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Structure of set addition

7.1 Structure of sets with small doubling

One of the main goals of additive combinatorics can be roughly de-
scribed as understanding the behavior of sets under addition. In
order to discuss this more precisely, we will begin with a few defini-
tions.

Definition 7.1. Let A and B be finite subsets of an abelian group.
Their sumset is defined as A + B = {a + b|a ∈ A, b ∈ B}. We can fur-
ther define A− B = {a− b|a ∈ A, b ∈ B} and kA = A + A + · · ·+ A︸ ︷︷ ︸

k times
where k is a positive integer. Note that this is different from mul-
tiplying every element in A by k, which we denote the dilation
k · A = {kA|a ∈ A}.

Given a finite set of integers A, we want to understand how its
size changes under these operations, giving rise to the following
natural question:

Question 7.2. How large or small can |A + A| be for a given value of
|A| where A ⊂ Z?

It turns out that this is not a hard question. In Z, we have precise
bounds on the size of the sumset given the size of the set.

Proposition 7.3. If A is a finite subset of Z, then

2|A| − 1 ≤ |A + A| ≤
(
|A|+ 1

2

)
.

Proof. The right inequality follows from the fact that there are only
(|A|+1

2 ) unordered pairs of elements of A.
If the elements of A are a1 < a2 < · · · < a|A|, then note that

a1 + a1 < a1 + a2 < · · · < a1 + a|A| < a2 + a|A| < · · · < a|A| + a|A|
is an increasing sequence of 2|A| − 1 elements of |A + A|, so the left
inequality follows.
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142 structure of sets with small doubling

The upper bound is tight when there are no nontrivial collisions in
A + A, that is, there are no nontrivial solutions to a1 + a2 = a′1 + a′2
for a1, a2, a′1, a′2 ∈ A.

Example 7.4. If A = {1, a, a2, . . . , an−1} ⊂ Z for a > 1, then |A + A| =
(n+1

2 ).

The lower bound is tight when A is an arithmetic progression.
Even if we instead consider arbitrary abelian groups, the problem is
similarly easy. In a general abelian group G, we only have the trivial
inequality |A + A| ≥ |A|, and equality holds if A is a coset of some
finite subgroup of G. The reason we have a stronger bound in Z is
that there are no nontrivial finite subgroups of Z.

A more interesting question that we can ask is what can we say
about sets where |A + A| is small. More precisely:

Definition 7.5. The doubling constant of a finite subset A of an
abelian group is the ratio |A + A|/|A|.

Question 7.6. What is the structure of a set with bounded doubling
constant (e.g. |A + A| ≤ 100|A|)?

We’ve already seen an example of such a set in Z, namely arith-
metic progressions.

Example 7.7. If A ⊂ Z is a finite arithmetic progression, |A + A| =
2|A| − 1 ≤ 2|A|, so it has doubling constant at most 2.

Moreover if we delete some elements of an arithmetic progression,
it should still have small doubling. In fact, if we delete even most
of the elements of an arithmetic progression but leave a constant
fraction of the progression remaining, we will have small doubling.

Example 7.8. If B is a finite arithmetic progression and A ⊆ B has
|A| ≥ C|B|, then |A + A| ≤ |B + B| ≤ 2|B| ≤ 2C−1|A|, so A has
doubling constant at most 2/C.

A more substantial generalization of this is a d-dimensional arith-
metic progression.

Figure 7.1: Picture of a 2-dimensional
arithmetic progression as a projection of
a lattice in Z2 into Z.

Definition 7.9. A generalized arithmetic progression (GAP) of di-
mension d is a set of the form

{x0 + `1x1 + · · ·+ `dxd | 0 ≤ `1 < Ld, . . . , 0 ≤ `d < Ld, `1, . . . , `d ∈ Z}

where x0, x1, . . . , xd ∈ Z and L1, . . . , Ld ∈ N. The size of a GAP is
defined as L1L2 · · · Ld. If there are no nontrivial coincidences among
the elements of the GAP, it is called proper.

Remark 7.10. Note that if a GAP is not proper, the size is not equal to
the number of distinct elements, i.e. its cardinality.
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It is not too hard to see that a proper GAP of dimension d has
doubling constant at most 2d. Furthermore, we have the same prop-
erty that deleting a constant fraction of the elements of a GAP will
still leave a set of small doubling constant. We have enumerated sev-
eral examples of sets of small doubling constant, so it is natural to
ask whether we can give an exact classification of such sets. We have
an “inverse problem” to Question 7.6, asking whether every set with
bounded doubling constant must be one of these examples.

This is not such an easy problem. Fortunately, a central result in
additive combinatorics gives us a positive answer to this question.

Theorem 7.11 (Freiman’s theorem). If A ⊂ Z is a finite set and |A + Freiman (1973)

A| ≤ K|A|, then A is contained in a GAP of dimension at most d(K) and
size at most f (K)|A|, where d(K) and f (K) are constants depending only
on K.

Remark 7.12. The conclusion of the theorem can be made to force the
GAP to be proper, at the cost of increasing d(K) and f (K), using the
fact below, whose proof we omit but can be found as Theorem 3.40 in
the textbook by Tao and Vu. Tao and Vu (2006)

Theorem 7.13. If P is a GAP of dimension d, then P is contained in a
proper GAP Q of dimension at most d and size at most dC0d3 |P| for some
absolute constant C0 > 0.

Freiman’s theorem gives us significant insight into the structure of
sets of small doubling. We will see the proof of Freiman’s theorem in
the course of this chapter. Its proof combines ideas from Fourier anal-
ysis, the geometry of numbers, and classical additive combinatorics.

Freiman’s original proof was difficult to read and did not origi-
nally get the recognition it deserved. Later on Ruzsa found a simpler
proof, whose presentation we will mostly folllow. The theorem is Ruzsa (1994)

sometimes called the Freiman–Ruzsa theorem. Freiman’s theorem
was brought into prominence as it and its ideas play central roles in
Gowers’ new proof of Szemerédi’s theorem.

If we consider again Example 7.4, then we have K = |A|+1
2 =

Θ(|A|). There isn’t really a good way to embed this into a GAP. If we
let the elements of A be a1 < a2 < · · · < a|A|, we can see that it is
contained in a GAP of dimension |A| − 1 and size 2|A|−1, by simply
letting x0 = a1, xi = ai+1 − a1, and Li = 2 for 1 ≤ i ≤ |A| − 1.
Then this indicates that the best result we can hope for is showing
d(K) = O(K) and f (K) = 2O(K). This problem is still open.

Open problem 7.14. Is Theorem 7.11 true with d(K) = O(K) and
f (K) = 2O(K)?

The best known result is due to Sanders, who also has the best
known bound for Roth’s Theorem (Theorem 6.12).

https://mathscinet.ams.org/mathscinet-getitem?mr=0360496
https://mathscinet.ams.org/mathscinet-getitem?mr=2289012
https://mathscinet.ams.org/mathscinet-getitem?mr=1281447
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Theorem 7.15 (Sanders). Theorem 7.11 is true with d(K) = K(log K)O(1), Sanders (2012)
In the asymptotic notation we assume
that K is sufficiently large, say K ≥ 3, so
that log K is not too small.

f (K) = eK(log K)O(1)
.

Similar to how we discussed Roth’s theorem, we will begin by
analyzing a finite field model of the problem. In Fn

2 , if |A + A| ≤
K|A|, then what would A look like? If A is a subspace, then it has
doubling constant 1. A natural analogue of our inverse problem is to
ask if all such A are contained in a subspace that is not much larger
than A.

Theorem 7.16 (Fn
2 -analogue of Freiman). If A ⊂ Fn

2 has |A + A| ≤
K|A|, then A is contained in a subspace of cardinality at most f (K)|A|,
where f (K) is a constant depending only on K.

Remark 7.17. If we let A be a linearly independent set (i.e. a basis),
then K = Θ(|A|) and the smallest subspace containing A will have
cardinality 2|A|. Thus f (K) must be exponential in K at least. We’ll
prove Theorem 7.16 in Section 7.3.

7.2 Plünnecke–Ruzsa inequality

Before we can prove Freiman’s theorem (Theorem 7.11) or its finite
field version (Theorem 7.16), we will need a few tools. We begin with
one of many results named after Ruzsa.

Theorem 7.18 (Ruzsa triangle inequality). If A, B, C are finite subsets of
an abelian group, then

|A||B− C| ≤ |A− B||A− C|.

Proof. We will construct an injection

φ : A× (B− C) ↪→ (A− B)× (A− C).

For each d ∈ B − C, we can choose b(d) ∈ B, c(d) ∈ C such that
d = b(d) − c(d). Then define φ(a, d) = (a − b(d), a − c(d)). This is
injective because if φ(a, d) = (x, y), then we can recover (a, d) from
(x, y) because d = y− x and a = x + b(y− x).

Remark 7.19. By replacing B with −B and/or C with −C, we can
change some of the plus signs into minus signs in this inequality. Un-
fortunately, this trick cannot be used to prove the similar inequality
|A||B + C| ≤ |A + B||A + C|. Nevertheless, we will soon see that this
inequality is still true.

