
Lecture 20

April 29th, 2004

Difference Quotients and Sobolev spaces

Define

∆h
i u :=

u(x+ h · el) − u(x)

h
, h 6= 0.

Lemma. Let Ω be a bounded domain in R
n, and u ∈ W 1,p(Ω), for some 1 ≤ p < ∞. Then for

any Ω′ ⊂⊂ Ω such that dist(Ω′, ∂Ω) > h holds

||∆h
i u||Lp(Ω′) ≤ ||Diu||Lp(Ω).

Proof.

|∆h
i u| =

∣

∣

u(x+ h · el) − u(x)

h

∣

∣ ≤ 1

h

∫ h

0

∣

∣Diu(x1, . . . , xi + ζ, . . . , xn)
∣

∣dζ

≤ 1

h
{
∫ h

0

1q} 1q

·

{

∫ h

0

∣

∣Diu(x1, . . . , xi + ζ, . . . , xn)
∣

∣

p
dζ

}
1

p ⇒

|∆h
i u|p ≤ h

p

q
−p ·

∫ h

0

∣

∣Diu(x1, . . . , xi + ζ, . . . , xn)
∣

∣

p
dζ

=
1

h
·
∫ h

0

∣

∣Diu(x1, . . . , xi + ζ, . . . , xn)
∣

∣

p
dζ ⇒

∫

Ω′

|∆h
i u|p ≤ 1

h
·
∫

Ω′

∫ h

0

∣

∣Di|pdζdx =
1

h
·
∫ h

0

∫

′

Ω

∣

∣Di|pdxdζ

=
1

h

∫ h

0

||Diu||Lp(Ω′) = ||Diu||Lp(Ω′) ≤ ||Diu||Lp(Ω),
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where we applied Fubini’s Theorem in order to switch order of integration.

Conversely we have

Lemma. Let u ∈ Lp(Ω) for some 1 ≤ p < ∞ and suppose ∆h
i u ∈ Lp(Ω′) with ||∆h

i u||Lp(Ω′) ≤ K

for all Ω′ ⊂⊂ Ω and 0 < |h| < dist(Ω′,Ω). Then the weak derivative satisfies ||Diu||Lp(Ω) ≤ K.

Consequently if this holds for all i = 1, . . . , n then u ∈W 1,p(Ω).

Proof. We will make use of

Alouglou’s Theorem. A bounded sequence in a separable, reflexive Banach space has a weakly

convergent subsequence.

A topological space is called separable if it contains a countable dense set.

A Banach space is called reflexive if (B⋆)⋆ = B.

A sequence {xn} in a Banach space is said to converge weakly to x when lim
n→∞

F (xn) → F (x) for

all linear functionals F ∈ B⋆. This is sometimes denoted lim
n→∞

xn ⇀ x.

Example: Let ℓ2 :=
{

(a1, a2, . . .) :

∞
∑

i=1

a2
i <∞

}

. Consider the sequence {xi := (0, . . . , 0, 1, 0, . . .)}

⊆ ℓ2. Any bounded linear functional on ℓ2 will be some linear combination of the linear functionals

Fj , defined by Fj(a1, . . .) = aj (each such linear combination corresponds exactly to a point in ℓ2.

That makes sense, indeed by the Riesz Representation Theorem (ℓ2)⋆ = ℓ2 (note ℓ2 is a Hilbert

space not just a Banach space as it has an inner product structure).). For any such F = (a1, . . .),

lim
i→∞

F (xi) = lim
i→∞

ai = 0. So xi converges to the 0 vector weakly, though certainly not strongly:

by Fourier Theory each point in ℓ2 corresponds to a periodic function on [0, 1], i.e an element of

L2(S1), and of course lim
n→∞

exp(n2π
√
−1z) 6→ 0(z).
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We come back to the proof. For the Banach space B = Lp(Ω), B⋆ = Lq(Ω) with
1

p
+

1

q
= 1.

This can be seen directly: If F ∈ (Lp(Ω))⋆, then exists f such that F (g) =
∫

Ω
g · f, ∀g ∈ Lp(Ω),

and this will be bounded iff f ∈ Lq(Ω). So we get an identification F ∈ (Lp(Ω))⋆ ∼= Lq(Ω).

By Alouglou’s Theorem there exists a sequence {hm} → 0 with ∆hm

i u ⇀ v ∈ Lp(Ω). In other

words

∫

Ω

ψ · ∆hm

i u→
∫

Ω

ψ · v ∈ Lp(Ω), ∀ ψ ∈ Lq(Ω).

