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Prof. Yufei Zhao

. Verify the following asymptotic calculations used in Ramsey number lower bounds:

(a) For each k, the largest n satisfying (2)217(5) <1lhasn= <$ + 0(1)) k2k/2,

k
(b) For each k, the maximum value of n — (2)21_(2) as m ranges over positive integers is

(1 +0(1)) k2+/2.
(c) Foreach k, the largest n satisfying e ((g) (") + 1) 21=(3) < 1 satisfies n = (@ + 0(1)) k2k/2.

. Prove that, if there is a real p € [0, 1] such that

@p(';) . (7;) 1—p® <1

then the Ramsey number R(k,t) satisfies R(k,t) > n. Using this show that

¢ \3/2
> -
R(4,t) > ¢ <logt>

for some constant ¢ > 0.

(Extension of Sperner’s theorem) Let F be a collection of subset of [n] that does not contain
k + 1 elements forming a chain: A; C --- C Agy1. Prove that F is no larger than taking the
union of the k levels of the boolean lattice closest to the middle layer.

Let Aq,..., A, be r-element sets and By, ..., B,, be s-element sets. Suppose A; N B; = () for
each i, and for each i # j, either A;NB; # 0 or AjNB; # 0. Prove that m < (r+s)"%/(r"s*).
Prove that for every positive integer r, there exists an integer K such that the following holds.
Let S be a set of rk points evenly spaced on a circle. If we partition S = S U--- U S, so
that |S;| = k for each i, then, provided k > K, there exist r congruent triangles where the
vertices of the i-th triangle lie in \5;, for each 1 <4 <.

6. Prove that every set of 10 points in the plane can be covered by a union of disjoint unit disks.

. Prove that [n]¢ cannot be partitioned into fewer than 2 sets each of the form A; x --- x Ay

where A; C [n].
Let k > 4 and H a k-uniform hypergraph with at most 4*~1 /3% edges. Prove that there is a
coloring of the vertices of H by four colors so that in every edge all four colors are represented.
Let G be a graph on n > 10 vertices. Suppose that adding any new edge to G would create
a new clique on 10 vertices. Prove that G has at least 8n — 36 edges.

(Hint in white: )
Prove that there is an absolute constant ¢ > 0 so that for every n x n matrix with distinct
real entries, one can permute its rows so that no column in the permuted matrix contains an
increasing subsequence of length at least ¢y/n. (A subsequence does not need to be selected
from consecutive terms. For example, (1,2,3) is an increasing subsequence of (1,5,2,4,3).)
Let G be a graph with n vertices and m edges. Prove that K, can be written as a union of
O(n?(logn)/m) copies of G (not necessarily edge-disjoint).
Given a set F of subsets of [n] and A C [n], write F|4 := {SNA: S € F} (its projection onto
A). Prove that for every n and k, there exists a set F of subsets of [n] with |F| = O(k2¥ logn)
such that for every k-element subset A of [n], F|4 contains all 2 subsets of A.
Let A be a subset of the unit sphere in R? (centered at the origin) containing no pair of

orthogonal points.
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(a) Prove that A occupies at most 1/3 of the sphere in terms of surface area.

(b) Prove an upper bound smaller than 1/3 (give your best bound).

Let 7 = (r1,...,7r) be a vector of nonzero integers whose sum is nonzero. Prove that there
exists a real ¢ > 0 (depending on 7 only) such that the following holds: for every finite set
A of nonzero reals, there exists a subset B C A with |B| > ¢|A| such that there do not exist
bi,...,bp € B with r1by + -+ ribp = 0.

Prove that every set A of n nonzero integers contains two disjoint subsets By and Bs, such
that both By and By are sum-free, and |Bi| 4 |Bz| > 2n/3. Can you do it if A is a set of
nonzero reals?

3/2 edges contains a pair of vertex-disjoint

2/3

Prove that every graph with n vertices and m > n
and isomorphic subgraphs (not necessarily induced) each with at least ¢m*/® edges, where
¢ > 0 is a constant.