Remark 7.20. Where’s the triangle? If we define ρ(A, B) = log |A−B|√
|A||B|

,

then Theorem 7.18 states that ρ(B, C) ≤ ρ(A, B) + ρ(A, C). This
looks like the triangle inequality, but unfortunately ρ is not actually a
metric because ρ(A, A) 6= 0 in general. If we restrict to only looking
at subgroups, however, then ρ is a bona fide metric.

https://mathscinet.ams.org/mathscinet-getitem?mr=2994508
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The way that we use Theorem 7.18 is to control further doublings
of a set of small doubling. Its usefulness is demonstrated by the
following example.

Example 7.21. Suppose A is a finite subset of an abelian group with
|2A− 2A| ≤ K|A|. If we set B = C = 2A− A in Theorem 7.18, then
we get

|3A− 3A| ≤ |2A− 2A|2
|A| ≤ K2|A|.

We can repeat this with B = C = 3A− 2A to get

|5A− 5A| ≤ |3A− 3A|2
|A| ≤ K4|A|

and so on, so for all m we have that |mA − mA| is bounded by a
constant multiple of |A|.

The condition |2A − 2A| ≤ K|A| is stronger than the condition
|A + A| ≤ K|A|. If we want to bound iterated doublings given just
the condition |A + A| ≤ K|A|, we need the following theorem.

Theorem 7.22 (Plünnecke–Ruzsa inequality). If A is a finite subset of Plünnecke (1970)
Ruzsa (1989)
We think of polynomial changes in K as
essentially irrelevant, so this theorem
just says that if a set has small doubling
then any iteration of the set is also
small.

an abelian group and |A + A| ≤ K|A|, then |mA− nA| ≤ Km+n|A|.

Remark 7.23. Plünnecke’s original proof of the theorem did not re-
ceive much attention. Ruzsa later gave a simpler proof of Plünnecke’s
theorem. Their proofs involved the study of an object called a com-
mutative layered graph, and involved Menger’s theorem for flows
and the tensor power trick. Recently Petridis gave a significantly sim- Petridis (2012)

pler proof which uses some of the earlier ideas, which we will show
here.

In proving this theorem, we will generalize to the following theo-
rem.

Set B = A to recover Theorem 7.22

Theorem 7.24. If A and B are finite subsets of an abelian group and |A +

B| ≤ K|A|, then |mB− nB| ≤ Km+n|A|.

Petridis’ proof relies on the following key lemma.

Lemma 7.25. Suppose A and B are finite subsets of an abelian group. If
X ⊆ A is a nonempty subset which minimizes |X+B|

|X| , and K′ = |X+B|
|X| , then

|X + B + C| ≤ K′|X + C| for all finite sets C.

Remark 7.26. We can think of this lemma in terms of a bipartite
graph. If we consider the bipartite graph on vertex set G1 t G2, where
G1, G2 are copies of the ambient abelian group G, with edges from g
to g+ b for any g ∈ G1, g+ b ∈ G2 where b ∈ B. Then if N(S) denotes
the neighborhood of a set of vertices S, then the lemma is considering

https://mathscinet.ams.org/mathscinet-getitem?mr=0266892
https://mathscinet.ams.org/mathscinet-getitem?mr=2314377
https://mathscinet.ams.org/mathscinet-getitem?mr=3063158
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the expansion ratio |N(A)|
|A| = |A+B|

|A| . The lemma states that if X is a set
whose expansion ratio K′ is less than or equal to the expansion ratio
of any of its subsets, then for any set C, X + C also has expansion
ratio at most K′.

G G

+BA

A
+

B

Figure 7.2: Bipartite graph where edges
correspond to addition by an element of
B.

Proof of Theorem 7.24 assuming Lemma 7.25. Assuming the key lemma,
let us prove the theorem. Let X be a nonempty subset of A minimiz-
ing |X+B|

|X| , and let K′ = |X+B|
|X| . Note that K′ ≤ K by minimality. Ap-

plying the lemma with C = rB where r ≥ 1, we have |X + (r + 1)B| ≤
K′|X + rB| ≤ K|X + rB|, so by induction |X + rB| ≤ Kr|X| for all
r ≥ 0. Applying Theorem 7.18 we have |mB− nB| ≤ |X+mB||X+nB|

|X| ≤
Km+n|X| ≤ Km+n|A|.

Proof of Lemma 7.25. We will proceed by induction on |C|. The base
case of |C| = 1 is clear because for any finite set S, S + C is a trans-
lation of S so |S + C| = |S|, thus |X + B + C| = |X + B| = K′|X| =
K′|X + C|.

For the inductive step, assume |C| > 1, let γ ∈ C and C′ = C\{γ}.
Then

X + B + C = (X + B + C′) ∪
(
(X + B + γ)\(Z + B + γ)

)
where

Z = {x ∈ X|x + B + γ ⊆ X + B + C′}.

Z ⊆ X so by minimality |Z + B| ≥ K′|Z|. We have

|X + B + C| ≤ |X + B + C′|+ |(X + B + γ)\(Z + B + γ)|
= |X + B + C′|+ |X + B| − |Z + B|
≤ K′|X + C′|+ K′|X| − K′|Z|
= K′(|X + C′|+ |X| − |Z|).

Now we want to understand the right hand side X + C. Note that

X + C = (X + C′) t
(
(X + γ)\(W + γ)

)
where

W = {x ∈ X|x + γ ∈ X + C′}.

In particular this is a disjoint union, so

|X + C| = |X + C′|+ |X| − |W|.

We also have W ⊆ Z because x + γ ∈ X + C′ implies x + B + γ ⊆
X + B + C′. Thus |W| ≤ |Z|, so

|X + C| ≥ |X + C′|+ |X| − |Z|,

which, when combined with the above inequality, completes the
induction.
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The key lemma also allows us to replace all the minus signs by
pluses in Theorem 7.18 as promised.

Corollary 7.27. If A, B, C are finite subsets of an abelian group, then
|A||B + C| ≤ |A + B||A + C|.

Proof. Let X ⊆ A be nonempty such that |X+B|
|X| is minimal. Let

K = |A+B|
|A| , K′ = |X+B|

|X| ≤ K. Then

|B + C| ≤ |X + B + C|
≤ K′|X + C| (Lemma 7.25)

≤ K′|A + C|
≤ K|A + C|

=
|A + B||A + C|

|A|

7.3 Freiman’s theorem over finite fields

We have one final lemma to establish before we can prove the finite
field analogue of Frieman’s theorem (Theorem 7.16).

Theorem 7.28 (Ruzsa covering lemma). Let X and B be subsets of an
abelian group. If |X + B| ≤ K |B|, then there exists a subset T ⊂ X with
|T| ≤ K such that X ⊂ T + B− B.

Ruzsa (1999)
In essence, this theorem says that if
it looks like X + B is coverable by K 
translates of the set B (based off only 
size data), then X is in fact coverable 
by K translates of the slightly larger set 
B − B.

Figure 7.3: A maximal packing of a 
region with half balls

Figure 7.4: The maximal packing leads
to a proper covering

The covering analogy provides the intuition for our proof. We
treat the covering sets as balls in a metric space. Now, if we have a
maximal packing of half-sized balls, expanding each to become a unit
ball should produce a covering of the region. Note that maximal here
means no more balls can be placed, not that the maximum possible
number of balls have been placed. We formalize this to prove the
Ruzsa covering lemma.

Proof. Let T ⊂ X be a maximal subset such that t + B is disjoint for
all t ∈ T. Therefore, |T| |B| = |T + B| ≤ |X + B| ≤ K |B|. So, |T| ≤ K.

Now, as T is maximal, for all x ∈ X there exists some t ∈ T such
that (t + B) ∩ (x + B) 6= ∅. In other words, there exists b, b′ ∈ B such
that t + b = x + b′. Hence x ∈ t + B− B for some t ∈ T. Since this
applies to all x ∈ X, we have X ⊂ T + B− B.

The Ruzsa covering lemma is our final tool required for the proof
of Freiman’s theorem over finite fields (Theorem 7.16). The finite
field model is simpler than working over Z, and so it can be done
with fewer tools compared to the original Freiman’s theorem (Theo-
rem 7.11).

https://mathscinet.ams.org/mathscinet-getitem?mr=1701207
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Now, we will prove Freiman’s theorem in groups with bounded
exponent. This setting is slightly more general than finite fields.

Definition 7.29. The exponent of an abelian group (written addi-
tively) is the smallest positive integer r (if it exists) such that rx = 0
for all elements x of the group.

We also use 〈A〉 to refer to the subgroup of a group G generated
by some subset A of G. By this notation, the exponent of a group
G is maxx∈G |〈x〉|. With that notation, we can finally prove Ruzsa’s
analogue of Freiman’s theorem over finite exponent abelian groups.

