Lecture 11

Review of Green’s functions.
G:OxQ—R.

Given z € , let hy(y) : @ — R be s.t. Ayh,(y) = 0 and hy(y) = —I'(Jz — y|) for
y € 0fd.

By definition, G(z,y) = I'(|x — y|) + hz(y).
If Green’s function exists, then for u € C1(Q) N C2%(Q),y € Q, we have

u(y):/aQu(:E)BGéiy do —l—/Gx y)Au(x)dz.

Thus we can see:
If u =0 on 99, then u(y) = [, G(z,y)Au(z)dz = G * Au.

(Compare) By Green’s formula, we have

If u € C2(R™), then u(y) =T * Auw.

Proposition 1 a) G(z,y) = G(y,z);
b) G(l’,y) <0, fO?” T,y € Q,IL‘ 7é Y.
¢) [o G(z,y) f(y)dy — 0 asx — OQ, where f is bounded and integrable.

Proof of c¢): From definition, G(z,y) =0 if z € Q,y € 9.
By a), G(z,y) =0 for y € Q,xz € 99.
Thus G : Q x Q — {diag} — R.
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By dominate convergence, we can change limit and integral. |
Example. Green’s function for R’

Given y = (y', - ,y"), let y* = (y*, -,y 1, —y™).

It is easy to check that G(z) =T'(x —y) —T'(z —y*) = T'(x —y) —T['(z* —y) is Green’s
function for R’ :

o (y) = G(x,y) — I'(x — y) is harmonic in §;

oG(z,y) = 0 on 0N

Review of Schwartz reflection.
First we go back to harmonic functions.



Theorem 1 A C°(Q) function u is harmonic if and only if for every ball Br(y) CC Q,

we have )
= — ds.
) = ey [ s

Proof: — is just mean value theorem.

<=: Use the Poisson kernel: Given any Ball Br(y) C 2, Define

RQ—‘LEZ‘ u( )
h(x) — nwn R faB ‘I,Z‘nds , T € Bp,
u(z) , T €0B.

Then h € C?*(Bg) N C%(Bg) and satisfies Au = 0. So h satisfies the mean value
property. Therefore u — h satisfies the mean value property and u = h on 0Bpg.

But recall the uniqueness theorem for solutions of Poisson’s equation — we only used
the mean value property. Therefore v = h, so u is harmonic. |

Now suppose QT C R?, T = Q+ N OR? is a domain in OR%. Let Q~ = (QF)", i.e.
O ={(z1,- ,zn) ER"(z1,--,—2,) € QT}.
Suppose we have 1 harmonic in QF, u € CO(QT UT), and u = 0 on T. Define

u(ajl?"' 7mn) ) $Q+UT,
w(zy, -, —xy) , TEN.

u(ay, - ,xn)—{

Theorem 2 The function u defined above is harmonic in QT UT U Q™.

Proof: Obviously u is in COQT UT U Q™.

If one examines the above proof, one only requires that for each point y € 2, IR > 0
so that mean value property holds in B,(y),r < R. Also remember in the proof of
maximum principle, we assumed that the function has a interior max, then use mean
value theorem in small ball around this point.

Certainly here we have this property in Qt U Q~, and on T if follows from the

definition of u, fBBR(xeT) u=0. [ |

C?“ boundary estimate for Poisson’s equation with flat boundary portion.

Theorem 3 Let u € C%(B;y) N CO(F;),f € C¥(ByY), and Au = f in By, u=0 on
T. Then u € C*%(B{") and

HUHcm(B;r) < C(HUHCO(B;) + Hcha(B;))-



Proof: Reflect f with respect to T, i.e.

f(xlv'”wz'n) ) xn207

f*(g:)Zf*(ﬂflf"’x”):{f($1a"‘»_$n) , Tp < 0.

Let D = B;_ UB, U (BoNT), then f* € Ca(ﬁ) and HfHCO‘(D) < QHfHCO‘(B;) Let
G(x,y) be the Green’s function of upper half space. Define

w(r) = - G(z,y)f(y)dy
— /B;(F(x —y) =Tz —y")f(y)dy
- /B;(F(x —y) —T(2" —y))f(y)dy
-/ T = D)y - / T )iy

Then Aw = f. It’s easy to check that w(x) =0 on 7. Thus

J

D(z —y)f*(y)dy = /D [(z —y)f*(y)dy — /+ [(z —y)f(y)dy,

2 By

SO

wle)=2 [ Tty = [ Tw=r

We did estimates for the first term earlier. For the second term, think of B € D
and just use interior estimates from last week. We thus get

Hw|’02,a(B1+) < C”fHCOva(B;)'

Let v = u — w in By, then on By we have Av = Au—Aw = f — f=0and v =0
onT.

We may reflect v, then by Schwartz reflection we know that v* is harmonic in D.
Now use the interior estimates for harmonic functions, we get

[0llce.a(sry < Cllv*llcopy < 2[[vllcon)-
So

HUcha(B;r) < HUHcm(Bj) + HW”(jza(Bj) < C(HUH(}O(B;) + Hf”(ja(B;))- u

Application: Global C?>® Regularity Theorem for Dirichlet problem in a ball
with zero boundary data.



Theorem 4 Suppose B is a ball in R", u € C*(B)NC°(B), f € C*(B), Au= f in
B and u =0 on OB. Then u € C*%(B).

Proof: By dilation and translation, we can assume B = By /5(0,- - ,0, %)

Look at the inversion z — Iz = ﬁ, then the ball B is mapped to a half space
B* = {z|z, > 1} while 0B is mapped onto 0B* = {z,, = 1}.

The Kelvin Transform of u is v(z) = \x|2_”u(ﬁ) € C?(B*) N C°(B*) and we have

Ayo(y) = [y "2 Agu(e) = |y|—"-2f<ﬁ> € C(B").

By the previous theorem, u € C*“ up to the boundary.
By rotation, we could do this for any boundary point, so u € C%?. ]

Corollary 1 Suppose p € C*%(B), f € C*(B). Then the Dirichlet problem

Au=f , x€B,
U= , x €0B.

is uniquely solvable for u € C%*(B).

Proof:The existence of u comes from Perron’s method.

Since Ay € C%(B), so let v be the unique solution of Av = f — Ay in B with v =0
on B. Then v € C(B) N C°(@B). By above result, v € C>(B).

But u — ¢ solves the problem also: A(u—¢) =Au—Ap=f—Apin Bju—¢p =0
on dB. By uniqueness, v = u — ¢. So u € C%>%(B). [ |



