Lecture 20

April 29th 2004

Difference Quotients and Sobolev spaces

Define

Al = “($+h'§‘) —u@) -z

Lemma. Let Q be a bounded domain in R™, and u € W1P(Q), for some 1 < p < oo. Then for

any Q' € Q such that dist(Q',09Q) > h holds
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where we applied Fubini’s Theorem in order to switch order of integration. [ |

Conversely we have

Lemma. Letu e LP(Q) for some 1 < p < oo and suppose Alu € LP(Q') with [|Alul|peoy < K
for all Q"€ Q and 0 < |h| < dist(SY',Q). Then the weak derivative satisfies ||Diul|prq) < K.

Consequently if this holds for all i =1,...,n then u € WhP(Q).

Proof. We will make use of

Alouglou’s Theorem. A bounded sequence in a separable, reflexive Banach space has a weakly

convergent subsequence.

A topological space is called separable if it contains a countable dense set.
A Banach space is called reflezive if (B*)* = B.

A sequence {z, } in a Banach space is said to converge weakly to x when lim F(z,) — F(x) for

n—oo

all linear functionals F' € B*. This is sometimes denoted lim x,, — x.
n—oo

Example: Let (2 := {(al,ag, S Zaf < oo}. Consider the sequence {z; := (0,...,0,1,0,...)}
i=1

C (2. Any bounded linear functional on ¢? will be some linear combination of the linear functionals
F;, defined by Fj(a1,...) = a; (each such linear combination corresponds exactly to a point in 2.
That makes sense, indeed by the Riesz Representation Theorem (¢£2)* = ¢2 (note ¢2? is a Hilbert
space not just a Banach space as it has an inner product structure).). For any such F' = (aq,...),

lim F(z;) = lim a; = 0. So x; converges to the 0 vector weakly, though certainly not strongly:

1— 00 71— 00

by Fourier Theory each point in ¢? corresponds to a periodic function on [0,1], i.e an element of

L2(S1), and of course lim exp(n2mv/—1z) 4 0(2).
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1 1
We come back to the proof. For the Banach space B = LP(2), B* = L1(Q2) with — + — = 1.
P q

This can be seen directly: If F' € (L?(Q))*, then exists f such that F(g) = [,9-f, Vg€ LP(Q),
and this will be bounded iff f € L7(Q). So we get an identification F' € (LP(2))* = LI(Q).
By Alouglou’s Theorem there exists a sequence {h,,} — 0 with A"y —~ v € LP(Q). In other

words

/ Y- Ay — / Y-veLP(Q), Ve LiQ).
Q Q

And in particular for any ¢ € C}(2) (which is dense in L?(£2) so will suffice to look at such v as

will become clear ahead)

ol [ orue+hee) — u@)ax
= %/Qw(x—hei)u(x)dx— %/Qw(x)u(x)dx
- / L (e — hes) — (a))u(z)dx
Q

h

:/Q—A?q/z(x)u(m)dx s’ Q—Diq/;(x)u(x)dx

since v is continuously differetiable. Altogether

[vver@ = [ Dauix,

which by definition means v is the weak derivative of u in the direction of the x; axis, or simply
the undistinctive notation v = D;u.

We also get the desired estimate, using the Fatou Lemma [ liminf < liminf [

/ |D;ulPdx = / lim inf | AP u|Pdx < liminf/ |Ahu|Pdx < KP,
Q Q Q

i.e ||Dlu||Lp(Q) <K. |



L2 Theory

Consider the second order equation in divergence form

Lu = L(u) :== D;(a”Dju) + ¥'Dju+c-u = f,

with @, b%, c € L'(Q) (integrable coefficients).

We call u € WH2(Q) a weak solution of the equation if

Y v eCHN) —/aiijuDiv—i-/
Q

Q

(b'Dju + cu)v = / fu.
Q
Elliptic Regularity

Let w € WH2(Q) be a weak solution of Lu = f in Q, and assume

o L strictly elliptic with (™) >~-I, v>0
e a’ecC(Q)

o b,ccL>®)

o feL*Q)

Then for any ' € Q, uwe W22(Q') and

ullwe22y < C(lla*||corays [blloo @y, lellco @y, A 2 n) - ([Jullwrz@) + [1f1]L2@))-

Note L>°(£2) stands for bounded functions on  while C°(2) are functions that are also continuous

(© being bounded).

Proof. Start with the definition of u being a solution in the weak sense, ¥V v € C}(£):
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/ a"'DjuDv = /(biDiu +c— fu.
Q

Q

and take difference quotients, that is replace v with A~"v.

/Qa"ijuDi(A_hv) = /(biDiu+ c— f)(A™h).

