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Last time, we discussed a duality between chains and antichains of a poset: the Young diagrams formed were transposes 

of each other. Prior to that, we had discussed the Schensted correspondence: every permutation w ∈ Sn can be sent to 

pairs (P, Q) SYTs of shape λ, where the rows and columns tell you about increasing and decreasing subsequences. 

Is there a relationship between these two ideas? 

Given any w ∈ Sn, we can construct a poset P = {1, 2, · · · , n}, <p}, where our relation is 

i <p j ⇐⇒ i < j and wi < wj . 

Here the < on the right hand sides are standard “less than.” So i ≤p j if we don’t have an inversion between (i , j). 

Example 1 

Let’s take w = (3, 5, 2, 4, 7, 1, 6). The Schensted correspondence gives shape 

The Hasse diagram for the associated poset then has 1 <p 6, 3 <p 5 <p 6, 4 <p 6, 5 <p 7, 3 <p 4 <p 7, 2 <p 7. Notice 

that increasing subsequences correspond to chains, and decreasing subsequences correspond to antichains! 

So Greene’s construction gives chain “numbers” of (3, 6−3, 7−1) = (3, 3, 1), and antichain numbers of (3, 5−3, 7−5) = 

(3, 2, 2), as we expect. 

Remember that we used the Schensted correspondence to prove X 
(f λ)2 = n!, 

λ:|λ|=n 

where f λ is the number of Standard Young Tableaux of a shape λ. Today, we’re going to do a simpler proof that is more 

general! 

Let’s look at Young’s lattice Y, which is isomorphic to J(Z≥0 × Z≥0), the lattice of order ideals in a quadrant. Denote 

Yn to be the set of all Young diagrams with exactly n boxes: it’s the nth level. 

Let p(n) = |Yn|, which is the number of ways we can write n as a sum (disregarding order), these are called the partition 
numbers. 

1 



Proposition 2 

A Standard Young Tableau of shape λ is a path or saturated chain in the Hasse diagram of Y from the empty shape 

to λ. 

This is because we add on a square each time we go up: place a 1 in the first box you add, then place a 2 in the next 

one, and so on! 

Meanwhile, in the Frobenius-Young identity and in the Schensted correspondence, we have pairs of Young tableaux, so 

we have two paths from the empty Young diagram to λ. So let’s reverse the second path: let (P, Q) be a path in Y 

from the empty shape back to itself with n up steps, followed by n down steps. We just want to count how many 

ways we can do this! 

Let’s formalize this algebraically. Let R[Yn] be the linear space of formal linear combinations of Young diagrams with n 

boxes: for example, an element could be 

+ e · − π · . 

So R[Yn] is isomorphic to Rp(n), and M 
R[Y] = R[Yn]. 

n≥0 

Define up and down operators: the up operator sends λ to X 
λ → µ. 

µ:λlµ 

In other words, µ has to be λ with a single box added. Similarly, the down operator sends µ to X 
µ → λ. 

λ:λlµ 

For example, 

U 

1 CCCCCA 

0 BBBBB@ = + 

and 1 CCCCCA 

0 BBBBB@ = + . D 

So the number of (P, Q) of shape λ is the coeÿcient of ∅ (the bottom element in the poset, which is not zero!) in 

DnUn∅. We’re trying to show that this is n!. 

Proposition 3 (Key identity) 
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We have 

[D, U] = DU − UD = I, 

where I is the identity operator. 

Why is this true? Consider the coeÿcient of µ in (DU − UD)λ. If λ 6= µ, and we want to get from λ to µ, we have to 

add a box a and remove a box r , and these can be done in either order! (This is because a 6= r , or else λ would be equal 

to µ.) 

Meanwhile, if λ = µ, so we add a box and remove that same box, or we can remove a box and add that same box back. 

The number of boxes we can remove is the number of inner corners, but the number of boxes we can add is the number of 

outer corners! This is always a di˙erence of 1, so we get a coeÿcient of 1 as desired. 

Definition 4 (Stanley) 

A di˙erential poset is a ranked (infinite) poset with a unique minimally ranked element 0̂ such that we can define up 

and down operators in the same way as we have done for Y: 

[U, D] = I. 

Combinatorially, this means that for any x, y not equal to each other on the same level, there are a ways to go up and 

then down from x to y , and also a ways to go down and then up from x to y . Another way is to say that 

#{u : u m x&u m y} = #{v : v l x&v l y} 

On the other hand, for any individual element x : 

#{u : u m x} = 1 +#{v : v l x} 

Fact 5 

These are called di˙erential posets, because we can think of u as multiplying a polynomial f (x) by x , and d as taking 

its derivative. Then 

(du − ud)f (x) = f (x) =⇒ (xf (x))0 − xf 0(x), 

which is true. 

It turns out that this alone is enough to prove the Frobenius-Young identity! 

Theorem 6 (Stanley) 

For any di˙erential poset, 

DnUn0̂ = n!0̂. 

Proof. First, we use the following lemma, which can be proved by induction: 

Lemma 7 

DUn = nUn−1 + UnD. 

So now, 

DnUn(0̂) = Dn−1(DUn)0̂ 
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Applying the lemma, this is equal to � � 
Dn−1 nUn−1 + UnD 0̂ 

and now UnD0̂ gives us nothing, since D0̂ = 0. So we just have 

Dn−1nUn−10̂ = nDn−1Un−10̂ = n(n − 1)!0̂ 

by induction! 

One more question: Is this the only di˙erential poset, or are there others? We will see! 
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