem of the previous lecture W
1,p
0 (Ω) ⊆ C0,α(Ω̄) continuously. But

now C0,α(Ω̄) ⊆ C0,β(Ω̄) compactly for any 0 ≤ β < α as mentioned in one of the previous lec-

tures.

Remark. Replacing W
1,p
0 (Ω) by W 1,p(Ω) (the completion of C1(Ω) wrt the W 1,p norm) in the

above embedding theorems require that the domain be Lipschitz, i.e ∂Ω is of class C0,1 (this is a

local requirement).
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