And in particular for any ψ ∈ C1
0(Ω) (which is dense in Lq(Ω) so will suffice to look at such ψ as

will become clear ahead)

∫

Ω

ψ∆hm

i u =

∫

Ω

ψ
1

h
(u(x+ h · el) − u(x))dx

=
1

h

∫

Ω

ψ(x− hei)u(x)dx − 1

h

∫

Ω

ψ(x)u(x)dx

=

∫

Ω

1

h
(ψ(x− hei) − ψ(x))u(x)dx

=

∫

Ω

−∆h
i ψ(x)u(x)dx

h→0−→
∫

Ω

−Diψ(x)u(x)dx

since ψ is continuously differetiable. Altogether

∫

Ω

ψ · v ∈ Lp(Ω) =

∫

Ω

−Diψ(x)u(x)dx,

which by definition means v is the weak derivative of u in the direction of the xi axis, or simply

the undistinctive notation v = Diu.

We also get the desired estimate, using the Fatou Lemma
∫

lim inf ≤ lim inf
∫

∫

Ω

|Diu|pdx =

∫

Ω

lim inf |∆h
i u|pdx ≤ lim inf

∫

Ω

|∆h
i u|pdx ≤ Kp,

i.e ||Diu||Lp(Ω) ≤ K.
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L
2

Theory

Consider the second order equation in divergence form

Lu ≡ L(u) := Di(a
ijDju) + biDiu+ c · u = f,

with aij , bi, c ∈ L1(Ω) (integrable coefficients).

We call u ∈W 1,2(Ω) a weak solution of the equation if

∀ v ∈ C1
0(Ω) −

∫

Ω

aijDjuDiv +

∫

Ω

(biDiu+ cu)v =

∫

Ω

fv.

Elliptic Regularity

Let u ∈W 1,2(Ω) be a weak solution of Lu = f in Ω, and assume

• L strictly elliptic with (aij) > γ · I, γ > 0

• aij ∈ C0,1(Ω)

• bi, c ∈ L∞(Ω)

• f ∈ L2(Ω)

Then for any Ω′ ⊂⊂ Ω, u ∈W 2,2(Ω′) and

||u||W 2,2(Ω′) ≤ C(||aij ||C0,1(Ω), ||b||C0(Ω), ||c||C0(Ω), λ,Ω
′,Ω, n) ·

(

||u||W 1,2(Ω) + ||f ||L2(Ω)

)

.

Note L∞(Ω) stands for bounded functions on Ω while C0(Ω) are functions that are also continuous

(Ω being bounded).

Proof. Start with the definition of u being a solution in the weak sense, ∀ v ∈ C1
0(Ω):
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∫

Ω

aijDjuDiv =

∫

Ω

(biDiu+ c− f)v.

and take difference quotients, that is replace v with ∆−hv.

∫

Ω

aijDjuDi(∆
−hv) =

∫

Ω

(biDiu+ c− f)(∆−hv).

Taking −h is a technicality that will unravel its reason later on, and we really mean ∆−h
k v for

some k ∈ {1, . . . , n} and then eventually repeat the computation for all k in that range. This

will become clear as well. Finally our goal will be to use the Chain Rule and move the difference

quotient operator onto u under the integral sign and get uniform bounds on ∆hDu and in this way

get a priori W 2,2(Ω) estimates.

The Chain Rule gives

∆h(aijDju) =

1

h

(

aiju(x+ h · ek)Dju(x+ h · ek) − {aij(x) − aij(x+ h · ek) + aij(x+ h · ek)}Dju(x)
)

= aiju(x+ h · ek)∆hDju− ∆haijDju.

And applied to our previous equation, a short calculation verifies that we can ’integrate by part’

wrt ∆h–

∫

Ω

aijDjuDi(∆
−hv) =

∫

Ω

∆h(aijDju)Div ⇒

∫

Ω

aiju(x+ h · ek)∆hDjuDiv =

∫

Ω

−∆haijDjuDiv +

∫

Ω

(biDiu+ c− f)(∆−hv) ⇒

∣

∣

∫

Ω

aiju(x+ h · ek)∆hDjuDiv
∣

∣ ≤ ||∆haijDju||L2(Ω)||Div||L2(Ω)+

+ ||biDiu+ cu− f ||L2(Ω)||∆−hv||L2(Ω),
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where we have used the Hölder Inequality for p = q = 2. This in turn can be bounded by

≤ ||aij ||C0,1(Ω)||Du||L2(Ω)||Dv||L2(Ω)+

+
(

||bi||L∞(Ω)||Du||L2(Ω) + ||c||L∞(Ω)||u||L2(Ω) + ||f ||L2(Ω)

)

||Dv||L2(Ω)

≤ C(||u||W 1,2(Ω) + ||f ||L2(Ω)) · ||Dv||L2(Ω).

where we have used the Hölder Inequality for p = 1, q = ∞, i.e a simple bounded integration

argument (e.g ||cu||L2(Ω) =
(

∫

c2 · |u|2
)

1

2 ≤
(

sup |c|2
∫

O

|u|2
)

1

2 ), and ∆haij → Dka
ij as aijC0,1(Ω).