Let M(n) denote the maximum number of edges in a 3-uniform hypergraph on n vertices
without a clique on 4 vertices.

(a) Prove that M(n + 1)/(”;:1) < M(n)/(}) for all n, and conclude that M(n)/(}) ap-
proaches some limit a as n — oo.

(This limit is called the Turdn density of the hypergraph K ig), and its exact value is
currently unknown and is a major open problem.)

(b) Prove that for every § > 0, there exists € > 0 and ng so that every 3-uniform hypergraph
with n > ng vertices and at least (a + 6)(}) edges must contain at least €(’;) copies of
the clique on 4 vertices.

Using the alteration method, prove that the Ramsey number R(4,k) satisfies R(4,k) >
c(k/log k)? for some constant ¢ > 0.

Prove that every 3-uniform hypergraph with n vertices and m > n edges contains an inde-
pendent set (i.e., a set of vertices containing no edges) of size at least en3/? /+/m, where ¢ > 0
is a constant.

(Zarankiewicz problem) Prove that for every positive integer k > 2, there exists a constant

¢ > 0 such that for every n, there exists an n x n matrix with {0,1} entries, with at least
en?=2/(k+1) 175 such that there is no k x k submatrix consisting of all 1’s.

Fix k. Prove that there exists a constant ¢x > 1 so that for every sufficiently large n, there
exists a collection F of at least ¢} subsets of [n] such that for every k distinct Fi, ..., Fj, € F,
all 2% intersections ﬂle G, are nonempty, where each G; is either F; or [n] \ F;.

Acute sets in R™

(a) Prove that there exists a family of ((2/+v/3)") subsets of [n] containing no three distinct
members A, B, C satisfying ANBCC C AUB.

(b) Prove that there exists a set of Q((2/+/3)") points in R” so that all angles determined
by three points from the set are acute.

Remark: The current best lower and upper bounds for the maximum size of an “acute
set” in R™ (i.e., spanning only acute angles) are 2"~! + 1 and 2" — 1 respectively.

(c) Prove that there exists a constant ¢ > 1 such that for every n, there are at least ¢” points

in R™ so that the angle spanned by every three distinct points is at most 61°.
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Covering complements of sparse graphs by cliques

(a) Prove that every graph with n vertices and minimum degree n — d can be written as a
union of O(d?logn) cliques.

(b) Prove that every bipartite graph with n vertices on each side of the vertex bipartition
and minimum degree n — d can be written as a union of O(dlogn) complete bipartite
graphs (assume d > 1).

Let G = (V, E) be a graph with n vertices and minimum degree 6 > 2. Prove that there

exists A C V with |A|] < Cn(logd)/d, where C > 0 is a constant, so that every vertex in

V' \ A contains at least one neighbor in A and at least one neighbor not in A.

Let X be a nonnegative real-valued random variable. Suppose P(X = 0) < 1. Prove that

< Var X

— E[X?]

P(X =0)

Let X be a random variable with mean p and variance 0. Prove that for all A > 0,

0.2

o2+ N2
What is the threshold function for G(n,p) to contain a cycle?

P(X > p+ ) <

Show that, for each fixed k, there is a sequence p,, such that
P(G(n,pn) has a connected component with exactly k vertices) — 1 as n — oo.

Let p = (logn + f(n))/n. Show that, as n — oo,

0 if f(n) = —o0,

P(G(n,p) has no isolated vertices) —
1 if f(n) — oc.

