Prof. Yufei Zhao

- 1. Verify the following asymptotic calculations used in Ramsey number lower bounds:
 - (a) For each k, the largest n satisfying $\binom{n}{k} 2^{1-\binom{k}{2}} < 1$ has $n = \left(\frac{1}{e\sqrt{2}} + o(1)\right) k 2^{k/2}$.
 - (b) For each k, the maximum value of $n {n \choose k} 2^{1 {k \choose 2}}$ as n ranges over positive integers is $\left(\frac{1}{e} + o(1)\right) k 2^{k/2}$.

(c) For each k, the largest n satisfying $e\left(\binom{k}{2}\binom{n}{k-2}+1\right)2^{1-\binom{k}{2}} < 1$ satisfies $n = \left(\frac{\sqrt{2}}{e} + o(1)\right)k2^{k/2}$. 2. Prove that, if there is a real $p \in [0, 1]$ such that

$$\binom{n}{k} p^{\binom{k}{2}} + \binom{n}{t} (1-p)^{\binom{t}{2}} < 1$$

then the Ramsey number R(k,t) satisfies R(k,t) > n. Using this show that

$$R(4,t) \ge c \left(\frac{t}{\log t}\right)^{3/2}$$

for some constant c > 0.

- 3. (Extension of Sperner's theorem) Let \mathcal{F} be a collection of subset of [n] that does not contain k+1 elements forming a chain: $A_1 \subsetneq \cdots \subsetneq A_{k+1}$. Prove that \mathcal{F} is no larger than taking the union of the k levels of the boolean lattice closest to the middle layer.
- **ps1** 4. Let A_1, \ldots, A_m be *r*-element sets and B_1, \ldots, B_m be *s*-element sets. Suppose $A_i \cap B_i = \emptyset$ for each *i*, and for each $i \neq j$, either $A_i \cap B_j \neq \emptyset$ or $A_j \cap B_i \neq \emptyset$. Prove that $m \leq (r+s)^{r+s}/(r^rs^s)$.
- **ps1** 5. Prove that for every positive integer r, there exists an integer K such that the following holds. Let S be a set of rk points evenly spaced on a circle. If we partition $S = S_1 \cup \cdots \cup S_r$ so that $|S_i| = k$ for each i, then, provided $k \ge K$, there exist r congruent triangles where the vertices of the *i*-th triangle lie in S_i , for each $1 \le i \le r$.
- [ps1] 6. Prove that every set of 10 points in the plane can be covered by a union of disjoint unit disks.
- 7. Prove that $[n]^d$ cannot be partitioned into fewer than 2^d sets each of the form $A_1 \times \cdots \times A_d$ where $A_i \subseteq [n]$.
 - 8. Let $k \ge 4$ and H a k-uniform hypergraph with at most $4^{k-1}/3^k$ edges. Prove that there is a coloring of the vertices of H by four colors so that in every edge all four colors are represented.
- **ps1** 9. Let G be a graph on $n \ge 10$ vertices. Suppose that adding any new edge to G would create a new clique on 10 vertices. Prove that G has at least 8n 36 edges. (Hint in white:
 - 10. Prove that there is an absolute constant c > 0 so that for every $n \times n$ matrix with distinct real entries, one can permute its rows so that no column in the permuted matrix contains an increasing subsequence of length at least $c\sqrt{n}$. (A subsequence does not need to be selected from consecutive terms. For example, (1, 2, 3) is an increasing subsequence of (1, 5, 2, 4, 3).)
 - 11. Let G be a graph with n vertices and m edges. Prove that K_n can be written as a union of $O(n^2(\log n)/m)$ copies of G (not necessarily edge-disjoint).
- ps1 12. Given a set \mathcal{F} of subsets of [n] and $A \subseteq [n]$, write $\mathcal{F}|_A := \{S \cap A : S \in \mathcal{F}\}$ (its projection onto A). Prove that for every n and k, there exists a set \mathcal{F} of subsets of [n] with $|\mathcal{F}| = O(k2^k \log n)$ such that for every k-element subset A of [n], $\mathcal{F}|_A$ contains all 2^k subsets of A.
 - 13. Let A be a subset of the unit sphere in \mathbb{R}^3 (centered at the origin) containing no pair of orthogonal points.