Theorem 7.30 (Ruzsa). Let A be a finite set in an abelian group with Ruzsa (1999)
This theorem is, in a sense, the converse
of our earlier observation that if A is a
large enough subset of some subgroup
H, then A has small doubling

exponent r < ∞. If |A + A| ≤ K |A|, then

|〈A〉| ≤ K2rK4 |A| .

Proof. By the Plünnecke–Ruzsa inequality (Theorem 7.22), we have

|A + (2A− A)| = |3A− A| ≤ K4 |A| .

Now, from the Ruzsa Covering Lemma (with X = 2A− A, B = A),
there exists some T ⊂ 2A− A with |T| ≤ K4 such that

2A− A ⊂ T + A− A.

Adding A to both sides, we have,

3A− A ⊂ T + 2A− A ⊂ 2T + A− A.

Iterating this, we have for any positive integer n,

(n + 1)A− A ⊂ nT + A− A ⊂ 〈T〉+ A− A.
Using the Ruzsa Covering Lemma
allowed us to control the expression
nA − A nicely. If we had only used
the Plünnecke–Ruzsa inequality (The-
orem 7.22), the argument would have
failed as the exponent of K would’ve
blown up.

For sufficiently large n, we have nA = 〈A〉. Thus we can say,

〈A〉 ⊂ 〈T〉+ A− A.

Due to the bounded exponent, we have,

|〈T〉| ≤ r|T| ≤ rK4
.

And by the Plünnecke–Ruzsa inequality (Theorem 7.22),

|A− A| ≤ K2 |A| .

Thus we have,
|〈A〉| ≤ rK4

K2 |A| .

https://mathscinet.ams.org/mathscinet-getitem?mr=1701207
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Example 7.31. In Fn
2 , if A is an independent subset (e.g. the basis

of some subgroup), then A has doubling constant K ≈ |A| /2, and
|〈A〉| = 2|A| ≈ 22K|A|. Thus the bound on |〈A〉| must be at least
exponential in K.

It has recently been determined very precisely the maximum Even-Zohar (2012)

possible value of |〈A〉| / |A| over all A ⊂ F∞
2 with |A + A| / |A| ≤ K.

Asymptotically, it is Θ
(
22K/K

)
.

For general r, we expect a similar phenomenon to happen. Ruzsa
conjectured that |〈A〉| ≤ rCK |A|. This result is proven for some r Ruzsa (1999)

such as the primes. Even-Zohar and Lovett (2014)

Our proof for Freiman’s theorem over abelian groups of finite
exponent (Theorem 7.30) does not generalize to the integers. Indeed,
in our proof above, |〈T〉| if we were working in Z. The workaround
is to model subsets of Z inside a finite group in a way that partially
preserves additive structure.

7.4 Freiman homomorphisms

To understand any object, you should understand maps between
them and the properties preserved by those maps. This is one of the
fundamental principles of mathematics. For example, when studying
groups we are not concerned with what the labels of the elements
are, but the the relations between them according to the group op-
eration. With manifolds, we do not focus on embeddings in space
but instead maps (e.g. diffeomorphisms) which preserve various
fundamental properties.

In additive combinatorics, our object of study is set addition. So
we must understand maps between sets which preserve, or at least
partially preserve, additive structure. Such maps are referred to as
Freiman homomorphisms.

Definition 7.32. Let A, B be subsets in (possibly different) abelian
groups. We say that φ : A → B is a Freiman s-homomorphism (or a
Freiman homomorphism of order s), if Freiman s-homomorphism partially

remembers additive structure, up to
s-fold sums.φ(a1) + · · ·+ φ(as) = φ(a′1) + · · ·+ φ(a′s)

whenever a1, . . . , as, a′1, . . . , a′s ∈ A satisfy

a1 + · · ·+ as = a′1 + · · ·+ a′s.

Definition 7.33. If φ : A → B is a bijection, and both φ and φ−1

are Freiman s-homomorphisms, then φ is said to be a Freiman s-
isomorphism.

Let us look at some examples:

https://mathscinet.ams.org/mathscinet-getitem?mr=2981161
https://mathscinet.ams.org/mathscinet-getitem?mr=1701207
https://mathscinet.ams.org/mathscinet-getitem?mr=3207478
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Example 7.34. Every group homomorphism is a Freiman homomor-
phism for any order.

Example 7.35. If φ1 and φ2 are both Freiman s-homomorphisms, then
their composition φ1 ◦ φ2 is also a Freiman s-homomorphism. And if
φ1 and φ2 are both Freiman s-isomorphisms, then their composition
φ1 ◦ φ2 is a Freiman s-isomorphism.

Example 7.36. Suppose S has no additive structure (e.g. {1, 10, 102, 103}).
Then an arbitrary map φ : S→ Z is a Freiman 2-homomorphism.

Example 7.37. Suppose S1 and S2 are both sets without additive
structure. Then any bijection φ : S1 → S2 is a Freiman 2-isomorphism.

Note that Freiman isomorphism and group homomorphisms have
subtle differences!

Example 7.38. The natural embedding φ : {0, 1}n → (Z/2Z)n is a
group homomorphism, so it is a Freiman homomorphism of every
order. It is also a bijection. But its inverse map does not preserve
some additive relations, thus it is not a Freiman 2-isomorphism!

In general, the mod N map Z → Z/NZ is a group homomor-
phism, but not a Freiman isomorphism. This holds even if we restrict
the map to [N] rather than Z. However, we can find Freiman isomor-
phisms by restricting to subsets of small diameter.

Proposition 7.39. If A ⊂ Z has diameter smaller than N/s, then (mod N)
maps A Freiman s-isomorphically to its image. If A is restricted to a small interval,

then it does not have its additive
relations wrap around mod N. Thus it
becomes a Freiman isomorphism.

Proof. If a1, . . . , as, a′1, . . . , a′s ∈ A are such that

s

∑
i=1

ai −
s

∑
i=1

a′i ≡ 0 (mod N),

then the left hand side, viewed as an integer, has absolute value
less than N (since |ai − a′i| < N/s for each i). Thus the left hand
side must be 0 in Z. So the inverse of the mod N map is a Freiman s-
homomorphism over A, and thus mod N is a Freiman s-isomorphism.

7.5 Modeling lemma

When trying to prove Freiman’s theorem over the integers, our main
difficulty is that a subset A with small doubling might be spread out
over Z. But we can use a Freiman isomorphism to model A inside a
smaller space, preserving relative additive stucture. In this smaller
space, we have better tools such as Fourier Analysis. To set up this
model, we prove a modeling lemma. To warm up, let us prove this in
the finite field model.
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Theorem 7.40 (Modeling lemma in finite field model). Let A ⊂ Fn
2

with 2m ≥ |sA− sA| for some positive integer m. Then A is Freiman
s-isomorphic to some subset of Fm

2 . Fn
2 could potentially be very large. But

we can model the additive structure
of A entirely within Fm

2 , which has
bounded size.

Remark 7.41. If |A + A| ≤ K|A|, then by the Plünnecke–Ruzsa in-
equality (Theorem 7.22) we have |sA− sA| ≤ K2s |A|, so the hy-
pothesis if the theorem would be satisfied for some m = O(s log K +

log |A|).

Proof. The following are equivalent for linear maps φ : Fn
2 → Fm

2 :

1. φ is Freiman s-isomorphic when restricted to A.

2. φ is injective on sA.

3. φ(x) 6= 0 for all nonzero x ∈ sA− sA.

Then let φ : Fn
2 → Fm

2 be the uniform random linear map. Each
x ∈ sA − sA violates condition (3) with probability 2−m. Thus if
2m ≥ |sA− sA|, then the probability that condition (3) is satisfied is
nonzero. This implies the existence of a Freiman s-isomorphism.

This proof does not work directly in Z as you cannot just choose
a random linear maps. In fact, the model lemma over Z shows that,
in fact, if A ⊂ Z has small doubling, then a large fraction of A can be
modeled inside a small cyclic group whose size is comparable to |A|.
It turns out to be enough to model a large subset of A, and we will
use the Ruzsa covering lemma later on to recover the structure of the
entire set A.

Theorem 7.42 (Ruzsa modeling lemma). Let A ⊂ Z, s ≥ 2, and N be Ruzsa (1992)

a positive integer such that N ≥ |sA− sA|. Then there exists A′ ⊂ A with
|A′| ≥ |A| /s such that A′ is Freiman s-isomorphic to a subset of Z/NZ.

Proof. Let q > max(sA − sA) be a prime. For every choice of λ ∈ We just want to take q large enough
to not have to worry about any pesky
details. Its actual size does not really
matter.

[q− 1], we define φ as the composition of functions as follows,

φ : Z→ Z/qZ
×λ−→ Z/qZ→ [q].

Any unspecified maps refer to the natural embeddings to and from
mod q. The first two maps are group homomorphisms, so they must
be Freiman s-homomorphisms. The last map is not a group homo-
morphism over the whole domain, but it is over small intervals. In
fact, by the pigeonhole principle, for all λ there exists an interval
Iλ ⊂ [q] of length less than q/s such that Aλ = {a ∈ A : φ(a) ∈ Iλ}
has more than |A| /s elements. Thus φ, when restricted to Aλ, is a
Freiman s-homomorphism.