Let v1 = (21,Y1), -+, Un = (Tn, yn) € Z* with |z;], |y;| < 27/2/(1004/n) for all i € [n]. Show
that there are two disjoint sets I, J C [n], not both empty, such that 37, ;vi = 3. ; v;.
Prove that there is an absolute constant ¢ > 0 so that the following holds. For every prime
p and every A C Z/pZ with |A| = k, there exists an integer x so that {zxa : a € A} intersects
every interval of length at least cp/\/k in Z/pZ.
Let Sy,...,Sk be subsets of [n]. Prove that if k& < 1.99n/logs n and n is sufficiently large,
then there are two distinct subsets X, Y C [n] such that | X N.S;| = Y N.S;| for all i € [k].
In addition, show that there is some constant C' such that the claim is false for k£ >
Cn/logyn. What is the best constant C?
Let X be a collection of pairwise orthogonal unit vectors in R™ and suppose that the projection
of each of these vectors on the first k coordinates has norm at least e. Show that |X| < k/e2,
and show that this is tight if €2 = k/2" < 1 for some integer 7.
Prove that there is a constant ¢ > 0 so that every hyperplane containing the origin in R"
intersects at least c-fraction of the 2" closed unit balls centered at {—1,1}".

(Give your best ¢. Can you get ¢ > 3/87? It is conjectured that ¢ = 1/2 works.)
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3/2 edge-

Prove that, with probability approaching 1 as n — oo, G(n, n~Y 2) has at least cn
disjoint triangles, where ¢ > 0 is some constant.
(Hint in white: )
Stmple nibble. Prove that for some constant C, with probability approaching 1 as n — oo,
(a) G(n,Cn~2/3) has at least n/100 vertex-disjoint triangles.
(b) G(n,Cn~2%/3) has at least 0.33n vertex-disjoint triangles
(Hint in white: )
(You are asked to solve the above problem using the second moment method. Later in the
course we will learn a different method to solve this problem.)
Let X ~ Binomial(n, p). Prove that for 0 < ¢ < p < 1,
P(X <ng) <e M) and  lim %logP(X < nq) = —H(||p)
and for 0 < p < g < 1,
P(X >ng) < e M and - lim %logP(X > ng) = —H(||p),

where

q l—gq
H(ql|lp) :=qlog =+ (1 — q)log .
(allp L0 qlog !

is known as the relative entropy or Kullback-Leibler divergence, in this case, between two
Bernoulli distributions.
Prove that there is a constant C' > 0 so that, with probability 1 — o(1) as n — oo, the
maximum number of edges in a bipartite subgraph of G(n,1/2) is at most n?/8 + Cn3/2.
(a) Prove that there is some constant ¢ > 1 so that there exists S C {0,1}" with |S| > ¢”
so that every pair of points in S differ in at least n/4 coordinates.
(b) Prove that there is some constant ¢ > 1 so that the the unit sphere in R™ contains at
least ™ points, where each pair of points is at distance at least 1 apart.

Planted clique. Give a deterministic polynomial-time algorithm solving the following problem
so that it succeeds over the random input with probability approaching 1 as n — oc:

Input: an n-vertex unlabeled graph G created as the union of G(n,1/2) and a clique on
vertex subset of size t = [100y/nlogn]|

Output: a clique in G of size t

Show that it is possible to color the edges of K, with at most 3\/n colors so that there are
no monochromatic triangles.

Prove that there is some constant C' so that it is possible to color the vertices of every k-
uniform k-regular hypergraph using at most k/logk colors so that every edge has at most
C'log k vertices of each color.

Prove that there is some constant ¢ > 0 so that given a graph and a set of k acceptable colors
for each vertex such that every color is acceptable for at most ck neighbors of each vertex,
there is always a proper coloring where every vertex is assigned one of its acceptable colors.
Prove that there is a constant C' > 0 so that for every sufficiently small ¢ > 0, one can choose

exactly one point inside each grid square [n,n + 1) x [m,m + 1) C R% m,n € Z, so that



45.

46.

47.

8.

49.

50.

51.

52.

ps3

53.

54.

18.218 PROBLEM SET

every rectangle of dimensions € by (C/¢)log(1/¢) in the plane (not necessarily axis-aligned)
contains at least one chosen point.

