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Lecture 5 

Last time: In spherical coordinates, u(x) = U(r, θ), 

21
Δu(r, θ) = Urr + 

n − 1 
Ur + ΔSn−1 U. 

r r 

If U(r, θ) = f(r)B(θ), then 

1
Δu = (frr + 

n − 1 
fr )B(θ) + 

2 fΔSn−1 B. 
r r

Proposition 1 Eigenvalues of ΔSn−1 are −k(k + n − 2), where k ≥ 0, so λ1(Sn−1) = 
n − 1. 

Let ΔSn−1 Bk (θ) = −k(k + n − 2)Bk (θ), then 

frΔ(f(r)Bk(θ)) = (frr + 
n − 1 

fr − k(k + n − 2) 
2 )B(θ). 

r r

From this we get that harmonic functions which has form rpBk must satisfies p = k or 
−k − n + 2, thus we get a gap for the values of p: 

· · · · · · , −n, −(n − 1), −(n − 2), �, 0, 1, 2, · · · · · · 

The terms before the gap are harmonic functions blowing faster than or as fast as 
the Green’s function, and the terms after the gap correspond to homogenous harmonic 
polynomials. The gap comes from the removable singularity theorem. 

Laplacian in inverted coordinates: Kelvin transform I 
yFirst we define the inverted transform T : Rn −{0} to be T y = = x.−{0} −→ Rn 
|y|2 

Note that T = T −1 . Let’s find the component of the metric tensor of y. 
i ∂Now the metric of coordinates x is gEuc = (δij ). Let ek = 

∂yk . Suppose T∗ek = � ∂ ∂xi 
aik ∂xi , then aik = 

∂yk , and 

(T ∗gEuc)kl = T ∗δij (ek , el) = δij (T∗ek , T∗el) � ∂ � ∂ 
= δij ( amk 

∂xm , arl )
∂xr 

= amk aml 

Because 
∂xm ∂ m 2y y

amk = = 
∂yk ( |

y

y|2 ) = 
δkm 

|y

k 

|4 

m 

,
∂yk |y|2 − 

1 



so we have � 
gkl = (T ∗gEuc)kl = amkaml 

m 
k� 

( 
δkm 2y ym 

)( 
δlm 2ylym 

= 
|y|2 − |y|4 |y|2 − |y|4 ) 

m 
l l k l k 2δkl 2y yk + 2y y 4y y |y|

= 
|y|4 − |y|6 + 

|y|8 

δkl = . 
|y|4 

Thus 
1 kl det(gkl) = 

|y|4n 
= |y|−4n , g = |y|4δkl. 

So by the formula in last lecture, we get 

4Δu(T y) = |y|2n∂i(δij |y| |y|−2n∂j u) 

= y 2n∂i(|y|4−2n∂iu)| |
2n 2= |y|
4 

|y|4−2n∂i∂iu + 2(2 − n) y < �u, y > | |
2= |y| uii + 2(2 − n) y uiyi.| |

On the other hand, we have � ∂2 � ∂2 
n+2 y y 2−n u) = |y|n+2(( y 2−n)u + 2�|y 2−n y 2−n uii)| |

∂Y i2 (| | ∂yi2 | | | · �u + | |

2 4= 2(2 − n) y uiy i + uii|y| ,| |

so we get 
Δu(Ty) = |y|n+2Δ( y 2−nu).| |

yDefinition 1 The Kelvin Transform of u is defined to be Ku(y) = |y|2−nu( 2 ). y| |

Corollary 1 If u is harmonic on Rn − {0}, then Ku is harmonic on Rn − {0}. 

Now let’s look at the degree gap again: 

· · · · · · , −n, −(n − 1), −(n − 2), �, 0, 1, 2, · · · · · · 

As we have known, those terms after “�” correspond to homogeneous harmonic 
polynomials uk = rkBk(θ). Apply the Kelvin’s transform to this harmonic functions, 
we get 

Kuk(y) = |y|2−n uk( 
y 

2 ) = r 2−n r−kBk(θ) = r 2−n−kBk(θ). 
y| |

Thus those terms before “�”, i.e. those blow up faster than the Green’s near origin, 
are just the Kelvin transform of the homogeneous harmonic polynomials. 
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Also we can know that if we apply Kelvin’s transform to homogeneous harmonic 
1 1 1polynomials, then near ∞, we get harmonic functions which decays like 

rn−2 , rn−1 , rn , 
1and there is no harmonic function which decay like 

rn−3 near ∞. 

Harmonic at ∞ 

Definition 2 Suppose u is harmonic on Rn \ K, where K is a compact set, then we 
say u is harmonic at ∞ if its Kelvin transform Ku is harmonic at the origin. 

Remark 1 1) We have to remove a compact set K, otherwise if u is harmonic on Rn 

and harmonic at ∞, then u is bounded in Rn, thus u is constant, which we have no 
interest. 

x2) u is harmonic at ∞ = Ku is harmonic at origin = ⇒ Ku(x) = |x|2−nu(⇒ |x|2 ) ≤ 
CC = ⇒ u(y) ≤ | |n−2 , i.e. u decay at least as fast as the Green’s function Γ. 

y

Theorem 1 Suppose n > 2, u is harmonic in Rn \ K, where K is compact subset. If 
limx→∞ u(x) = 0, then u is harmonic at ∞. 

Proof: Ku(x) = |x|2−nu( x 
2 ) = o( x 2−n) as x → 0, thus Ku has harmonic extension 

x| | | |
to 0 by Removable Singularity Theorem. � 

CCorollary 2 If u harmonic on Rn \ K, and limx→∞ u = 0, then u(x) ≤ | |n−2 . x

This corollary tells us that harmonic function which decays at ∞, must decay at 
least as fast as the Green’s function: another “gap”. 

Now we turn to the “n = 2” case. 

Theorem 2 Suppose n = 2, u is harmonic in Rn \ K, where K is compact subset. If 
limx→∞ 

u(x) 
log |x| = 0, then u is harmonic at ∞. 

Proof: Just the same as last theorem. � 

Corollary 3 n = 2. If u harmonic on Rn \ K, and limx→∞ 
u(x) = 0, then u has a 

limit at ∞. 
log |x| 

Kelvin II: Poission integral formula proof. 
Poission Integral Formula: If u is harmonic on Rn, then 

u(x) = P (x, y)u(y)dσy, 
∂B 
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2 1where P (x, y) = 1−|x|
n nωn 

. So x−y| |

Ku(x) = |x|2−n u( 
x

x 
2 ) = 

∂B 
|x|2−nP ( 

|
x 
|2 , y)u(y)dσy. 

x| |

xClaim: |x|2−nP ( | |2 , y) = −P (x, y).
x


y
In fact, by using the formula | |y| − |y|x| = x x y , we get | |x| − | | |

1 
1 

2 , y) = x
1 − |x|2 

x|x|2−nP ( 
|x
x 
|

| |2−n 

| |x|2 
n nωn− y|
1 

1 
= |x|2−n 

1 − |x|2 

1 y y x n nωnx n| | | |y| − | | |

x 2 1 
= 

| | − 1 
.y y x n nωn| |y| − | | |

But |y| = 1, so we get 
|x|2−nP ( 

x 
2 , y) = −P (x, y). 

x| |

By this claim, we have 

Ku(x) = − P (x, y)u(y)dσy, ∀|x| > 1. 
∂B 

So Ku(x) is harmonic on |x| > 1. 
But Ku is analytic, thus ΔKu is also analytic, so ΔKu ≡ 0 on Rn − {0}, which 

means that Ku is harmonic. 

4