Now, we take this map and send it to a cyclic group, while pre-
serving Freiman s-homomorphism. We define,

ψ : Z
φ−→ [q]→ Z/NZ.

https://mathscinet.ams.org/mathscinet-getitem?mr=1200845
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Claim 7.43. If ψ does not map Aλ Freiman s-isomorphically to its
image, then there exists some nonzero d = dλ ∈ sA− sA such that
φ(d) ≡ 0 (mod N).

Proof. Suppose ψ does not map Aλ Freiman isomorphically to its
image. Thus, there exists a1, . . . , as, a′1, . . . , a′s ∈ Aλ such that

a1 + · · ·+ as 6= a′1 + · · ·+ a′s,

but
φ(a1) + · · ·+ φ(as) ≡ φ(a′1) + · · ·+ φ(a′s) (mod N).

Since φ(Aλ) ⊂ Iλ, which is an interval of length less than q/s, we
have, ∣∣φ(a1) + · · ·+ φ(as)− φ(a′1)− · · · − φ(a′s)

∣∣ ∈ (−q, q).

By swapping (a1, . . . , as) with (a′1, . . . , a′s) if necessary, we assume that
the LHS above is nonnegative, i.e., lies in the interval [0, q).

We set d = a1 + · · ·+ as − a′1 − · · · − a′s. Thus d ∈ (sA− sA) \ {0}.
Now, as all the functions composed to form φ are group homomor-
phisms mod q, we have

φ(d) ≡ φ(a1) + · · ·+ φ(as)− φ(a′1)− · · · − φ(a′s) (mod q),

and φ(d) lies in [0, q) by the definition of φ. Thus the two expressions
above are equal. As a result,

φ(d) ≡ 0 (mod N).

Now, for each d ∈ (sA − sA)\{0}, the number of λ such that
φ(d) ≡ 0 (mod N) equals the number of elements of [q− 1] divisible
by N. This number is at most (q− 1)/N. Note that we are fixing d, but φ is

determined by λ.Therefore, the total number of λ such that there exists d ∈ (sA−
sA)\{0} with φ(d) ≡ 0 (mod N) is at most (|sA− sA| − 1) (q −
1)/N < q− 1. So there exists some λ such that ψ maps Aλ Freiman
s-isomorphically onto its image. Taking A′ = Aλ, our proof is com-
plete.

By summing up everything we know so far, we establish a result
that will help us in the proof of Freiman’s theorem.

Corollary 7.44. If A ⊂ Z with |A + A| ≤ K |A|, then there exists a
prime N ≤ 2K16 |A| and some A′ ⊂ A with |A′| ≥ |A| /8 such that A′ is
Freiman 8-isomorphic to a subset of Z/NZ.

Proof. By the Plünnecke–Ruzsa inequality (Theorem 7.22), |8A− 8A| ≤
K16 |A|. We choose a prime K16 ≤ N < 2K16 by Bertrand’s postulate.
Then we apply the modeling lemma with s = 8 and N ≥ |8A− 8A|.
Thus there exists a subset A′ ⊂ A with |A′| ≥ |A| /8 which is
Freiman 8-isomorphic to a subset of Z/NZ.
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7.6 Bogolyubov’s lemma

In the Ruzsa modeling lemma (Theorem 7.42) we proved that for any
set A of integers with small doubling constant, a large fraction of A
is Freiman isomorphic to a subset of Z/NZ with N not much larger
than the size of A. To prove Freiman’s Theorem, we need to prove
that we can cover A with GAPs. This leads to the natural question of
how to cover large subsets of Z/NZ with GAPs. In this section, we
first show how to find additive structure within subsets of Z/NZ.
Later on, we will show how to use this additive structure to obtain a
covering. It will be easier to first consider the analogous question in
the finite field Fn

2 . Note a subset of Fn
2 of size α2n does not necessar-

ily contain any large structure such as a subspace. However, the key
intuition for this section is the following: given a set A, the sumset
A + A smooths out the structure of A. With this intuition, we arrive
at the following natural question:

Question 7.45. Suppose A ⊂ Fn
2 and |A| = α2n where α is a constant

independent of n. Must it be the case that A + A contains a large
subspace of codimension Oα(1)?

The answer to the above question is no, as evidenced by the fol-
lowing example.

Example 7.46. Let An be the set of all points in Fn
2 with hamming

weight (number of 1 entries) at most (n− c
√

n)/2. Note by the cen-
tral limit theorem

|An| ∼ k2n

where k > 0 is a constant depending only on c. However, An + An

consists of points in the boolean cube whose Hamming weight is at
most n− c

√
n and thus does not contain any subspace of dimension

> n− c
√

n. The proof of this claim is left as an exercise to the reader.
(The same fact was also used in the proof of (6.3).)

Returning to the key intuition that the sumset A + A smooths out
the structure of A, it is natural to consider sums of more copies of A.
It turns out that if we replace A + A with 2A− 2A in Question 7.45

then the answer is affirmative.

Theorem 7.47 (Bogolyubov’s lemma). If A ⊂ Fn
2 and |A| = α2n Bogolyubov (1939)

where α is a constant independent of n then 2A− 2A contains a subspace of
codimension at most 1/α2.

Proof. Let f = 1A ∗ 1A ∗ 1−A ∗ 1−A. Note that f is supported on
2A− 2A. Next, by the convolution property in Proposition 6.4,

f̂ = 1̂2
A1̂2
−A = |1̂A|4.

https://mathscinet.ams.org/mathscinet-getitem?mr=20164
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By Fourier inversion, we have

f (x) = ∑
r∈Fn

2

f̂ (r)(−1)r·x = ∑
r∈Fn

2

|1̂A(r)|4(−1)r·x.

Note that it suffices to find a subspace where f is positive since
f (x) > 0 would imply x ∈ 2A− 2A. We will choose this subspace by
looking at the size of the Fourier coefficients. Let

R = {r ∈ Fn
2\{0} : |1̂A(r)| > α3/2}.

By Parseval’s identity, |R| < 1/α2. Next note

∑
r/∈R∪{0}

|1̂A(r)|4 ≤ α3 ∑
r/∈R∪{0}

|1̂A(r)|2 < α4.

If x is in R⊥, the orthogonal complement of R, then

f (x) = ∑
r∈Fn

2

|1̂A(r)|4(−1)r·x

≥ |1̂A(0)|4 + ∑
r∈R
|1̂A(r)|4(−1)r·x − ∑

r/∈R∪{0}
|1̂A(r)|4

> α4 + ∑
r∈R
|1̂A(r)|4 − α4

≥ 0.

Thus R⊥ ⊂ supp( f ) = 2A− 2A and since |R| < 1/α2, we have found
a subspace with the desired codimension contained in 2A− 2A.

Our goal is now to formulate an analogous result for a cyclic
group Z/NZ. The first step is to formulate an analog of subspaces
for the cyclic group Z/NZ. Note we encountered a similar issue in
transferring the proof of Roth’s theorem from finite fields to the inte-
gers (see Theorem 6.2 and Theorem 6.12). It turns out that the correct
analog is given by a Bohr set. Recall the definition of a Bohr set:

Definition 7.48. Suppose R ⊂ Z/NZ. Define

Bohr(R, ε) = {x ∈ Z/NZ :
∥∥∥ rx

N

∥∥∥ ≤ ε, for all r ∈ R}

where ‖·‖ denotes the distance to the nearest integer. We call |R| the
dimension of the Bohr set and ε the width.

It turns out that Bogolyubov’s lemma holds over Z/NZ after re-
placing subspaces by Bohr sets of the appropriate dimension. Note
that the dimension of a Bohr set of Z/NZ corresponds to the codi-
mension of a subspace of Fn

2 .

Theorem 7.49 (Bogolyubov’s lemma in Z/NZ). If A ⊂ Z/NZ Bogolyubov (1939)

and |A| = αN then 2A− 2A contains some Bohr set Bohr(R, 1/4) with
|R| < 1/α2.

https://mathscinet.ams.org/mathscinet-getitem?mr=20164
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Recall the definition of the Fourier Transform over Z/NZ.

Definition 7.50. Fourier transform of f : Z/NZ → C is the function
f̂ : Z/NZ→ C given by

f̂ (r) = Ex∈Z/NZ f (x)ω−rx

where ω = e(2πi)/N .

We leave it as an exercise to the reader to verify the Fourier inver-
sion formula, Parseval’s identity, Plancherel’s identity and the other
basic properties of the Fourier transform. Now we will prove The-
orem 7.49. It follows the same outline as the proof of Theorem 7.47

except for a few minor details.

Proof of Theorem 7.49. Let f = 1A ∗ 1A ∗ 1−A ∗ 1−A. Note that f is sup-
ported on 2A− 2A. Next, by the convolution property in Proposition
Proposition 6.4,

f̂ = 1̂2
A1̂2
−A = |1̂A|4.