Prove that, for every ¢ > 0, there exists £y and some (a1, as, ...) € {0,1}" such that for every
¢ > {y and every i > 1, the vectors (a;, @jt1,...,ai1¢—1) and (@4, Gj1pi1, - - -, Gj100—1) differ
in at least (3 — €)¢ coordinates.

A periodic path in a graph G with respect to a vertex coloring f: V(G) — [k] is a path
v1Vy ... vg for some positive integer ¢ with f(v;) = f(vi3¢) for each i € [¢] (reminder: no
repeated vertices allowed in a path).

Prove that for every A, there exists k so that every graph with maximum degree at most A
has a vertex-coloring using k colors with no periodic paths.

Prove that every graph with maximum degree A can be properly edge-colored using O(A)
colors so that every cycle contains at least three colors.

(A proper edge-coloring is one where no two adjacent edges receive the same color.)

Prove that for every A, there exists g so that every bipartite graph with maximum degree
A and girth at least g can be properly edge-colored using A + 1 colors so that every cycle
contains at least three colors.

Prove that for every positive integer r, there exists C, so that every graph with maximum
degree A has a proper vertex coloring using at most C,A*1/7 colors so that every vertex has
at most r neighbors of each color.

Let H = (V, E) be a hypergraph satisfying, for some A > 1/2,

Z A Sl—i for every v € V
feEEweSf 2 4A
(here | f| is then number of vertices in the edge f). Prove that H is 2-colorable.
Prove that there exists ko and a red/blue coloring of Z without any monochromatic k-term
arithmetic progressions with k > ko and common difference less than 1.99%.
Vertex-disjoint cycles in digraphs. (Recall that a directed graph is k-regular if all vertices
have in-degree and out-degree both equal to k. Also, cycles cannot repeat vertices.)
(a) Prove that every k-regular directed graph has at least ck/logk vertex-disjoint directed
cycles, where ¢ > 0 is some constant.
(b) Prove that every k-regular directed graph has at least ck vertex-disjoint directed cycles,
where ¢ > 0 is some constant.
(Hint in white: )
Prove that there is a constant ¢ > 0 so that every n x n matrix where no entry appears more

than cn times contains cn disjoint Latin transversals.

(Hint in white: )
(a) Generalization of Cayley’s formula. Using Priifer codes, prove the identity
r1xg: -+ :cn(xl +---+ LUn Z IdT(l dT s ng(n)

where the sum is over all trees T on n vertices labeled by [n] and dp(i) is the degree of

vertex ¢ in 7.
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(b) Independence property for uniform spanning tree of K,. Let F be a forest with vertex
set [n], with components having fi,..., fs vertices so that f; + -+ fs = n. Prove that
the number of trees on the vertex set [n] that contain F is exactly n™ 2 [[;_,(f;/nfi™1).
Deduce that if Hy and Hs are vertex-disjoint subgraphs of K,, then for a uniformly
random spanning tree 1" of K, the events H; C T and Hs C T are independent.

(¢) Packing rainbow spanning trees. Prove that there is a constant ¢ > 0 so that for every
edge-coloring of K, where each color appears at most cn times, there exist at least cn
edge-disjoint spanning trees, where each spanning tree has all its edges colored differently.

Let G = (V, E) be a graph. Color every edge with red or blue independently and uniformly
at random. Let Ey be the set of red edges and E; the set of blue edges. Let G; = (V, E;) for

each ¢ = 0,1. Prove or disprove:
P(Gy and Gy are both connected) < P(Gy is connected)?.

A set family F is intersecting if ANB # () for all A, B € F. Let Fq, ..., Fi each be a collection
of subsets of [n] and suppose that each F; is intersecting. Prove that ‘U,’f:l .7-;-‘ < on —onk,
Let Gy be the grid graph on vertex set [m] x [n] (m vertices wide and n vertices tall). A
horizontal crossing is a path that connects some left-most vertex to some right-most vertex.

See below for an example of a horizontal crossing in G7 5.

