Lecture 7

Quasilinear equations (minimal surface equation)

For any f : R®™ — R, the graph of f is {(z, f(z))} C R**L.

The tangents of the graph is (0,---,1,0,---,0, f;), where 1 is on the i*" slot. So the
normal vector is (—V f, 1), and the unit normal vector is n = W(—Vﬁ 1).

The second fundamental form is a map [[(z) : TG, — TGy, [[(x)(e;) = Ve, 7.

(Since <n,n >=1=Vx <n,n>=0=—2< Vxn,n>=0= Vxn € TG.)
We compute:
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In general, the operator L = a¥(z,u, Du)D;ju+ - -- is called quasi-linear.

Now we check that the surface is “minimal”, i.e. has minimal area.
Denote T': (z!,--- ,2") — (2!,--- 2", f(z',--- ,2™)). Since
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we get
T* g1 (Og, 0)) = grni1 (Th0g, Tu0)) = (AT A) g = (T + VIV = 0 + fufie

The matrix I + V£V fT can be diagonized to diag{1 + |V f|?,1,--- ,1}, so the area of
graph of f is

A(f) = /n \/det(gi)da = /Rn \/det(I+VfoT)d:z = /Rn(l + |V f*)2da.
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Thus Minimal <= div(——t—) =
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Fully nonlinear equations (Monge-Ampére equation).

Suppose 2 C R™. Now we consider the differential equations like
Flu] = F(x,u, Du, D*u) = 0,

where F': @ xRxR"x S(n) — R, and S(n) is the set of all symmetric n x n matrices.

Definition 1 F is elliptic in some subset I C Q x R x R™ x S(n) if ( gFJ )(v) > 0,
Vy = (x,z,p,r) €T.

If AA, X > 0 such that AT > (%) > A for all v € T, then we say F uniformly
elliptic.

If u € C?(Q), and F is elliptic on range of x — (x,u, Du, D*u), then we say F is

elliptic with respect to u.

Example: Monge-Ampere Equation

Flu] = detD?u — f(x) = 0.
(Note that Au = trace(D?u)).



We do some computation:
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Fij(r) = 88,,1; = (i, j)—cofactor of r,
(i = s i 1),
Fyi(r) =det r- (r—1)4.
So F' is elliptic when r is positive definite, and thus F[u] is elliptic if u is strictly
convex.

More generally, F[u] = det D?*u — f(x,u, Du) = 0 is elliptic for strictly convex
functions.

Given F[u], define the linearization of F' at a function u to be
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So our definition of elliptic at u < linearization of F' at u is an elliptic operator.

Example: Linearization of Monge-Ampere:
Flu] = detD?*u — f(z).

F'l(h) = F,

le
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Let )\; be eigenvalues of D?u, then eigenvalues of F,,; are
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Certainly F' is not uniformly elliptic.

Elementary Symmetric Function: oj(D?u) = Sum of principal k x k matrix.
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Now for Flu] = detD?*u — f(x), F'[u](h) = F,

Tij

(D?u)D;;h, when is it elliptic?

Theorem 1 If oy > 0,041 > 0,---,01 >0, then F,; > 0.



Iy, = {componentofoy, > 0}.

Example: n = 3.

det = A9 )3,
g2 = M2 + A3 + A2As,
A=A+ A+ A3

I's = {positive cone}.
For I'y, 09 = 0 is a cone, so {0 > 0} has two components, 'y = {3 > 0}N {0y > 0},
e.v. of Frij on (g + A3, A1 + A3, A1 + A2),
A2 + A1A3 + AaA3 > 0,
A+ A+ A3 > 0.

Claim: If A1 > Ay > A3, then Ay > 0.
In fact, by A1 A2 + AiAs + AaA3 > 0, we get

A A2+ A3) + A3 >0, d.e. A(A2+ A3) > —Aa)s.

If Ao < 0,then Ao + A3 < 0, thus we get
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which is a contradiction.
So we have A, Ao > 0, thus Ay + Ao > 0.

If A\ + A3 <0, then A\; A3 < 0, which contradicts with Aa(A1 + A3) + A1 A3 > 0. Thus
A1+ A3 > 0.

Also from A1(A2 + A3) + AaA3 > 0, we can get Ag + A3 > 0 by the same way.

Theorem 2 o5(D?u) = f(x) is elliptic if f(x) >0 and Au > 0.
or(D?u) = f(x) is elliptic if f(x) > 0, D%u € I‘;, and o, > 0,01 >0,--- ;o1 > 0.

Comparison principle for nonlinear equations.

First we give a maximum principle.



Theorem 3 Let u,v € C°(Q) N C?(Q) satisfy Flu] > F[v] in Q, u < v on 99, and
(i) F is elliptic along the straight line path tu + (1 — t)v,

(ii) F, < 0.

Then u < wv in .
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but v < v on 0. Since elliptic on path, we get ¥ > 0 and ¢ <0, thus u < v in Q. B

Corollary 1 Suppose u,v € C°(Q)NC?(Q) satisfy Fu] = F[v] in Q, and (i), (ii) hold,
with u =v on 0Q). Then uw = v in 2.

Example: Monge-Ampere.

detD?*u = f(x) > 0, detD?*v = f(z), with u,v strictly convex, tu + (1 — t)v is also
strictly convex. So (i) works. For (ii), there is no z dependence. So u = v on 02
implies u = v on €.

Similarly for oy.

Result also works for Minimal surface.

Theorem 4 Suppose u € C?(Q),Flu] = 0, and F elliptic with respect to u. Also
suppose F is C®, (e.g. detD*u = f(x) >0 € C®). Then u € C>().

Proof:Use difference quotients. Fix coordinate vector ej.
Let v(x) = u(x + hey),h € R, and uy = tv + (1 — t)u,0 < t < 1.
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0
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So
Ap'u e WP Np = u € W3P,
(We will prove this later.)
By Sobolev embedding, u € C%?.
Then f € CY = Apu € C*Y = u € C3°
= fe O = Apu € C3* = u e C*°.

Go on with this procedure, we get C* at last.