- ps1 (a) Prove that A occupies at most 1/3 of the sphere in terms of surface area.
- ps1 \star (b) Prove an upper bound smaller than 1/3 (give your best bound).
 - 14. Let $\mathbf{r} = (r_1, \ldots, r_k)$ be a vector of nonzero integers whose sum is nonzero. Prove that there exists a real c > 0 (depending on \mathbf{r} only) such that the following holds: for every finite set A of nonzero reals, there exists a subset $B \subseteq A$ with $|B| \ge c|A|$ such that there do not exist $b_1, \ldots, b_k \in B$ with $r_1b_1 + \cdots + r_kb_k = 0$.
- ps1 15. Prove that every set A of n nonzero integers contains two disjoint subsets B_1 and B_2 , such that both B_1 and B_2 are sum-free, and $|B_1| + |B_2| > 2n/3$. Can you do it if A is a set of nonzero reals?
- ps1* 16. Prove that every graph with n vertices and $m \ge n^{3/2}$ edges contains a pair of vertex-disjoint and isomorphic subgraphs (not necessarily induced) each with at least $cm^{2/3}$ edges, where c > 0 is a constant.
 - 17. Let M(n) denote the maximum number of edges in a 3-uniform hypergraph on n vertices without a clique on 4 vertices.
 - (a) Prove that M(n + 1)/ (ⁿ⁺¹₃) ≤ M(n)/ (ⁿ₃) for all n, and conclude that M(n)/ (ⁿ₃) approaches some limit α as n → ∞.
 (This limit is called the *Turán density* of the hypergraph K⁽³⁾₄, and its exact value is currently unknown and is a major open problem.)
 - (b) Prove that for every $\delta > 0$, there exists $\epsilon > 0$ and n_0 so that every 3-uniform hypergraph with $n \ge n_0$ vertices and at least $(\alpha + \delta) \binom{n}{3}$ edges must contain at least $\epsilon \binom{n}{4}$ copies of the clique on 4 vertices.
 - 18. Using the alteration method, prove that the Ramsey number R(4,k) satisfies $R(4,k) \ge c(k/\log k)^2$ for some constant c > 0.
 - 19. Prove that every 3-uniform hypergraph with n vertices and $m \ge n$ edges contains an independent set (i.e., a set of vertices containing no edges) of size at least $cn^{3/2}/\sqrt{m}$, where c > 0 is a constant.
 - 20. (Zarankiewicz problem) Prove that for every positive integer $k \ge 2$, there exists a constant c > 0 such that for every n, there exists an $n \times n$ matrix with $\{0, 1\}$ entries, with at least $cn^{2-2/(k+1)}$ 1's, such that there is no $k \times k$ submatrix consisting of all 1's.
- **ps2** 21. Fix k. Prove that there exists a constant $c_k > 1$ so that for every sufficiently large n, there exists a collection \mathcal{F} of at least c_k^n subsets of [n] such that for every k distinct $F_1, \ldots, F_k \in \mathcal{F}$, all 2^k intersections $\bigcap_{i=1}^k G_i$ are nonempty, where each G_i is either F_i or $[n] \setminus F_i$.
 - 22. Acute sets in \mathbb{R}^n

ps2

- (a) Prove that there exists a family of $\Omega((2/\sqrt{3})^n)$ subsets of [n] containing no three distinct members A, B, C satisfying $A \cap B \subseteq C \subseteq A \cup B$.
- (b) Prove that there exists a set of Ω((2/√3)ⁿ) points in ℝⁿ so that all angles determined by three points from the set are acute. *Remark:* The current best lower and upper bounds for the maximum size of an "acute set" in ℝⁿ (i.e., spanning only acute angles) are 2ⁿ⁻¹ + 1 and 2ⁿ - 1 respectively.
- (c) Prove that there exists a constant c > 1 such that for every n, there are at least c^n points in \mathbb{R}^n so that the angle spanned by every three distinct points is at most 61° .

