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Lecture 6 

Weak maximum principle for linear elliptic operators 

Now we consider the more general differential operators 

L = aij (x)Dij + bi(x)Di + c(x), 

i.e., for any C2 function u, 

Lu = aij (x) 
∂2u(x)

+ bi(x) 
∂u(x)

+ c(x)u(x),
∂xi∂xj ∂xi 

where aij , bi, c are bounded functions. 

Definition 1 Suppose L is like above. 
1. If ∃λ(x) > 0 s.t. (aij (x)) > λ(x)I, then L is elliptic. 
2. If ∃λ(x) > λ0 > 0 s.t. (aij (x)) > λ(x)I, then L is strictly elliptic. 
3. If ∃∞ > Λ > λ0 > 0 s.t. ΛI > (aij (x)) > λ0I, then L is uniformly elliptic. 

Theorem 1 Suppose L is elliptic in bounded domain Ω, u ∈ C2(Ω) ∩ C0(Ω), Lu ≥
0, c(x) ≡ 0 in Ω, then 

sup u = sup u. 
Ω ∂Ω 

If Lu ≤ 0 instead, then 
inf u = inf u. 
Ω ∂Ω 

Proof: Assume x0 ∈ Ω s.t. u(x0) = supΩ u, then (Dij u(x0)) ≤ 0, Diu(x0) = 0, so we 
get 

Lu(x0) = aij Dij u(x0) ≤ 0. 

If Lu > 0, then we have already get a contradiction. So the theorem is true for this 
simple case. 

Now we turn to the general case Lu ≥ 0. Without loss of generality, we can assume 
rxa11 > 0. Let v = e

1 
for some constant r, then 

1 rxvi = re rx δ1i, vii = r 2 e 
1 
δ1i, and vij = 0, ∀i = j. 

Thus 
2 rx rx1 11 rxLv = a 11 r e 

1 
+ b1 re = (a r 2 + b1 r)e 

1 
. 

Since a11 > 0, we can choose r > 0 large enough such that Lv > 0, then for any � > 0, 
we have 

L(u + �v) = Lu + �Lv > 0. 
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So by the result of the simple case, we get 

sup(u + �v) = sup(u + �v). 
Ω ∂Ω 

Now we let � > 0, we get 
sup u = sup u. 
Ω ∂Ω 

For the second part, the proof is just the same. � 

To generalize the theorem, we define 
+u+ = max{u, 0}, u− = u − u , Ω+ = x u(x) > 0}.{ |

Theorem 2 With the same assumption as above, and suppose Lu ≥ 0, c ≤ 0, then 

sup u ≤ sup u + . 
Ω ∂Ω 

If Lu ≤ 0, c(x) ≤ 0 instead, then 

inf u ≥ inf u−. 
Ω ∂Ω 

In particular, if Lu = 0, c(x) ≤ 0 , then 

sup |u| = sup u .| |
Ω ∂Ω 

Proof: Let L0u = aij Dij u + biDiu, then in Ω+ we have L0u ≥ −c(x)u ≥ 0. Thus by 
the previous theorem, we have 

sup u = sup u. 
Ω+ ∂Ω+ 

So 
+sup u = sup u + = sup u = sup u = sup u ≤ sup u + . � 

Ω Ω Ω+ Ω+ ∂Ω+ ∂Ω 

Uniqueness of solutions to Dirichlet problem 

Corollary 1 (Uniqueness) Suppose L elliptic, c(x) ≤ 0, u, v ∈ C2(Ω) ∩ C0(Ω), and 

Lu = Lv , in Ω, 
u = v , on ∂Ω, 

then u = v in Ω. 
(Comparison theorem)If 

Lu ≥ Lv , in Ω, 
u ≤ v , on ∂Ω, 

then u ≤ v in Ω. 
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A Priori C0 estimates for solutions to Lu = f , c ≤ 0. 

Theorem 3 Suppose L is strictly elliptic, c(x) ≤ 0, u ∈ C2(Ω) ∩ C0(Ω), where Ω is

bounded domain.

