Lecture 3

MVP + integrable < harmonic

Theorem 1 Suppose u € L} , then u is harmonic < u satisfies MVP on €.
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Proof: Take C*° function p on R" With properties (a) Supp(p) C B(0,1); (b) p > 0;
(c) p is radical, i.e. p(x) = p(]z|); and ( fB o1y Px)dz = 1.

By these properties, we have
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Define p(")(z) = = p(m) (z) = p)(z) xu = L [y p(‘xT;y')u(y)dy (Without loss
of generality, we can assume u € L'(§) — otherwise we consider near every point s.t. u
is integrable.)

Now we have
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But p € C*® = u, € C*, s0o u € C*®. Thus MVP = u is harmonic by last lecture. H

Weak Solution



For the function I'(z), we have (in distributional sense ) AT'(z) = do(x), i.e. for
p € CZ(R™),
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More generally, Al'(z —y) = d,(z).
Proof: Choose R large so that Suppy C B(0,R). Choose p small. From Green’s

formula we get
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As p — 0, we get
/ F'Apdx — IF'Aedz,
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which give what we claimed. |

Application: G(z,y) = G(y,x)

G(z,y) — G(y,z) = Q(G(ﬂc, 2)6(y — 2) — G(y, 2)d(x — 2))dz
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Weyl’s Lemma: Regularity of weakly harmonic functions

Theorem 2 Suppose u € L{(Q) satisfies [, u(z)Ap(z)dz = 0 for Vo € C2(Q). Then
u s harmonic in €.

Proof: Without loss of generality, we can assume u € LY(Q).

Again we take
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Claim 1. fQ fly — x)Ag(z)de = A, fQ fly —x)g(x)dz,Vf, g
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Claim 2. [, u,(z)Ap(x)dx = [ u(z)Ap,(x)dz :
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Claim 3. u,(x) is harmonic.
In fact, for any ¢ € C2(Q), Ap,.(y) € C?(£2), so by the assumption we have

/ u(y)Ayer(y)dy = 0.
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Thus by claim 2, [, u,(z)Ap(z)dz = 0 for any ¢ € C%(Q).
But u,(x) € C*°(Q), thus

/Q up () Ap () dar = /Q A () () dz.

So we get

/ Au,(z)p(z)dr = 0,Yp € C(Q),

which implies Au,(z) = 0, i.e. u,(z) is harmonic.
Claim 4. {u,} uniquely bounded and equicontinuous on any Q' CC (.

In fact, u, = p{) % u implies
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Q'Cc Q

Since u, harmonic, we get

which implies
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Claim 5. wu is smooth.

In fact, by Arzela-Ascoli theorem, there is some subsequence r; — 0,7 — oo s.t.
up, = v €C®onQ CQ.

But u,, = p(”) xu — win L' as 7, — 0, so u = v on €. Thus v is smooth on .
Now since u is smooth, we have
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so Au = 0, i.e. u is harmonic. |