- ps2* 23. Covering complements of sparse graphs by cliques
 - (a) Prove that every graph with n vertices and minimum degree n d can be written as a union of $O(d^2 \log n)$ cliques.
 - (b) Prove that every bipartite graph with n vertices on each side of the vertex bipartition and minimum degree n - d can be written as a union of $O(d \log n)$ complete bipartite graphs (assume $d \ge 1$).
- ps2* 24. Let G = (V, E) be a graph with n vertices and minimum degree $\delta \ge 2$. Prove that there exists $A \subseteq V$ with $|A| \le Cn(\log \delta)/\delta$, where C > 0 is a constant, so that every vertex in $V \setminus A$ contains at least one neighbor in A and at least one neighbor not in A.
 - 25. Let X be a nonnegative real-valued random variable. Suppose $\mathbb{P}(X=0) < 1$. Prove that

$$\mathbb{P}(X=0) \le \frac{\operatorname{Var} X}{\mathbb{E}[X^2]}.$$

ps2 26. Let X be a random variable with mean μ and variance σ^2 . Prove that for all $\lambda > 0$,

$$\mathbb{P}(X \ge \mu + \lambda) \le \frac{\sigma^2}{\sigma^2 + \lambda^2}.$$

- 27. What is the threshold function for G(n, p) to contain a cycle?
- ps2 28. Show that, for each fixed k, there is a sequence p_n such that

 $\mathbb{P}(G(n, p_n) \text{ has a connected component with exactly } k \text{ vertices}) \to 1 \text{ as } n \to \infty.$

29. Let $p = (\log n + f(n))/n$. Show that, as $n \to \infty$,

$$\mathbb{P}(G(n,p) \text{ has no isolated vertices}) \to \begin{cases} 0 & \text{if } f(n) \to -\infty, \\ 1 & \text{if } f(n) \to \infty. \end{cases}$$

- **ps2** 30. Let $v_1 = (x_1, y_1), \ldots, v_n = (x_n, y_n) \in \mathbb{Z}^2$ with $|x_i|, |y_i| \leq 2^{n/2}/(100\sqrt{n})$ for all $i \in [n]$. Show that there are two disjoint sets $I, J \subseteq [n]$, not both empty, such that $\sum_{i \in I} v_i = \sum_{i \in J} v_j$.
- ps2* 31. Prove that there is an absolute constant c > 0 so that the following holds. For every prime p and every $A \subseteq \mathbb{Z}/p\mathbb{Z}$ with |A| = k, there exists an integer x so that $\{xa : a \in A\}$ intersects every interval of length at least cp/\sqrt{k} in $\mathbb{Z}/p\mathbb{Z}$.
- **ps2*** 32. Let S_1, \ldots, S_k be subsets of [n]. Prove that if $k \leq 1.99n/\log_2 n$ and n is sufficiently large, then there are two distinct subsets $X, Y \subseteq [n]$ such that $|X \cap S_i| = |Y \cap S_i|$ for all $i \in [k]$. In addition, show that there is some constant C such that the claim is false for $k \geq Cn/\log_2 n$. What is the best constant C?
- **ps2*** 33. Let X be a collection of pairwise orthogonal unit vectors in \mathbb{R}^n and suppose that the projection of each of these vectors on the first k coordinates has norm at least ϵ . Show that $|X| \leq k/\epsilon^2$, and show that this is tight if $\epsilon^2 = k/2^r < 1$ for some integer r.
- ps2* 34. Prove that there is a constant c > 0 so that every hyperplane containing the origin in \mathbb{R}^n intersects at least c-fraction of the 2^n closed unit balls centered at $\{-1, 1\}^n$. (Give your best c. Can you get $c \ge 3/8$? It is conjectured that c = 1/2 works.)