Let H,, , denote the random subgraph of G, ,, obtained by keeping every edge with prob-
ability 1/2 independently.

Let RSW(k) denote the following statement: there exists a constant ¢ > 0 such that for
all positive integers n, P(Hpy, » has a horizontal crossing) > cy.
(a) Prove that RSW(2) implies RSW(100).
(b) Prove RSW(1).
(c) (Challenging. Not to be turned in) Prove RSW(2).
Let Uy and U, be increasing events and D a decreasing event of independent boolean random
variables. Suppose U; and Uj are independent. Prove that P(U|Us N D) < P(U;|Us).
Coupon collector. Let si,...,sm, be independent random elements in [n] (not necessarily
uniform or identically distributed; chosen with replacement) and S = {si,...,sm}. Let I
and J be disjoint subsets of [n]. Prove that P(/UJ C S) <P(I C S)P(J C 5).
(Hint in white: )
Prove that there exist ¢,e > 0 such that if Ay,..., A are increasing events of independent
boolean random variables with P(4;) < € for all i, then, letting X denote the number of
events A; that occur, one has P(X =1) <1 —¢. (Give your largest c.)
Prove that with probability 1 — o(1), the size of the largest subset of vertices of G(n,1/2)
inducing a triangle-free subgraph is ©(logn).
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Lower tails of small subgraph counts. Fix graph H and e € (0,1]. Let Xz denote the number

of copies of H in G(n,p). Prove that for all n and 0 < p < 1/2,
P(Xg <(1-¢EXpy) = e 0m.e(®H)  where &y = min n”(Hl)pe(H,).

H'CH:e(H')>0

Here the hidden constants in © g may depend on H and e (but not on n and p).

Vertex-disjoint triangles in G(n,p) again. Using Janson inequalities this time, give another

solution to Problem 36 in the following generality.

(a) Prove that for every ¢ > 0, there exists Cc > 0 such that such that with probability
1 —o(1), G(n,Ccn=2/3) contains at least (1/3 — €)n vertex-disjoint triangles.

(b) Compare the the dependence of the optimal C, on € you obtain using the method in
Problem 36 versus this problem (don’t worry about leading constant factors).

Show that ch(G(n,1/2)) = (1 +o(1)) with probability 1 — o(1).

Here ch(G) is the list-chromatic number (also called choosability) of a graph G and it is defined to the

_n
2logy

minimum k& such that if every vertex of G is assigned a list of k acceptable colors, then there exists a
proper coloring of G where every vertex is colored by one of its acceptable colors.

For each part, prove that there is some constant ¢ > 0 so that, for all A > 0,
P(|X — EX| > AW Var X) < 2¢~V.

(Such families of random variables are called sub-Gaussian.)

(a) X is the number of triangles in G(n,1/2).

(b) X is the number of inversions of a uniform random permutation of [n] (an inversion of
o € Sy, is a pair (i,7) with ¢ < j and o(i) > o(j)).

Let k < n/2 be positive integers and G' an n-vertex graph with average degree at most n/k.

Prove that a uniform random k-element subset of the vertices of G contains an independent

¢k where ¢ > 0 is a constant.

set of size at least ck with probability at least 1 — e~

True or False: In the definition of a martingale, the condition E[X,|X,—1 = zp_1,..., X0 =

xo] = xp—1 may be replaced by simply E[X,|X,,—1 = zp—1] = xp—1.

Prove that for every € > 0 there exists 4 > 0 and ng such that for all n > ng and S1,...,S,, C

[2n] with m < 2°" and |S;| = n for all i € [m], there exists a function f: [2n] — [n] so that

(1—et—em<|f(S)] <1 —et+e)nforallic m)].

Simultaneous bisections. Fix A. Let Gi,..., Gy with m = 2°™ be connected graphs of

maximum degree at most A on the same vertex set V with |V| = n. Prove that there exists

a partition V' = AU B so that every G; has (1 + o(1))e(G;)/2 edges between A and B.