Take a cut-off function η ∈ C1
0(Ω), 0 ≤ |η| ≤ 1, η

∣

∣

Ω′
= 1. We now choose a special v: v := η2∆hu.

From uniform ellipticity (aijζiζj ≥ λ|ζ|2)

λ

∫

Ω

|ηD∆hu|2 ≤
∫

Ω

η2aij(x+ h · ek)Di∆
huDj∆

hu.

Now

Div = 2ηDiη∆
hu+ η2Di∆

hu

which we substitute into our previous inequality,

∫

Ω

η2aij(x+ h · ek)Dj∆
huDj∆

hu ≤
∫

Ω

aij(x+ h · ek)Dj∆
hu · (Div − 2ηDiη∆

hu)

≤ C(||u||W 1,2(Ω) + ||f ||L2(Ω))||Dv||L2(Ω)+

+ C ′||(D∆hu)η||L2(Ω)||Dη∆hu||L2(Ω)

again by the Hölder Inequality. Now since η ≤ 1

||Div||L2(Ω) ≤ C ′′
(

||Diη∆
hu||L2(Ω) + ||D∆hu||L2(Ω)

)

.

Combining all the above and again using η ≤ 1,
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λ

∫

′

Ω

|ηD∆hu|2 ≤ C
(

||u||W 1,2(Ω) + ||f ||L2(Ω)

)

· C ′′
(

||Dη∆hu||L2(Ω′) + ||D∆hu||L2(Ω′)

)

+ C ′||(D∆hu)||L2(Ω′)||Dη∆hu||L2(Ω′)

≤ c
(

||u||W 1,2(Ω) + ||f ||L2(Ω) + ||Dη∆hu||L2(Ω′)

)

· ||(D∆hu)||L2(Ω′)

+ c
(

||u||W 1,2(Ω) + ||f ||L2(Ω)

)

· ||Dη∆hu||L2(Ω′).

Using the AM-GM Inequality ab =

√

1

ǫ
a2 · ǫb2 ≤ 1

2

(1

ǫ
a2+ǫb2

)

for the first term and the inequality

(a+ b)c ≤ 1
2 (a+ b+ c)2 for the second

λ

∫

Ω′

|ηD∆hu|2 ≤ 1

ǫ
c2

(

||u||W 1,2(Ω) + ||f ||L2(Ω) + ||Dη∆hu||L2(Ω′)

)2
+ ǫ||(D∆hu)||2L2(Ω′)

+ c
(

||u||W 1,2(Ω) + ||f ||L2(Ω) + ||Dη∆hu||L2(Ω′)

)2
.

Choose any 0 < ǫ < λ/2. Then subtract the second term on the first line of the rhs from the

lhs to get

||ηD∆hu||2L2(Ω′) ≤ c
(

||u||W 1,2(Ω) + ||f ||L2(Ω) + ||Dη∆hu||L2(Ω′)

)2 ⇒

||ηD∆hu||L2(Ω′) ≤ c
(

||u||W 1,2(Ω) + ||f ||L2(Ω) + ||Dη∆hu||L2(Ω′)

)

≤c
(

||u||W 1,2(Ω) + ||f ||L2(Ω) + sup
Ω

|Dη| · ||∆hu||L2(Ω′)

)

≤c
(

||u||W 1,2(Ω) + ||f ||L2(Ω)

)

·
(

1 + sup
Ω

|Dη|
)

,

since ||∆hu||L2(Ω) ≤ ||Du||L2(Ω) ≤ ||u||W 1,2(Ω) ≤ ||u||W 1,2(Ω) + ||f ||L2(Ω) where we have applied the

first Lemma to u ∈W 1,2(Ω). Now we are done as we can choose η such that first η
∣

∣

Ω′
= 1 (for the

lhs !) and second |Dη| ≤ dist(Ω′, ∂Ω) (for the rhs ) and so

||1 · D∆hu||2L2(Ω′) ≤ c
(

||u||W 1,2(Ω) + ||f ||L2(Ω)

)

,
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independently of h. So by our second Lemma the uniform boundedness of the difference quotients

of Du in L2(Ω′) implies Du ∈ W 1,2(Ω′) ⇒ u ∈W 2,2(Ω′) and we have the desired estimate for

its W 2,2(Ω′) norm by the above inequality combined with the Lemma.

Now that u ∈W 2,2(Ω′) then the our original equation holds in the usual sense

Lu = aijDiju+ Dia
ijDju+ biDiu+ c · u = f,

a.e !
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