By Fourier inversion, we have

f (x) = ∑
r∈Z/NZ

f̂ (r)ωrx = ∑
r∈Z/NZ

|1̂A(r)|4 cos
(

2πrx
N

)
.

Let
R = {r ∈ Z/NZ\{0} : |1̂A(r)| > α3/2}.

By Parseval’s identity, |R| < 1/α2. Next note

∑
r/∈R∪{0}

|1̂A(r)|4 ≤ α3 ∑
r/∈R∪{0}

|1̂A(r)|2 < α4.

Now note the condition x ∈ Bohr(R, 1/4) is precisely equivalent to

cos
(

2πrx
N

)
> 0 for all r ∈ R.

For x ∈ Bohr(R, 1/4), we have

f (x) = ∑
r∈Z/NZ

|1̂A(r)|4 cos
(

2πrx
N

)
≥ |1̂A(0)|4 + ∑

r/∈R∪{0}
|1̂A(r)|4 cos

(
2πrx

N

)
> 0.

We have now shown that for a set A that contains a large fraction
of Z/NZ, the set 2A − 2A must contain a Bohr set of dimension
less than 1/α2. In the next section we will analyze additive structure
within Bohr sets. In particular, we will show that Bohr sets of low
dimension contain large GAPs.
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7.7 Geometry of numbers

Before we can prove the main result of this section, we first introduce
some machinery from the geometry of numbers. The geometry of
numbers involves the study of lattices and convex bodies and has
important applications in number theory.

Definition 7.51. A lattice in Rd is a set given by Λ = Zv1⊕ · · · ⊕Zvd

where v1, . . . , vd ∈ Rd are linearly independent vectors.

Figure 7.5: A lattice in R2, the blue
shape is a fundamental parallelepiped
while the red is not.

Definition 7.52. The determinant det(Λ) of a lattice Λ = Zv1 ⊕
· · · ⊕Zvd is the absolute value of the determinant of a matrix with
v1, . . . , vd as columns.

Remark 7.53. Note the determinant of a lattice is also equal to the
volume of the fundamental parallelepiped.

Example 7.54. Z+Zω where ω = e(2πi)/3 is a lattice. Its determinant
is
√

3/2.

Example 7.55. Z + Z
√

2 ⊂ R is not a lattice because 1 and
√

2 are
not linearly independent.

We now introduce the important concept of successive minima of a
convex body K with respect to a lattice Λ.

Definition 7.56. Given a centrally symmetric convex body K ⊂ Rd

(by centrally symmetric we mean x ∈ K if and only if −x ∈ K), define
the ith successive minimum of K with respect to a lattice Λ as

λi = inf{λ ≥ 0 : dim(span(λK ∩Λ)) ≥ i}

for 1 ≤ i ≤ d. Equivalently, λi is the minimum λ that λK contains i
linearly independent lattice vectors from Λ.

A directional basis of K with respect to Λ is a basis b1, . . . , bd of
Rd such that bi ∈ λiK for each i = 1, . . . , d. (Note that there may be
more than one possible directional basis.)

Example 7.57. Let e1, . . . , e8 be the standard basis vectors in R8. Let
v = (e1 + · · ·+ e8)/2. Consider the lattice

Λ = Ze1 ⊕ · · · ⊕Ze7 ⊕Zv.

Let K be the unit ball in R8. Note that the directional basis of K with
respect to Λ is e1, . . . , e8. This example shows that the directional
basis of a convex body K is not necessarily a Z-basis of Λ.

λ1

λ2

Figure 7.6: A diagram showing the
successive minima of the body outlined
by the solid red line with respect to the
lattice of blue points.

Minkowski’s second theorem gives us an inequality to control the
product of the successive minima in terms of the volume of K and the
determinant of the lattice Λ.
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Theorem 7.58 (Minkowski’s second theorem). Let Λ ∈ Rd be a lattice
Minkowski (1896)and K a centrally symmetric body. Let λ1 ≤ · · · ≤ λd be the successive

minima of K with respect to Λ. Then

λ1 . . . λdvol(K) ≤ 2ddet(Λ).

Example 7.59. Note that Minkowski’s second theorem is tight when

K =

[
− 1

λ1
,

1
λ1

]
× · · · ×

[
− 1

λd
,

1
λd

]
and Λ is the lattice Zd.

The proof of Minkowski’s second theorem is omitted. We will
now use Minkowski’s second theorem to prove that a Bohr set of low
dimension contains a large GAP.

Theorem 7.60. Let N be a prime. Every Bohr set of dimension d and width
ε ∈ (0, 1) in Z/NZ contains a proper GAP with dimension at most d and
size at least (ε/d)d N.

Proof. Let R = {r1, . . . , rd}. Let

v =
( r1

N
, . . . ,

rd
N

)
.

Let Λ ⊂ Rd be a lattice consisting of all points in Rd that are con-
gruent mod 1 to some integer multiple of v. Note det(Λ) = 1/N
since there are exactly N points of Λ within each translate of the unit
cube. We consider the convex body K = [−ε, ε]d. Let λ1, . . . , λd be
the successive minima of K with respect to Λ. Let b1, . . . , bd be the
directional basis. We know

‖bj‖∞ ≤ λjε for all j.

For each 1 ≤ j ≤ d, let Lj = d1/(λjd)e. If 0 ≤ lj < Lj then

‖ljbj‖∞ <
ε

d
.

If we have integers l1, . . . , ld with 0 ≤ li < Li for all i then

‖l1b1 + · · ·+ ldbd‖∞ ≤ ε. (7.1)

Each bj is equal to xjv plus a vector with integer coordinates for
some 0 ≤ xj < N. The bound for the ith coordinate in (7.1) implies∥∥∥∥ (l1x1 + · · ·+ ldxd)ri

N

∥∥∥∥
R\Z
≤ ε for all i.

Thus, the GAP

{l1x1 + · · ·+ ldxd : 0 ≤ li < Li for all i}

https://mathscinet.ams.org/mathscinet-getitem?mr=249269
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is contained in Bohr(R, ε). It remains to show that this GAP is
large and that it is proper. First we show that it is large. Using
Minkowski’s second theorem, its size is

L1 · · · Lk ≥
1

λ1 · · · λd · dd

≥ vol(K)
2d det(Λ)dd

=
(2ε)d

2d 1
N dd

=
( ε

d

)d
N.

Now we check that the GAP is proper. It suffices to show that if

l1x1 + · · ·+ ldxd ≡ l′1x1 + · · ·+ l′dxd (mod N),

then we must have li = l′i for all i. Setting

b = (l1 − l′1)b1 + · · ·+ (ld − l′d)bd,

we have b ∈ Zd. Furthermore

‖b‖∞ ≤
d

∑
i=1

1
λid
‖bi‖∞ ≤ ε < 1,

so actually b must be 0. Since b1, . . . , bd is a basis we must have li = l′i
for all i, as desired.

7.8 Proof of Freiman’s theorem

So far in this chapter, we have demonstrated a number of useful
methods and theorems in additive combinatorics on our quest to
prove Freiman’s theorem (Theorem 7.11). Now, we finally put these
tools together to form a complete proof.

The proof method will be as follows. Starting with a set A with
small doubling constant, we first map A to a subset, B, of Z/NZ

using the corollary of the Ruzsa modeling lemma (Theorem 7.42).
We then find a large GAP within 2B− 2B using Bogolyubov’s lemma
(Theorem 7.47) and results on the geometry of numbers. This in
turn gives us a large GAP in 2A − 2A. Finally, we apply the Ruzsa
covering lemma (Theorem 7.28) to create a GAP that contains A from
this GAP contained in 2A − 2A. Recall the statement of Freiman’s
theorem (Theorem 7.11):

If A ⊂ Z is a finite set and |A + A| ≤ K|A|, then A is contained in a
GAP of dimension at most d(K) and size at most f (K)|A|.
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Proof. Because |A + A| ≤ K|A|, by the corollary to Ruzsa modeling
lemma (Corollary 7.44), there exists a prime N ≤ 2K16|A| and some
A′ ⊂ A with |A′| ≥ |A|/8 such that A′ is Freiman 8-isomorphic to a
subset B of Z/NZ.

Applying Bogolyubov’s lemma (Theorem 7.47) on B with

α =
|B|
N

=
|A′|
N
≥ |A|

8N
≥ 1

16K16

gives that 2B− 2B contains some Bohr set, Bohr(R, 1/4), where |R| <
256K32. Thus, by Theorem 7.60, 2B− 2B contains a proper GAP with
dimension d < 256K32 and size at least (4d)−dN.

As B is Freiman 8-isomorphic to A′, we have 2B− 2B is Freiman 2-
isomorphic to 2A′ − 2A′. This follows from the definition of Freiman
s-isomorphism and by noting that every element in 2B − 2B is the
sum and difference of four elements in B with a similar statement
for 2A′ − 2A′. Note that arithmetic progressions are preserved by
Freiman 2-isomorphisms as the difference between any two ele-
ments in 2B − 2B is preserved. Hence, the proper GAP in 2B − 2B
is mapped to a proper GAP, Q, in 2A′− 2A′ with the same dimension
and size.