Show that for every e > 0 there exists C' > 0 so that every S C [4]" with |S| > 4™ contains

four elements whose pairwise Hamming distance at least n — Cy/n.

Tighter concentration of chromatic number

(a) Prove that with probability 1 — o(1), every vertex subset of G(n,1/2) with at least n'/?
vertices contains an independent set of size at least clogn, where ¢ > 0 is some constant.

(b) Prove that there exists some function f(n) and constant C' such that for all n > 2,

P(f(n) < x(G(n,1/2)) < f(n) + CV/n/logn) > 0.99.
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72. Let G = (V, FE) with chromatic number x(G) = k and S a uniform random subset of V.
Prove that for every t > 0,

P(x(G[S]) < k/2— 1) < e/,

where ¢ > 0 is a constant and G[S] is the subgraph induced by S.

73. Prove that for all n there exists some k& ~ 2log,n and some n-vertex graph that contains
every graph on k vertices as an induced subgraph.

74. Prove that there exists a constant ¢ > 0 so that the following holds. Let G be a d-regular
graph and vy € V(G). Let m € N and consider a simple random walk vy, v1, ..., v, where
each v;41 is a uniform random neighbor of v;. For each v € V(G), let X, be the number

times that v appears among vy, . .., vy,. For that for every v € V(G) and A > 0

1 a2
Pl Xo— > Xu ZA+1] <27/
weN (v)
Here N (v) is the neighborhood of v.
75. Let maxcut(G) denote the maximum number of edges in a bipartite subgraph of G. Prove
there is a constant ¢ > 0 so that maxcut(G(n,1/2)) > n?/8 + cn®/? with probability 1 — o(1).

For the next three exercises, use Talagrand’s inequality
76. Let @ be a subset of the unit sphere in R". Let & € [0,1]" be a random vector with
independent coordinates. Let X = sup,cq (%, q) and m a median of X. Let ¢t > 0. Prove

P(|X —m| >t) < de /4,

77. Prove that there are constants ¢,C' > 0 such that if A is a symmetric n X n matrix with
independent entries in [—1, 1], then the second largest eigenvalue Ao(A) satisfies

P(|A2(A) — EXo(A)| > t) < Ce .

(Hint: use this Courant—Fischer characterization of A\2(X): for every pair of unit vectors
u,v € R™, there exist a,b € R with a® +b? = 1 and w = au + bv satisfying w! Xw < X\o(X).)

78. Let ¢ = g > n. Let ® = (z1,...,2,) and y = (y1,...,yn) be two random sequences whose
entries are chosen independently and uniformly at random from [g]. Let X be the length of
the longest common subsequence between x and y (i.e., X is the largest k such that there
exist i1 < -+ < iy and j; < --- < jg with x;; = vy, ..., x;, = y;, ). Show that with
probability 1 — o(1), X lies within \/n of its median.

Entropy methods (You are encouraged to find solutions using entropy)
79. (Submodularity) Prove that H(X,Y,Z)+ H(X) < H(X,Y)+ H(X, Z).
80. (Uniquely decodable codes) Let [r]* denote the set of all finite strings of elements in [r]. Let
A be a finite subset of [r|* and suppose no two distinct concatenations of sequences in A can
produce the same string. Prove that ) . r~lol <1 where |a| is the length of a € A.
81. Let G be a family of graphs on vertices labeled by [2n] such that the intersection of every

—n

2n
pair of graphs in G contains a perfect matching. Prove that |G| < 2(%)
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82. Let X,Y, Z be independent Z-valued random variables. Prove that
2HX+Y+2)<HX+Y)+HX+2Z2)+ HY + Z).
83. Triangles versus vees in a directed graph. Let V be a finite set, F C V x V', and
A={(z,y,2) € V3 (2,y), (y,2), (z,1) € E}|
(i.e., cyclic triangles; note the direction of edges) and
A= H(fn,y,z) eV3:(z,y),(zx,2) € E}’

Prove that A < A.
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