Q

Taking —h is a technicality that will unravel its reason later on, and we really mean A,;hv for
some k € {1,...,n} and then eventually repeat the computation for all k in that range. This
will become clear as well. Finally our goal will be to use the Chain Rule and move the difference
quotient operator onto u under the integral sign and get uniform bounds on A"Du and in this way
get a priori W22(Q) estimates.

The Chain Rule gives

Ah(aiiju) =

(a’u(z + h-ex)Dju(z + h - ex) — {a” (z) — a(z + h - ex) + " (z + h - ex) }D;u(z))

SRS

= au(z + h - ex) A"Dju — A"a"Dju.

And applied to our previous equation, a short calculation verifies that we can ’integrate by part’

WRT Ah—

/aiijuDi(A_hv):/Ah(aiiju)Div =
Q Q

/ au(z + h - ex) A"DjuDv = /
Q

; ~A"a¥DuDv + / (bDju+c— f)(A ") =

Q

‘/ aiju(a: +h- ek)AhDjqu| < HAhaiijuHLQ(Q)HDiUHLQ(Q)“F
Q

+[|6'Dsu + cu — fllz2@)l|A™"0] 2.



where we have used the Holder Inequality for p = ¢ = 2. This in turn can be bounded by

< [la"||co.x o |[Dul| L2 o) D] | L2 () +

+ (|16"| oo (o) [1Dul| 220y + llel|zo< @)l |ullz2@) + | fll2)) 1DV 20

< C(l|lullwrz@) + 1fll2@) - [IDv]]L2(0)-

where we have used the Holder Inequality for p = 1, = oo, i.e a simple bounded integration

1 1 g g g
argument (e.g ||cu|[2q) = (/02 Jul?)® < (sup\c\Q/ [u*)2), and A" — Dya¥ as a”C%1(Q).
o

Take a cut-off function n € C3(9),0 < |n| <1, n!Q/ = 1. We now choose a special v: v := n?A

ha.

From uniform ellipticity (a*¢;¢; > A[¢]?)

)\/ [nDAry|? < / n?a’ (z + h - ex)D; AMuD; Al
Q Q

Now

D;v = 2nD A"y + n?D; AMu
which we substitute into our previous inequality,

/ n?a"(x + h - ey)D;AMuD; Ay < / a(z 4+ h-ex)D;AMu - (Djv — 2nDinA"u)
Q Q
< Cllullwr2) + I fll22@) Dol 2 )+

+ C'||(DA )| | 2y | DA ]| 12 (q)

again by the Holder Inequality. Now since n <1

D[ 20y < C" (IDinAu|| 20y + DA || 12(q)).
Combining all the above and again using n < 1,
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!
A/Q MDA < O(||ullwr2) + |1 fllz2@)) - C” (IDnAM|| 120 + [ DA™ || 12(01)
+ C'||(DA"0)| 2 )| DA | 12 ()
< c(|[ullwr2@) + [ fllr2) + 1IDnA || 200 - [|(DA" )| 220

+ c(l|ullwrz) + [1flz2@) - [[DnA" ]| 12 0.

1 1,1
Using the AM-GM Inequality ab = {/ —a? - eb? < 3 (—a2+ebz) for the first term and the inequality
€ €

(a+b)e< i(a+b+c)? for the second

1 2

A o [nDA"M|? < 202(”“”W1v2(9) 1 f 1Lz () + [DnAM||L2(0n) " + €l (DA )72
2
+c(|[ullwrz@) + [1f]lz2@) + [IDnA" || 220r)) "

Choose any 0 < € < A\/2. Then subtract the second term on the first line of the RHS from the

LHS to get

2

MDA |72y < c(llullwrz@) + 1f]l2@) + DA ]| L2@)” =

IN

MDA || g2y < c(lJullwrz@y + |[fllL2@) + [[DnA"|[L201)

SC(HUHWW(Q) + | fllz2 ) + Slép |Dn| - HAhUHH(m)

<c(|lullwrz@) + | fll22@) - (1 + Sup IDn}),

since [|A"ul[r2(q) < [|Dul|r2) < ||ullwiz@) < [|ullwrz@) + || f]]22() where we have applied the

first Lemma to u € W2(£2). Now we are done as we can choose 7 such that first n o = 1 (for the

LHS 1) and second |Dn| < dist(€Q2',99) (for the RHS ) and so

||1 : DAhUH%z(Q/) < C(||u||W12(Q) + ||f||L2(Q))’
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independently of h. So by our second Lemma the uniform boundedness of the difference quotients
of Du in L?(Q') implies Du € W12(Q') = wu € W?22(Q) and we have the desired estimate for

its W22(Q') norm by the above inequality combined with the Lemma. [
Now that u € W22(Q') then the our original equation holds in the usual sense

Lu = a"Djju + D;a"Dju + b'Dju+c-u = f,