Next we will use the Ruzsa covering lemma to cover the entire set
A with translates of Q. Because Q ⊂ 2A − 2A, we have Q + A ⊂
3A− 2A. By the Plünnecke-Ruzsa inequality (Theorem 7.22), we have

|Q + A| ≤ |3A− 2A| ≤ K5|A|.

As A′ ⊂ Z/NZ, we have N ≥ |A′| ≥ |A|/8. Because |Q| ≥ (4d)−dN,
we have K5|A| ≤ K′|Q| where K′ = 8(4d)dK5 = eKO(1)

. In particular,
the above inequality becomes |Q + A| ≤ K′|Q|. Hence, by the Ruzsa
covering lemma (Theorem 7.42), there exists a subset X of A with
|X| ≤ K′ such that A ⊂ X + Q−Q.

All that remains is to show that X + Q− Q is contained in a GAP
with the desired bounds on dimension and size. Note that X is triv-
ially contained in a GAP of dimension |X| with length 2 in every
direction. Furthermore, because every element in Q− Q lies on some
arithmetic progression contained in Q translated to the origin, we
have the dimension of Q − Q is d. Hence, by the bounds outlined
above, X + Q−Q is contained in a GAP P with dimension

dim(P) ≤ |X|+ d ≤ K′ + d = 8(4d)dK5 + d = eKO(1)
.

Because Q is a proper GAP with dimension d and the doubling con-
stant of an arithmetic progression is 2, we have that Q−Q has size at
most 2d|Q|. The GAP containing X has size 2|X|. Hence, applying the
Plünnecke-Ruzsa inequality, we have that the size of P is

size(P) ≤ 2|X|2d|Q| ≤ 2K′+d|2A− 2A| ≤ 2K′+dK4|A| = eeKO(1)
|A|.
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Taking d(K) = eKO(1)
and f (K) = eeKO(1)

completes the proof of
Freiman’s theorem.

Remark 7.61. By considering A = {1, 10, 102, 103, . . . , 10|A|−1} we see
that Freiman’s theorem is false for d(K) < Θ(K) and f (K) < 2Θ(K).
It is also conjectured that Freiman’s holds for d(K) = Θ(K) and
f (K) = 2Θ(K).

While the bounds given in the above proof of Freiman’s theorems
are quite far off this (exponential rather than linear), Chang showed Chang (2002)

that Ruzsa’s arguments can be made to give polynomial bounds
(d(K) = KO(1) and f (k) = exp(KO(1)). When we apply Ruzsa’s
covering lemma, we are somewhat wasteful. Rather than cover A all
at once, a better method is to cover A bit by bit. In particular starting
with Q we cover parts of A with Q − Q. We then repeat the proof
on what remains of A to find Q1 with smaller dimension. We then
cover the rest of A with Q1 − Q1. This method significantly reduces
the amount we lose in this step and gives the desired polynomial
bounds.

As noted before, the best known bound (Theorem 7.15) is given
by d(K) = K(log K)O(1) and f (K) = eK(log K)O(1)

, whose proof is
substantially more involved.

7.9 Freiman’s theorem for general abelian groups

We have proved Freiman’s theorem for finite fields and for integers,
so one might wonder whether Freiman’s theorem holds for general
abelian groups. This is indeed the case, but first we must understand
what such a Freiman’s theorem might state.

For Fn
p for fixed primes p, Freiman’s theorem gives that any set

with small doubling constant exists in a not too much larger sub-
group, while for integers, Freiman’s theorem gives the same but for a
not too much larger GAP. Because finitely generated abelian groups
can always be represented as the direct sum of cyclic groups of prime
power orders and copies of Z, to find a generalization of GAPs and
subgroups, one might try taking the direct sum of these two types of
structures.

Definition 7.62. Define a coset progression as the direct sum P + H By a direct sum P + H we mean that if
p + h = p′ + h′ for some p, p′ ∈ P and
h, h′ ∈ H then p = p′ and h = h′.

where P is a proper GAP and H is a subgroup. The dimension of a
coset progression is defined as the dimension of P and the size of a
coset progression is defined as the cardinality of the whole set.

Theorem 7.63 (Freiman’s theorem for general abelian groups). If A Green and Ruzsa (2007)

is a subset of a arbitrary abelian group and |A + A| ≤ K|A|, then A is

https://mathscinet.ams.org/mathscinet-getitem?mr=1909605
https://mathscinet.ams.org/mathscinet-getitem?mr=2302736
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contained in a coset progression of dimension at most d(K) and size at most
f (k)|A|, where d(K) and f (K) are constants depending only on K.

Remark 7.64. The proof of this theorem follows a similar method
to the given proof of Freiman’s theorem but with some modifi-
cations to the Ruzsa modeling lemma. The best known bounds
for are again given by Sanders and are d(K) = K(log K)O(1) and Sanders (2013)

f (K) = eK(log K)O(1)
. It should be noted that these functions depend

only on K, so they remain the same regardless of what abelian group
A is a subset of.

7.10 The Freiman problem in nonabelian groups

We may ask a similar question for nonabelian groups: what is the
structure of subsets of a nonabelian group that have small doubling?
Subgroups still have small doubling just as in the abelian case. Also,
we can take a GAP formed by any set of commuting elements. How-
ever, it turns out that there are other examples of sets of small dou-
bling, which are not directly derived from either of these examples
from abelian groups.

Example 7.65. The discrete Heisenberg group H3(Z) is the set of
upper triangular matrices with integer entries and only ones on the
main diagonal. Multiplication in this group is as follows:1 a c

0 1 b
0 0 1


1 x z

0 1 y
0 0 1

 =

1 a + x c + z + ay
0 1 b + y
0 0 1

 .

Now, let S be the following set of generators of H.

S =


1 ±1 0

0 1 0
0 0 1

 ,

1 0 0
0 1 ±1
0 0 1


 .

Consider the set Sr, which is taken by all products of r sequences of
elements from S. By the multiplication rule, the elements of Sr are all
of the form 1 O(r) O(r2)

0 1 O(r)
0 0 1

 .

Thus, |Sr| ≤ O(r4), since there are at most O(r4) possibilities for
such a matrix. It can also be shown that |Sr| = Ω(r4), and thus
|Sr| = Θ(r4). Thus, the doubling of Sr is |S2r|/|Sr| ≈ 16, so Sr has
bounded doubling.

https://mathscinet.ams.org/mathscinet-getitem?mr=2994996
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It turns out that this is an example of a more general type of con-
struction in a group which is “almost abelian.” This is captured by
the notion of a nilpotent group.

Definition 7.66. A nilpotent group G is one whose lower central
series terminates. In other words,

[. . . [[G, G], G] . . . , G] = {e},

for some finite number of repetitions. (The commutator subgroup
[H, K] is defined as {hkh−1k−1 : h ∈ H, k ∈ K}.)

All nilpotent groups have polynomial growth similarly to Exam-
ple 7.65, defined in general as follows.

Definition 7.67. Let G be a finitely generated group generated by
a set S. The group G is said to have polynomial growth if there are
constants C, d > 0 such that |Sr| ≤ Crd for all r. (This definition does
not depend on S since for any other set of generators S′, there exists
r0 such that S′ ⊂ Sr0 .)

Gromov’s theorem is a deep result in geometric group theory
that provides a complete characterization of groups of polynomial
growth.

Theorem 7.68 (Gromov’s theorem). A finitely generated group has Gromov (1981)

polynomial growth if and only if it is virtually nilpotent, i.e., has a nilpotent
subgroup of finite index.

The techniques used by Gromov relate to Hilbert’s fifth problem,
which concerns characterization of Lie groups. A more elementary
proof of Gromov’s theorem was later given by Kleiner in 2010. Kleiner (2010)

Now, we have a construction of a set with small doubling in any
virtually nilpotent group G: the “nilpotent ball” Sr, where S gener-
ates G. It is then natural to ask the following question.

Question 7.69. Must every set of small doubling (or equivalently,
sets known as approximate groups) behave like some combination of
subgroups and nilpotent balls?

Lots of work has been done on this problem. In 2012, Hrushovski, Hrushovski (2012)

using model theoretic techniques, showed a weak version of Freiman’s
theorem for nonabelian groups. Later, Breuillard, Green, and Tao, Breuillard, Green, and Tao (2012)

building on Hrushovski’s methods, proved a structure theorem for
approximate groups, generalizing Freiman’s theorem to nonabelian
groups. However, these methods provide no explicit bounds due to
their use of ultrafilters.

https://mathscinet.ams.org/mathscinet-getitem?mr=623534
https://mathscinet.ams.org/mathscinet-getitem?mr=2629989
https://mathscinet.ams.org/mathscinet-getitem?mr=2833482
https://mathscinet.ams.org/mathscinet-getitem?mr=3090256
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7.11 Polynomial Freiman–Ruzsa conjecture

In Fn
2 , if A is an independent set of size n, its doubling constant is

K = |A + A|/|A| ≈ n/2, and the size of any subgroup that contains
A must be at least 2Θ(K)|A|.

