Lecture 6

Weak maximum principle for linear elliptic operators

Now we consider the more general differential operators
L = a"(z)Dyj + b'(2)D; + c(=),
i.e., for any C? function w,

0%u(x) ou(x)

Lu = a"(x) —— b (2)—
0zt 0x’ Oz

+ c(z)u(z),
where a¥ b?, ¢ are bounded functions.

Definition 1 Suppose L is like above.

1. If IN(x) > 0 s.t. (a¥(x)) > A(x)I, then L is elliptic.

2. If IN(x) > Ao > 0 s.t. (a¥(z)) > M(z)I, then L is strictly elliptic.

3. If Joo > A > N\ > 0 s.t. AT > (a¥(z)) > M\ol, then L is uniformly elliptic.

Theorem 1 Suppose L is elliptic in bounded domain Q, u € C*(Q) N C(Q), Lu >
0,c(x) =0 in Q, then

sup v = sup u.
Q o0

If Lu < 0 instead, then
inf 4 = inf u.
Q o0

Proof: Assume zg € Q s.t. u(xg) = supqu, then (D;ju(xg)) < 0, Dyu(xg) = 0, so we
get N
Lu(zo) = a” Djju(xg) < 0.

If Lu > 0, then we have already get a contradiction. So the theorem is true for this

simple case.

Now we turn to the general case Lu > 0. Without loss of generality, we can assume
all > 0. Let v = €™ for some constant r, then

1 1 . .
vi =1 61, vy =12 8y,  and vy = 0,Vi # j.

Thus
1 1 1
Lv = a''r%e™ +blre’™ = (a11r2 + blr)em .

Since a'! > 0, we can choose r > 0 large enough such that Lv > 0, then for any € > 0,
we have
L(u+ ev) = Lu + eLv > 0.



So by the result of the simple case, we get

sup(u + ev) = sup(u + €v).
Q o0

Now we let € > 0, we get

Sup 4 = sup u.
Q oN

For the second part, the proof is just the same. |
To generalize the theorem, we define
ut = max{u,0}, v =u—u", QF ={zu(z)>0}.

Theorem 2 With the same assumption as above, and suppose Lu > 0, ¢ < 0, then

supu < sup ut.
Q o0

If Lu < 0,¢(x) <0 instead, then
infu>infu".
Q oN

In particular, if Lu = 0,c(x) <0, then

sup |u| = sup |ul.
Q o0

Proof: Let Lou = aijDiju + b'D;u, then in QF we have Lou > —c(z)u > 0. Thus by
the previous theorem, we have

sup 4 = sup u.
ot o0t

So

supu = suput =supu’ =supu =supu < supu’. ]
Q Q Qt+ Qt ot onN

Uniqueness of solutions to Dirichlet problem

Corollary 1 (Uniqueness) Suppose L elliptic, c(z) < 0, u,v € C*(Q)NC(Q), and

{Lu:Lv , in  Q,

u="v , on 0%,

then u = v in §2.
(Comparison theorem)If

Lu>Lv , in £,
u<v , on 08,

then u < v in Q.



A Priori C° estimates for solutions to Lu = f, ¢ <0.

Theorem 3 Suppose L is strictly elliptic, c(x) < 0, u € C%(Q) N C%Q), where Q is
bounded domain.
If Lu > f, then there exists constant C' = C(\, ) s.t.

supu < suput + Csup|f~|.
Q oN Q

If Lu = f, then
sup |u| < sup |u| + Csup | f].
Q o0 Q

Proof: Let Ly = aijDij + b'D;, then
Loem1 = (@M +blr)>0>1
for r large enough. Let

v=suput + (e"? — eml)

o0
where d > 2! for Vz € Q. Then

sup |f~,
Q

L’U :LOU+CU S LOU S _6sup|f_‘ S _Sup|f_|'
Q Q

Lv—u) < =sup|f7|-f=<0, in A
Q

But v > u on 99 by definition. Thus the last corollary tells us v > « in €Q, i.e.

supu < supu’ + Csup|f~|.
Q oN Q

If Lu = f, replacing v by —u and f by —f, we thus get the second result. |

Strong maximum principle

First we introduce the Hopf’s lemma.

Lemma 1 Suppose L is uniformly elliptic, c =0, Lu > 0 in Q.
Let zp € 0 be such that (i) u is continuous at xy;

(i1) u(xzo) > u(z), Vrell;

(ii3) 0N satisfies an interior sphere condition at x.
Then the outer normal derivative of u at xq, if exists, satisfies

0
af,[:(l'o) > 0.

If ¢(z) <0, then it holds for u(zg) > 0.
If u(xzo) = 0, then it holds for any c(z).



Proof: Let B(y, R) be the interior sphere, i.e. B(y, R) C Q and zp € 0B(y, R). Define

v(z) = e o — ¢~ where r = |z — y|. Then

Lv = a" Djjv + b'(—a(z" — yi)e_MQ)
_ aij(_aéije—t)wZ + a2($i . yi)e—ar2) + bi(_a(xi . yie—a7‘2))
~(0’a (@~ y) (@ — ) - aa' — bl (@' — y))

> e_o‘rz(az)\OTQ —al —asuplb|-r)

=€

Take A = Br(y) \ By(y), 0 < p < R, then for a large enough, Lv > 0 in A.

The assumption (ii) tells us u(x) < u(xp) in €, in particular this holds on 0B(y, p),
so there is some § > 0 s.t. u(x) —u(xg) < —0 < 0 on 9B,(y).

Choose € > 0 s.t. u(z) —u(xg) + ev < 0 on 0B,(y).
Since v = 0 on dBg(y), we automatically have u(z) — u(xg) + ev < 0 on OBR(y).

Also we have known
L(u — u(zg) + ev) = Lu+ eLv > 0,
thus by the comparison theorem, we get

u—u(zg) +ev <0, in A

So
ou Ov
— > —e— =ev )
5 (x0) > €5 (xg) =ev'(R) >0
For u(zo) = 0, just look at L — ¢(z). [ |

Now we give the Strong Maximum Principle.

Theorem 4 Suppose L is uniformly elliptic, c =0, Lu >0 in Q, u € C*(Q) N C(Q).
If u achieves its maximum in the interior, then u is constant.

If Lu < 0 and u achieves its minimum in the interior, then u is constant.

If ¢ <0, then u cannot achieve a non-negative maximum in the interior unless u is
constant.

Proof: Assume u is not constant, and achieves maximum M at xzq in the interior.
Let Q= = {z € Qlu(z) < M}. By definition we know Q= C , and Q™ NQ # &
since v is not constant.
Let 1 € Q= be s.t. 1 is closer to Q2 than 9, and B(x1, R) be the largest ball in
Q™ centered at z1. Then u(y) = M for some y € 0B(z1, R).

By Hopf’s lemma, we get
ou () >0
EA '

This is a contradiction, since y is a maximum of v and so Du(y) should be 0. [



