Lecture 19

April 27t 2004

We give a slightly different proof of
Theorem. Let Q) a bounded domain in R", and 1 < p < co.

WaP(Q) CCo(Q), a= —g, p>mn,

and 3C(n,p, Q) such that for u € W, *()
l[ullco.e@) < C - lullwrr@), Yp>n,
i other words

Sup lul + |ulco.aiqy < C - {|[ullLr) + [IVullLey ), Y0 > n.

Note the inequality is stronger than the one we stated in the previous lecture.

Proof. We take u € C3(Q) as before, WLOG (density argument). Extend u to R" trivially, i.e set

u=0onR"\ Q. Let z,y € Q and 0 = |x — y| and let p be the point Tty

. Put B = B(p,0) and

take z € B. By the Fundamental Theorem of Calculus

1
(@) — u(z) = /O %u(x b (1= 8)2)dt
= /0 Vu(z +t(z —x)) - (z — z) dt.

Integrating over z € B



!/B (2)dz — Vol(B // IVu(z + t(z — 2))| - |z — |dtdz

< ZU/B /01 V(e + t(z — 2))|dtdz

=20 /01 (/B |Vu(z + t(z — a:))\dz) dt

Change variables to

Z=x+t(z—z), — dz=1t"dz

For z € B(z,0) = z € B(x,to) =: B. In the new variable we have now

|/BUdZ—V01(B)U(w)| <2 /01 t_"</B|Vu(Z)|dz)dt

1 1
By the Holder Inequality for g such that » + p =1

/B|Vu(2)|dz>dt < {/qu}q .{/B|Vu(w)|Pdw}p
— Vol(B(tU))%HVUHLP(B)
< Vol(B(t0)) 4[| Vul| 1o (0

l n
=wnptaoa||Vul|pe(a) =

1

1
|/ udz — Vol(B)u(x)| < 20T W (/ tm. t%dt)HVUHLP(Q).
B 0

Divide now throughout by Vol(B) = w,o"

1 1
0

1mz b [ )
—0o Pwn”(/ ) dt) ||Vl | ooy
0



Tl
and the integral evaluates to [ 7 ’

which is finite iff p > n. We thus conclude
0

|

n
p

|/ 2)dz — u(z)| < c(n,p) - o ¥ ||Vl Lo ().

We repeat the above computation with x replaced by y and use the triangle inequality, which gives

us

|u(z) — u(y)| < 2¢(n,p) - |z — yfl_%HVUHLP(Q)

and subsequently

u(z) — u(y)|

o —y|' >

< 2¢(n,p) - ||VullLe(q)-

And concluding

U U
% S C(?’L,p, Q) . ||Vu||Lp(Q)

l[ull oy = l[ullLe (@) + sup

e#ye |z —y|

since both C° and L® norms coincide, being just supg,, and finally because by our above computa-

tions we can also bound the L* norm in terms of the LP norm of Du
lu(x)| < 2¢(n, p,diam(Q)) - [|Vul|r )

80 ||| () is bounded by the same RHS . [

Compactness Theorems

Lemma. Let Q be a bounded domain in R™, and 1 < p < oo. Let S be a bounded set in LP(2).
In other words,
VuesS, |[ullrro) < Ms.

3



Suppose Ve >0, I &> 0 such that
VuesS V |z|<é / lu(y + z) —u(y)|Pdy < e.
Q
Then S is precompact in LP() (denoted S € LP(2)), i.e every sequence of functions in S has

convergent subsequence (”subconverges”), or equivalently S is compact.

This is an Arzela-Ascoli type theorem: bounded equicontinuous family is precompact. We just
have to show somehow that the integral equicontinuity-type condition implies equicontinuity.

Proof. Mollify u as done previously in the course

up, = /R" pu(@ = yuly)dy,  pn(z) = 72p(55).

Set Sy, = {up,u € S}.

We compute

up, = / . pn(x —y)uly)dy = / L pn(@ = y)luly)ldy

[

1 1
<{ Lo} {onlutw)lay

1
o lu(y)|dy

Sl

< |ullzr ()

Now

wn(z + 2) — un(z) = / [on(x + 2 — 4) — pula — )] uly)dy

n

N /Rn [on(z =) [uly + 2) — u(y)] dy

and the same estimate as above yields

S =
IN
o)}
Sl

up(z + 2) — up(z) gl-{/ﬂ|u<y+z)—u(y)lp}'
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Now by our assumption for § > 0 small enough and |z| < § we will attain any desired € on the
RHS. Note fR" pn = 1 is fixed for all A by our choice of p. Hence by definition we see that S}, is an
equicontinuous family, and bounded WRT the LP(£2) norm as inside S, hence by the Arzela-Ascoli
theorem S}, is precompact in the space LP((2).

Now limy,_,g S, — S as we have seen in previous lectures. So as the above estimates are inde-

pendent of h, S is precompact itself in LP (). [ |

Theorem  (Kodrachov)  Let Q be bounded in R".
(I) p<n: WIPQ)CLIQ) V1<g< n"—_pp.

(II) p>n: WyP(Q) C % (Q) V0<a<1—%.

and moreover Wol’p(Q) 18 compactly embedded in each of the RHSs.

We have then a curious situation- W, ?(Q) C L5 C LI for 1< g < +5 but the first

_np_

inclusion is only continuous! Only for ¢ stricly smaller than mp is it compact... And similarly for

the case p > n.

For the sake of clarity: we say B1 C By is compactly embedded if for every bounded set S in By,
i(S) C B, is precompact, where i : By — By is the inclusion map.
Proof. Case ¢ = 1. By the density argument we mentioned repeatedly we assume WLOG S C C3 ()

and that Mg = 1. Let w € S. Then [Ju||rrq) < 1, [|[Dul[rr) < 1. Hence |[ul[1q) = [, [u(z

{/5 1} {Jo |u|p}P < VOI(Q)% -1, in other words S is also bounded in L'. Once we show the

condition of the Lemma holds then we will have precompactness in L*(£2). And indeed

1y 1
u(y+z)—u(y):/ d—?(y—i—tz)dt:/ Vu(y +tz) - zdt =
0 0

/Q [uly + 2) = u(y)|dy < [2[Vol(Q)7[|Vul o) < cl2].
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Case 1 <¢g< n"—_";). We try to find some estimates for the L?(€2) norm using the indispensible
Holder Inequality. Naturally we will be able to take care of boundedness of all such ¢ together if

we allude to the fact that the A7~7 (Q) is bounded, indeed the LP norms are increasing in p— first

choose A such that g\ + ¢(1 — )\)nn_pp =1
1y aX np 1 q(1=X) ("5
{/ |9} :{/|u|q/\ 10Ny < {/(|u|qx\)qx} . {/(|u|q(1/\))n—p q(x—n} —
q < Al ° 175‘1}
ullpa) < [lullg Q) ||U||Ln_p @

-2
< llulldaay - e IVullistn,

< [ullZ1 () -1

< ¢(n, p, Vol(Q2)),

where we applied our Theorem from the previous lecture. Now note that we are done using the
g = 1 case: S is bounded in L9(€2) and hence a subsequence converges in L?(2), but then by the
above inequality it will also converge in L%((2)!

Case p > n. By the Theorem of the previous lecture Wy *(€2) € C%(Q) continuously. But

now C%(Q) C C%A(Q) compactly for any 0 < 3 < a as mentioned in one of the previous lec-

tures. [ |

Remark. Replacing W, ?(Q) by W'?(Q) (the completion of C*(€2) WRT the W' norm) in the
above embedding theorems require that the domain be Lipschitz, i.e 9Q is of class C%! (this is a

local requirement).