Another example, extending the previous one, is to let A be a
subset of Fm+n defined by A = Fm

2 × {e1, . . . , en} (where e1, . . . , en

are generators of Fn
2 ). This construction has the same bounds as the

previous one, but with arbitrarily large |A|. This forms an example
showing that the bound in the abelian group version of Freiman’s
theorem cannot be better than exponential.

However, note that in this example, A must contain the very large
(affine) subspace Fm

2 × {e1}, which has size comparable to A. We
may thus ask whether we could get better bounds in Freiman’s the-
orem if we only needed to cover a large subset of A. In this vein, the
Polynomial Freiman–Ruzsa conjecture in Fn

2 asks the following. Green (2004)

Conjecture 7.70 (Polynomial Freiman–Ruzsa conjecture in Fn
2 ). If

A ⊂ Fn
2 , and |A + A| ≤ K|A|, then there exists an affine subspace V ⊆ Fn

2
with |V| ≤ |A| such that |V ∩ A| ≥ K−O(1)|A|.

This conjecture has several equivalent forms. For example, the
following three are equivalent to Conjecture 7.70:

Conjecture 7.71. If A ⊂ Fn
2 , and |A + A| ≤ K|A|, then there exists a

subspace V ⊆ Fn
2 with |V| ≤ |A| such that A can be covered by KO(1)

cosets of V.

Proof of equivalence of Conjecture 7.70 and Conjecture 7.71. Clearly Con-
jecture 7.71 implies Conjecture 7.70.

Now suppose the statement of Conjecture 7.70 is true, and sup-
pose we have A ⊂ Fn

2 satisfying |A + A| ≤ K|A|. Then by Conjec-
ture 7.70, there exists some affine subspace V with size at most |A|
such that |V ∩ A| ≥ K−O(1)|A| Applying the Ruzsa covering lemma
(Theorem 7.28) with X = A, B = V ∩ A gives a set X of size KO(1)

such that A ⊆ V − V + X. The conclusion of Conjecture 7.71 follows
immediately, where the cosets are the shifts of the vector space V −V
by each of the elements of X.

Conjecture 7.72. If f : Fn
2 → Fn

2 satisfies

|{ f (x, y)− f (x)− f (y) : x, y ∈ Fn
2}| ≤ K,

then there exists a linear function g : Fn
2 → Fn

2 such that

|{ f (x)− g(x) : x ∈ Fn
2}| ≤ KO(1).

(In this version, it is straightforward to show a bound of 2K in-
stead of KO(1), since we can extend f to a linear function based on its
values at some basis.)
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Conjecture 7.73. If f : Fn
2 → C with ‖ f ‖∞ ≤ 1 and ‖ f ‖U3 ≥ δ (where

‖ f ‖U3 is the Gowers U3 norm, and relates to 4-AP counts), then there exists
a quadratic polynomial q(x1, . . . , xn) over F2 such that

|Ex∈Fn
2
[ f (x)(−1)q(x)]| ≥ δO(1).

It turns out that these versions of the conjectures are all equiva-
lent up to polynomial changes in the bounds (or equivalently, linear
relations between the O(1) terms). The best bound to date is due to
Sanders and achieves a quasipolynomial bound of e(log K)O(1)

. The Sanders (2012)

polynomial Freiman–Ruzsa conjecture would be implied by the fol-
lowing strengthening of Bogolyubov’s lemma:

Conjecture 7.74 (Polynomial Bogolyubov-Ruzsa conjecture in Fn
2 ). If

A ⊂ Fn
2 with |A| = α2n, then 2A− 2A contains a subspace of codimension

O(log(1/α)).

The standard form of Bogolyubov’s lemma (Theorem 7.47) shows
a bound of O(α−2). The best result on this conjecture is also due to
Sanders, who obtained a quasipolynomial bound of (log(1/α))O(1). Sanders (2012)

One may similarly make a version of the polynomial Freiman–
Ruzsa conjecture in Z instead of Fn

2 . First, we must define a centered
convex progression, the analog of a subspace.

Definition 7.75. A centered convex progression is a set of the form

P = {x0 + `1x1 + · · ·+ `dxd : (`1, . . . , `d) ∈ Zd ∩ B},

where B is some convex centrally symmetric body in Rd. In other
words, it is a shift of the image of Zd ∩ B under some homomor-
phism Zd → Z. Its dimension is d and its size is |Zd ∩ B|.

Then, the polynomial Freiman–Ruzsa conjecture in Z states the
following.

Conjecture 7.76 (Polynomial Freiman–Ruzsa conjecture in Z). If A ⊂
Z with |A + A| ≤ K|A|, then there exists a centered convex progression
of dimension O(log K) and size at most |A| whose intersection with A has
size at least K−O(1)|A|.

More generally, the Polynomial Freiman–Ruzsa conjecture in
abelian groups uses centered convex coset progressions, which are de-
fined as a direct sum P + H, where P is the image of some Zd ∩ B
under a homomorphism from Zd to the group, and H is some coset
of a subgroup.

The best bound on this conjecture (in both the Z and the abelian
group cases) is once again quasipolynomial due to Sanders, who de- Sanders (2012)

rived it from a quasipolynomial bound for the polynomial Bogolyubov-
Ruzsa conjecture:

https://mathscinet.ams.org/mathscinet-getitem?mr=2994508
https://mathscinet.ams.org/mathscinet-getitem?mr=2994508
https://mathscinet.ams.org/mathscinet-getitem?mr=2994508
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Conjecture 7.77 (Polynomial Bogolyubov-Ruzsa conjecture in Z).
If A ⊂ Z/NZ with N prime, then 2A − 2A contains a proper centered
convex progression of dimension O(log(1/α)) and size at least αO(1)N.

Again, the version for general abelian groups can be obtained by
instead using proper centered convex coset progressions instead.

7.12 Additive energy and the Balog–Szémeredi–Gowers theorem

So far, we have measured the amount of additive structure in a set
using the doubling constant. Here we introduce additive energy, a
new measurement of additive structure in a set; where previously
we were interested in sets of high doubling, we are now interested in
sets with high additive energy.

Definition 7.78. Let A and B be finite subsets of an abelian group.
Their additive energy is defined to be

E(A, B) = |{(a1, a2, b1, b2) ∈ A× A× B× B : a1 + a2 = b1 + b2}|.

We set the additive energy of a single subset A to be E(A) :=
E(A, A).

Remark 7.79. We can think of the additive energy as counting 4-cycles
in an appropriate Cayley graph. Just as counting 4-cycles turned out
to be fundamental in graph theory, we will see that additive energy is
fundamental in additive combinatorics.

Definition 7.80. For two finite subsets A and B of an abelian group,
define rA,B(x) := |{(a, b) ∈ A× B : x = a + b}| to count the number
of ways x is expressible as a sum in A + B.

Remark 7.81. We can compute additive energy as

E(A, B) = ∑
x

rA,B(x)2.

For additive energy, we have the following analogue of Proposi-
tion 7.3.

Proposition 7.82. If A is a finite subset of Z then |A|2 ≤ E(A) ≤ |A|3.

Proof. The lower bound comes from the fact that all 4-tuples of the
form (a1, a2, a1, a2) ∈ A4 are counted by the additive energy E(A).
The upper bound is because for any triple (a1, a2, a3) ∈ A3, we have
that E(A) counts at most one 4-tuple with those first three coordi-
nates, with fourth coordinate a1 + a2 − a3.

Remark 7.83. Proposition 7.82 is tight. The lower bound holds when
A has no additive structure, while the upper bound holds asymptoti-
cally when A = [n].
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Thus far, we have likened sets of small doubling and large additive
energy. In fact, the former implies the latter.

Proposition 7.84. If |A + A| ≤ K|A| then E(A) ≥ |A|3/K.

Proof. We use Remark 7.81 and the Cauchy-Schwarz inequality to
show

E(A) = ∑
x∈A+A

rA,A(x)2 ≥ 1
|A + A|

(
∑

x∈A+A
rA,A(x)

)2

=
|A|4
|A + A| ≥

|A|3
|K| .

It is natural to ask whether the converse of Proposition 7.84 holds.
In fact, a set with large additive energy may also have high doubling,
as described in Example 7.85 below.

Example 7.85. Consider the set A = [N/2]∪
{
−2,−4,−8, . . . ,−2N/2

}
.

Note that A is the union of a set of small doubling and a set with
no additive structure. The first component forces the additive en-
ergy to be E(A) = Θ(N3), while the second forces a large doubling
|A + A| = Θ(N2).

However, Balog and Szemerédi showed that every set with large
additive energy must have a highly structured subset with small
doubling, even if the set has relatively little additive structure overall.
Their proof was later refined by Gowers, who proved polynomial
bounds on the constants, and this is the version we will present here.