If Lu ≥ f , then there exists constant C = C(λ, Ω) s.t.


sup u ≤ sup u + + C sup f − . 
Ω ∂Ω Ω 

| |

If Lu = f , then 
sup u ≤ sup u + C sup f .| | | | | |
Ω ∂Ω Ω 

Proof: Let L0 = aij Dij + biDi, then 

rx1 11L0e = (a 2 + b1 r) > δ > 1r 

for r large enough. Let 
rd rxv = sup u + + (e − e 

1 
) sup |f − , 

∂Ω Ω 
|

where d > x1 for ∀x ∈ Ω. Then 

Lv = L0v + cv ≤ L0v ≤ −δ sup f − ≤ − sup f − . 
Ω 
| |

Ω 
| |

∴ L(v − u) ≤ − sup f − − f ≤ 0, in Ω. 
Ω 
| |

But v ≥ u on ∂Ω by definition. Thus the last corollary tells us v ≥ u in Ω, i.e. 

sup u ≤ sup u + + C sup f − . 
Ω ∂Ω Ω 

| |

If Lu = f , replacing u by −u and f by −f , we thus get the second result. � 

Strong maximum principle 

First we introduce the Hopf’s lemma. 

Lemma 1 Suppose L is uniformly elliptic, c = 0, Lu ≥ 0 in Ω. 
Let x0 ∈ ∂Ω be such that (i) u is continuous at x0; 

(ii) u(x0) > u(x), ∀x ∈ Ω; 
(iii) ∂Ω satisfies an interior sphere condition at x0. 

Then the outer normal derivative of u at x0, if exists, satisfies 

∂u 
(x0) > 0. 

∂ν 

If c(x) ≤ 0, then it holds for u(x0) ≥ 0. 
If u(x0) = 0, then it holds for any c(x). 
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Proof: Let B(y, R) be the interior sphere, i.e. B(y, R) ⊂ Ω and x0 ∈ ∂B(y, R). Define 
v(x) = e−αr2 − e−αR2 

, where r = x − y . Then| |

Lv = aij Dij v + bi(−α(x i − y i)e−αr2 
)


i
= aij (−αδij e−αr2 
+ α2(x i − y i)e−αr2 

) + bi(−α(x − y i e−αr2 
)) 

i= e−αr2 
(α2 aij (x i − y i)(xj − yj ) − αa ii − αbi(x − y i)) 

2> e−αr2 
(α2λ0r − αΛ − α sup b r)| | ·

Take A = BR(y) \Bρ(y), 0 < ρ < R, then for α large enough, Lv > 0 in A. 
The assumption (ii) tells us u(x) < u(x0) in Ω, in particular this holds on ∂B(y, ρ), 

so there is some δ > 0 s.t. u(x) − u(x0) < −δ < 0 on ∂Bρ(y). 
Choose � > 0 s.t. u(x) − u(x0) + �v ≤ 0 on ∂Bρ(y). 
Since v = 0 on ∂BR(y), we automatically have u(x) − u(x0) + �v ≤ 0 on ∂BR(y). 
Also we have known 

L(u − u(x0) + �v) = Lu + �Lv > 0, 

thus by the comparison theorem, we get 

u − u(x0) + �v ≤ 0, in A. 

So 
∂u ∂v 

(x0) = �v�(R) > 0. 
∂ν 

(x0) ≥ −�
∂ν


For u(x0) = 0, just look at L − c(x). �


Now we give the Strong Maximum Principle. 

Theorem 4 Suppose L is uniformly elliptic, c = 0, Lu ≥ 0 in Ω, u ∈ C2(Ω) ∩ C0(Ω). 
If u achieves its maximum in the interior, then u is constant. 

If Lu ≤ 0 and u achieves its minimum in the interior, then u is constant. 
If c ≤ 0, then u cannot achieve a non­negative maximum in the interior unless u is 

constant. 

Proof: Assume u is not constant, and achieves maximum M at x0 in the interior. 
Let Ω− = {x ∈ Ω u(x) < M}. By definition we know Ω− ⊂ Ω, and ∂Ω− ∩ Ω = ∅ 

since u is not constant. 
Let x1 ∈ Ω− be s.t. x1 is closer to ∂Ω− than ∂Ω, and B(x1, R) be the largest ball in 

Ω− centered at x1. Then u(y) = M for some y ∈ ∂B(x1, R). 
By Hopf’s lemma, we get 

∂u 
(y) > 0. 

∂ν 
This is a contradiction, since y is a maximum of u and so Du(y) should be 0. � 
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