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Lecture 3 

MVP + integrable ⇔ harmonic 

Theorem 1 Suppose u ∈ L1 
loc, then u is harmonic u satisfies MVP on Ω.⇔ 

Proof:	 Take C∞ function ρ on Rn with properties: (a) Supp(ρ) ⊂ B(0, 1); (b) ρ ≥ 0; 
(c) ρ is radical, i.e. ρ(x) = ρ(|x|); and (d) ρ(x)dx = 1. B(0,1) 

By these properties, we have � � 1 �	 � 1 

1 = (0, 1)ρ(x)dx = ρ(s)dσds = ρ(s)nωns n−1ds. 
B 0 ∂B(0,s) 0 

x	 x−yDefine ρ(r)(x) = 1 ρ( |r
| ), ur(x) = ρ(r)(x) ∗ u = 1 ρ( | r 

| )u(y)dy. (Without loss rn	 rn Ω 
of generality, we can assume u ∈ L1(Ω) – otherwise we consider near every point s.t. u 
is integrable.) 

Now we have � 
x − y

ur(y) =	
1 

ρ( 
| | 

)u(x)dx 
rn �Ω r 

x − y
=

1 
ρ( 
| | 

)u(x)dx 
rrn

B(y,r) 
r x − y

=
1 

ρ( 
| | 

)u(x)dσds 
rrn 

0 ∂B(y,s) 
r1 s 

=	 ρ( )u(x)dσds 
rrn 

0 ∂B(y,s) 
r1	 s 

= ρ( )nωns n−1 u(y)ds 
rn 

0 r 
rnωnu(y) s 

= ρ( )s n−1ds 
rn 

0 r 

= 
nωnu(y) 

� 1 

rρ(t)r n−1tn−1dt 
rn 

0� 1 

= nωnu(y) ρ(t)tn−1dt 
0 

= u(y). 

But ρ ∈ C∞ ⇒ ur ∈ C∞, so u ∈ C∞. Thus MVP u is harmonic by last lecture. �⇒ 

Weak Solution 
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For the function Γ(x), we have (in distributional sense ) ΔΓ(x) = δ0(x), i.e. for 
ϕ ∈ Cc 

2(Rn), 

Γ(x)Δϕ(x)dx = ϕ(0) = ϕδ(0). 
Rn 

More generally, ΔΓ(x − y) = δy(x).

Proof: Choose R large so that Suppϕ ⊂ B(0, R). Choose ρ small. From Green’s

formula we get


∂ϕ ∂Γ
ΓΔϕdx = )ds. 

Rn−B(0,ρ) ∂Bρ 

(Γ 
∂ν 

− u
∂ν 

As ρ → 0, we get 

ΓΔϕdx ΓΔϕdx, 
Rn−B(0,ρ) 

→ 
Rn 

∂ϕ c
Γ(ρ) 

∂ν 
ds ≤ 

ρn−2 ρ
n−1 → 0, 

∂Bρ 

∂Γ 1 1 
u udσ u(0),− 

∂Bρ 
∂ν 

= 
nωn ρn−1 →

∂Bρ 

which give what we claimed. � 

Application: G(x, y) = G(y, x) 

G(x, y) − G(y, x) = (G(x, z)δ(y − z) − G(y, z)δ(x − z))dz �Ω 

= (G(x, z)ΔzΓ(y − z) − G(y, z)ΔzΓ(x − z))dz �Ω 

∂ ∂ 
= (G(x, z) Γ(y − z) − G(y, z) Γ(x − z))dz 

∂νz∂Ω ∂νz 

= 0. 

Weyl’s Lemma: Regularity of weakly harmonic functions 

Theorem 2 Suppose u ∈ L1 
0(Ω) satisfies u(x)Δϕ(x)dx = 0 for ∀ϕ ∈ Cc 

2(Ω). ThenΩ 
u is harmonic in Ω. 

Proof: Without loss of generality, we can assume u ∈ L1(Ω). 
Again we take 

x − y
ur(x) = ρ(r)(x) ∗ u =

1 
ρ( 
| | 

)u(y)dy. 
rn 

Ω r 
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Claim 1. f (y − x)Δg(x)dx = Δy f (y − x)g(x)dx, ∀f, g :Ω Ω 

Δy f (y − x)g(x)dx = Δy f (x)g(y − z)dz 
Ω � Ω 

= f (z)Δy g(y − z)dz �Ω 

= f (y − x)Δg(x)dx. 
Ω 

Claim 2. ur (x)Δϕ(x)dx = Ω u(x)Δϕr (x)dx :Ω 

x − y
ur (x)Δϕ(x)dx = 

1
( ρ( 

| |
)u(y)Δϕ(x)dy)dx 

Ω �Ω r� 
n 

Ω r 
x − y

= ( 
1 

ρ( 
| |

)u(y)Δϕ(x)dxdy 
rn �Ω Ω r 

x − y
= u(y)( 

1 
ρ( 
| |

)Δϕ(x)dxdy �Ω Ω r
n r 

= u(y)Δy ( 
r

1 
n ρ( 

|x − y|
)ϕ(x)dx)dy �Ω Ω r 

= u(y)Δy ϕr (y)dy. 
Ω 

Claim 3. ur (x) is harmonic. 
In fact, for any ϕ ∈ Cc 

2(Ω), Δϕr (y) ∈ Cc 
2(Ω), so by the assumption we have 

u(y)Δy ϕr (y)dy = 0. 
Ω 

Thus by claim 2, Ω ur (x)Δϕ(x)dx = 0 for any ϕ ∈ Cc 
2(Ω). 

But ur (x) ∈ C∞(Ω), thus 

ur (x)Δϕ(x)dx = Δur (x)ϕ(x)dx. 
Ω Ω 

So we get 

Δur (x)ϕ(x)dx = 0, ∀ϕ ∈ Cc 
2(Ω), 

Ω 

which implies Δur (x) = 0, i.e. ur (x) is harmonic.

Claim 4. {ur } uniquely bounded and equicontinuous on any Ω� ⊂⊂ Ω.


In fact, ur = ρ(r) ∗ u implies 

ur �L1 L1 �u�L1 u�L1 ,� ≤ �ρ(r)� ≤ �
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so

sup sup ur L1 . 

Ω�⊂⊂Ω 
|Dk ur | ≤ C ·

Ω 
| | ≤ C�u�

Since ur harmonic, we get 

1 
ur (y) = ur (x)dx, 

ωnRn
B(y,R) 

which implies 
1 

L1 .|ur (y)| ≤
ωnRn �u�

Claim 5. u is smooth. 
In fact, by Arzela­Ascoli theorem, there is some subsequence ri → 0, i → ∞ s.t. 

uri → v ∈ C∞ on Ω� ⊂ Ω. 
But uri = ρ(ri) ∗ u → u in L1 as ri → 0, so u = v on Ω�. Thus u is smooth on Ω. 

Now since u is smooth, we have 

0 = uΔϕ = ϕΔu, ∀ϕ, 
Ω Ω 

so Δu = 0, i.e. u is harmonic. � 
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