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Lecture 0 

Course overview 

In this course, we will mainly be concerned with the following problems: 
1) Harmonic functions Δu = 0, i.e. i uii = 0. 

Dirichlet problem: (Ω ⊂ Rn) 

Δu = 0 , x ∈ Ω, 
u = ϕ , x ∈ ∂Ω. 

2) Heat equation: ut = Δu, u : Rn+1 R.→
Boundary value problem: cylinder domain Ω × [0, T ),Ω ⊂ Rn . 

ut = Δu , (x, t) ∈ Ω × [0, T ), 
u = ϕ , (x, t) ∈ Ω × {0} ∪ ∂Ω × [0, T ). 

3)Poisson Equation: (Ω ⊂ Rn) 

Δu = f , x ∈ Ω, 
u = ϕ , x ∈ ∂Ω. 

For which f, ϕ, Ω can we solve? 
Parabolic: � 

ut −Δu = f(x, t) , (x, t) ∈ Ω × [0, T ), 
u = ϕ(x, t) , (x, t) ∈ Ω × {0} ∪ ∂Ω × [0, T ). 

We will prove existence theorems by method of priori estimates.

For Δu = f , when does certain regularity of f imply regularity of u?

• If f continuous, is u ∈ C2? NO! 

We will always consider in the Hölder spaces Cα(Ω), C0,α(Ω). The norm is 

f(x) − f(y)
= sup 

|
.�f�Cα (Ω) 

x,y∈Ω,x=y 

|
|x− y|α 

Thus f ∈ Cα(Ω) = f(x) − f(y) Cα(Ω) x− y .⇒ | | ≤ �f� | |α 

When α = 1, f is just Lipstitz continuous functions. 

For Δu = f in Ω, we will get Interior Estimates 

u�C2,α(Ω�) ≤ C(�f�Cα(Ω) + �u�C0 (Ω)), 
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where Ω� ⊂⊂ Ω, C = C(Ω, Ω�). 

Notion of weak solution: 
Δu = f weakly on Ω if Ω uΔϕ = Ω ϕf, ∀ϕ ∈ Cc 

2(Ω), here u ∈ L1 
loc(Ω). 

Regularity theorem: If u is a weak solution, then u should has as much regularity 
as the priori estimates. 

In practical problems, it’s usually easy to prove existence of weak solutions. 
The harder problem: prove weak solution is regular, and therefore solves the original 

equation strongly. 

In general, the global estimates should depend on ∂Ω and ϕ: 

Δu = f , x ∈ Ω, 
u = ϕ , x ∈ ∂Ω. 

f ∈ Cα(Ω). Assume ϕ is the restriction of a C2,α function on Rn to ∂Ω, i.e. ϕ has a 
C2,α extension, and ∂Ω is C2,α smooth. Then u ∈ C2,α(Ω) and 

u�C2,α(Ω) ≤ C(�f�C2,α(Ω) + �u�C0 (Ω) + �ϕ�C2,α (∂Ω)). 

� 1 

Lp theory: Δu = f, f ∈ Lp(Ω).(( Ω |f
p) p < ∞)|

If u is a weak solution. Does 2nd order derivation of u belong to Lp, i.e. 

1 

( |D2 u|p) p < ∞ ? 1 < p < ∞
Ω 

We can get 
u�W 2,p(Ω�) ≤ C(�f�Lp + �u�Lp ). 

We just look at Δ. The next is more general elliptic operators: 

Lu = aij (x)Dij u + bi(x)Diu + c(x)u = f.

i,j i


We also consider the following problems: 

Lu = f , x ∈ Ω, 
u = ϕ , x ∈ ∂Ω. 

ut − Lu = f(x, t) , (x, t) ∈ Ω × [0, T ),

u = ϕ(x, t) , (x, t) ∈ Ω × {0} ∪ ∂Ω × [0, T ).
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We call L is uniformly elliptic if ΛI ≥ (aij ) ≥ λI, λ > 0. 
Schauder Theory: L is uniformly elliptic, aij , bi, c ∈ Cα(Ω), then 

�u�C2,α(Ω�) ≤ C(�f�Cα(Ω) + �u�C0 (Ω)). 

Idea: Assuming coefficients are all Cα, locally L is close to a constant coefficients op­
erator. 

Maximum principle: Bound C0 norm of solution in terms of boundary data of f . 

�u�C0(Ω) ≤ C(�f�C0(Ω) + sup ϕ ).| |

This is an A Priori estimate:

I) Assume solution exists;

II) Prove solutions satisfies a priori bounds;

III) Therefore the solution exists.


Motivation: If you want to completely understand Perelman’s proof of Poincaré 
conjecture, you have to know this stuff. 

∂ 
g = −2Ric 

∂t

∂


gij ∼ Δg gij + lower terms. 
∂t

Fundamental Result: (M3, g) compact 3­manifold, then ∃ε > 0 s.t. Ricci flow 
system has a smooth solution on M × [0, ε). 
(This is called short time existence theorem.) 

Examples of harmonic functions in Rn 

a) Constant.

b) linear functions.

c) Homogeneous harmonic polynomials: Hk (Rn).


dimHk (Rn) = (2k + n − 2) (k+n−3)! .k!(n−2)! 

d) n = 2, the real or image part of holomorphic functions is harmonic. 
They are C∞. Even more, they are Cω . 

e) Fundamental solution 

C , n > 2,
rn−2 u(x) = 
C ln r , n = 2. 
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is harmonic on Rn − {0}. 

Fundamental solutions for Laplacian and heat operator 

Definition 1 
, n > 2,

Γ(x, y) = 

� 
n(2−

1 
n)ωn 

|x − y|2−n 

1 
2π log x − y , n = 2.| | 

Γ is harmonic: 
∂Γ(x, y)

= 
1

(x − y i) 
x − 

1 
y n 

i


∂xi nωn | |

i
∂2Γ(x, y)

=
1 1 

δij − 
n(x − yi)(xj − yj )

= ⇒ 
∂xi∂xj nωn 

{ 
x − y|n |x − y n+2 }
| |

= ΔxΓ(x, y) = 0 ⇒ 

= Δy Γ(x, y) = 0.⇒ 

Definition 2 
21 |x−y|

e 4(t0−t) .Λ(x, y, t, t0) = 
(4π t − t0 )n/2| |

We have Λt = ΔΛ: 

2 

Λt = 
n 1 x − y|

Λ− 
2 (t − t0)

Λ + 
|

4(t − t0)2 

i i 

Λ i = 
x − y

Λx 2(t0 − t)


= Λ i i =
(xi − yi)2
 1

Λ + Λx x⇒ 
4(t0 − t) 2(t0 − t) 

2x − yn 1 
Λ + 

|
Λ.= ⇒ ΔΛ = − 

2 (t − t0) 4(t − t0

|
)2 

Heat Kernel: 
2 

4tK(x, y, t) = 
(4πt

1
)n/2 

e
−|x−y|

. 

It’s easy to check Kt = ΔK. 
Suppose u : Rn �→ R is bounded and C0, then 

u(x, t) = K(x, y, t)u(y)dy 
Rn 

is C∞ on Rn × (0, ∞) and ut = Δu. 
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