Theorem 7.86 (Balog–Szemerédi–Gowers theorem). Let A be a finite Balog and Szemerédi (1994)

Gowers (1998)subset of an abelian group. If E(A) ≥ |A|3/K then there is a subset A′ ⊂
A with |A′| ≥ K−O(1)|A| and |A′ + A′| ≤ KO(1)|A′|.

We present a stronger version of the theorem, which considers the
additive structure between two different sets.

Theorem 7.87. Let A and B be finite subsets of the same abelian group. If
|A|, |B| ≤ n and E(A, B) ≥ n3/K then there exist subsets A′ ⊂ A and
B′ ⊂ B with |A′|, |B′| ≥ K−O(1)n and |A′ + B′| ≤ KO(1)n.

Proof that Theorem 7.87 implies Theorem 7.86. Suppose E(A) ≥ |A|3/K.
Apply Theorem 7.87 with B = A to obtain A′, B′ ⊂ A with |A′| , |B′| ≥
K−O(1)n and |A′ + B′| ≤ KO(1)n. Then by Corollary 7.27, a variant of
the Ruzsa triangle inequality, we have

∣∣A′ + A′
∣∣ ≤ |A′ + B′|2

|B′| ≤ KO(1)n.

https://mathscinet.ams.org/mathscinet-getitem?mr=1305895
https://mathscinet.ams.org/mathscinet-getitem?mr=1631259
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To prove Theorem 7.87, we once again reduce from additive com-
binatorics to graph theory. The proof of Theorem 7.87 relies on the
following graph analogue.

Definition 7.88. Let A and B be subsets of an abelian group and let G
be a bipartite graph with vertex bipartition A ∪ B. Then we define the
restricted sumset A +G B to be the set of sums along edges of G:

A +G B := {a + b : (a, b) an edge in G}.

Theorem 7.89. Let A and B be finite subsets of an abelian group and let G
be a bipartite graph with vertex bipartition A ∪ B. If |A|, |B| ≤ n and G has
at least n2/K edges and |A +G B| ≤ Kn then there exist subsets A′ ⊂ A
and B′ ⊂ B with |A′|, |B′| ≥ K−O(1)n and |A′ + B′| ≤ KO(1)n.

Proof that Theorem 7.89 implies Theorem 7.87. Define rA,B as in Def-
inition 7.80. Let S = {x ∈ A + B : rA,B(x) ≥ n/2K} be the set of
“popular sums.” Build a bipartite graph G with bipartition A ∪ B
such that (a, b) ∈ A× B is an edge if and only if a + b ∈ S.

We claim that G has many edges, by showing that “unpopular
sums” account for at most half of E(A, B). Note that

n3

K
≤ E(A, B) = ∑

x∈S
rA,B(x)2 + ∑

x/∈S
rA,B(x)2. (7.2)

Because rA,B(x) < n/2K when x /∈ S, we can bound the second term
as

∑
x/∈S

rA,B(x)2 ≤ n
2K ∑

x/∈S
rA,B(x) ≤ n

2K
|A||B| ≤ n3

2K
,

and setting back into (7.2) yields

∑
x∈S

rA,B(x)2 ≥ n3

2K
.

Moreover, because rA,B(x) ≤ |A| ≤ n for all x, it follows that

e(G) = ∑
x∈S

rA,B(x) ≥ ∑
x∈S

rA,B(x)2

n
≥ n2

2K
.

Hence, we can apply Theorem 7.89 to find sets A′ ⊂ A and B′ ⊂ B
with the desired properties.

The remainder of this section will focus on proving Theorem 7.89.
We begin with a few lemmas.

U

A B

v

Figure 7.7: Paths of length 2 between
two points in U.

Lemma 7.90 (Path of length 2 lemma). Fix δ, ε > 0. Let G be a bipartite
graph with bipartition A ∪ B and at least δ|A||B| edges. Then there is some
U ⊂ A with |U| ≥ δ|A|/2 such that at least (1− ε)-fraction of the pairs
(x, y) ∈ U2 have at least εδ2|B|/2 neighbors common to x and y.
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Proof. We use the dependent random choice method from Section 2.9.
Choose v ∈ B uniformly at random, and let U = N(v) ⊂ A. We have
E[|U|] ≥ δ|A|.

We note that pairs with few common neighbors are unlikely to
be contained in U. Indeed, if x, y ∈ A share fewer than εδ2|B|/2
common neighbors then Pr[{x, y} ⊂ U] < εδ2/2.

Say two points are friendly if they share at least εδ2|B|/2 common
neighbors. Let X be the number of unfriendly pairs (x, y) ∈ U2. Then

E[X] = ∑
(x,y)∈A2

unfriendly

Pr[{x, y} ⊂ U] <
εδ2

2
|A|2.

Hence, we have

E

[
|U|2 − X

ε

]
≥ (E[|U|])2 − E[X]

ε
>

δ2

2
|A|2,

so there is a choice of U with |U|2 − X/ε ≥ δ2|A|2/2. For this choice
of U, we have |U|2 ≥ δ2|A|2/2, so |U| ≥ δ|A|/2. Moreover, we have
X ≤ ε|U|2, so at most ε-fraction of pairs (x, y) ∈ U2 have fewer than
εδ2|B|/2 common neighbors.

Lemma 7.91 (Path of length 3 lemma). There are constants c, C > 0 such
that the following holds. Fix any ε, δ > 0 and let G be any bipartite graph
with bipartition A ∪ B and at least δ|A||B| edges. Then there are subsets
A′ ⊂ A and B′ ⊂ B such that every pair (a, b) ∈ A′ × B′ is joined by at
least η|A||B| paths of length 3, where η = cδC.

A

A1

A2

A′

B

B′

a b

Figure 7.8: The construction for a path
of length 3.

Proof. Call vertices a pair of vertices in A friendly if they have at least
δ3|B|

20 common neighbors.
Define

A1 := {a ∈ A : deg a ≥ δ

2
|B|}.

Restricting A to A1 maintains an edge density of at least δ between
A1 and B and removes fewer than δ|A||B|/2 edges from G. Because
we are left with at least δ|A||B|/2 edges and the max degree of a ∈
A1 is |B|, we have |A1| ≥ δ|A|/2.

Construct A2 ⊂ A1 via the path of length 2 lemma (Lemma 7.90)
on (A1, B) with ε = δ/10. Then, |A2| ≥ δ|A1|/2 ≥ δ2|A|/4 and at
most ε-fraction pairs of vertices in A2 are unfriendly.

Set

B′ = {b ∈ B : deg(b, A2) ≥
δ

4
|A2|}.

Restricting from (A2, B) to (A2, B′) removes at most δ|A2||B|/4
edges. Because the minimum degree in A2 is at least δ/2, there are
at least δ|A2||B|/2 edges between A2 and B. Hence, there are at least
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δ|A2||B|/4 edges between A2 and B′ and because the maximum de-
gree of b ∈ B′ is |A2|, we have |B′| ≥ δ|B|/4.

Define

A′ = {a ∈ A2 : a is friendly to at least (1− δ

5
)-fraction of A2}.

Then |A′| ≥ |A2|/2 ≥ δ2|A|/8.
We now fix (a, b) ∈ A′ × B′ and lower-bound the number of

length-3 paths between them. Because b is adjacent to at least δ|A2|/4
vertices in A2 and a is friendly to at least (1− δ/5)|A2| vertices in
A2, there are at least δ|A2|/20 vertices in A2 both friendly to a and
adjacent to b. For each such a1 ∈ A2, there are at least δ3|B|/20 points
b1 ∈ B for which ab1a1b is a path of length 3, so the number of paths
of length 3 from a to b is at least

δ

20
|A2| ·

δ3

20
|B| ≥ δ

20
· δ2

4
|A| · δ3

20
|B| = δ6

20 · 4 · 80
|A||B|.

Taking η equal to the above coefficient, we note that |A′| ≥ δ2|A|/8 ≥
η|A| and |B′| ≥ δ|B|/4 ≥ η|B|.

We can use the path of length 3 lemma to prove the graph-theoretic
analogue of the Balog–Szemerédi–Gowers theorem.

A B

A′

B′

a

a1

b

b1x = a + b1

y =
a 1
+

b 1

z = a1 + b

Figure 7.9: Using the path of length 3

lemma to prove the Balog–Szemerédi–
Gowers theorem

Proof of Theorem 7.89. Note that we have |A|, |B| ≥ n
K . By the path

of length 3 lemma (Lemma 7.91), we can find A′ ⊂ A and B′ ⊂ B of
sizes |A′|, |B′| ≥ K−O(1)n such that for every (a, b) ∈ A′× B′, there are
at least K−O(1)n2 paths ab1a1b with (a1, b1) ∈ A× B. Hence, for each
(a, b) ∈ A′ × B′, there are at least K−O(1)n2 solutions x, y, z ∈ A +G B
to the equation x− y + z = a + b, as (x, y, z) = (a + b1, a1 + b1, a1 + b)
is a solution along each path ab1a1b. It follows that

K−O(1)n2|A′ + B′| ≤ |A +G B|3 = e(G)3 ≤ K3n3,

so |A′ + B′| ≤ KO(1)n.
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