- ps2 35. Prove that, with probability approaching 1 as $n \to \infty$, $G(n, n^{-1/2})$ has at least $cn^{3/2}$ edgedisjoint triangles, where c > 0 is some constant. (Hint in white:
- **ps2** 36. Simple nibble. Prove that for some constant C, with probability approaching 1 as $n \to \infty$, (a) $G(n, Cn^{-2/3})$ has at least n/100 vertex-disjoint triangles.
 - (b) $G(n, Cn^{-2/3})$ has at least 0.33*n* vertex-disjoint triangles (Hint in white:

(You are asked to solve the above problem using the second moment method. Later in the course we will learn a different method to solve this problem.)

37. Let $X \sim \text{Binomial}(n, p)$. Prove that for $0 < q \le p < 1$,

$$\mathbb{P}(X \le nq) \le e^{-nH(q||p)}$$
 and $\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}(X \le nq) = -H(||p)$

and for 0 ,

$$\mathbb{P}(X \ge nq) \le e^{-nH(q||p)}$$
 and $\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}(X \ge nq) = -H(||p),$

where

$$H(q||p) := q \log \frac{q}{p} + (1-q) \log \frac{1-q}{1-p}.$$

is known as the *relative entropy* or *Kullback-Leibler divergence*, in this case, between two Bernoulli distributions.

- 38. Prove that there is a constant C > 0 so that, with probability 1 o(1) as $n \to \infty$, the maximum number of edges in a bipartite subgraph of G(n, 1/2) is at most $n^2/8 + Cn^{3/2}$.
- 39. (a) Prove that there is some constant c > 1 so that there exists $S \subset \{0, 1\}^n$ with $|S| \ge c^n$ so that every pair of points in S differ in at least n/4 coordinates.
 - (b) Prove that there is some constant c > 1 so that the unit sphere in \mathbb{R}^n contains at least c^n points, where each pair of points is at distance at least 1 apart.
- **ps3** 40. Planted clique. Give a deterministic polynomial-time algorithm solving the following problem so that it succeeds over the random input with probability approaching 1 as $n \to \infty$: Input: an *n*-vertex unlabeled graph *G* created as the union of G(n, 1/2) and a clique on vertex subset of size $t = \lfloor 100\sqrt{n \log n} \rfloor$ Output: a clique in *G* of size t
- ps3 41. Show that it is possible to color the edges of K_n with at most $3\sqrt{n}$ colors so that there are no monochromatic triangles.
 - 42. Prove that there is some constant C so that it is possible to color the vertices of every k-uniform k-regular hypergraph using at most $k/\log k$ colors so that every edge has at most $C\log k$ vertices of each color.
- 43. Prove that there is some constant c > 0 so that given a graph and a set of k acceptable colors for each vertex such that every color is acceptable for at most ck neighbors of each vertex, there is always a proper coloring where every vertex is assigned one of its acceptable colors.
- **ps3*** 44. Prove that there is a constant C > 0 so that for every sufficiently small $\epsilon > 0$, one can choose exactly one point inside each grid square $[n, n + 1) \times [m, m + 1) \subset \mathbb{R}^2$, $m, n \in \mathbb{Z}$, so that

every rectangle of dimensions ϵ by $(C/\epsilon) \log(1/\epsilon)$ in the plane (not necessarily axis-aligned) contains at least one chosen point.

- **ps3** 45. Prove that, for every $\epsilon > 0$, there exists ℓ_0 and some $(a_1, a_2, ...) \in \{0, 1\}^{\mathbb{N}}$ such that for every $\ell > \ell_0$ and every i > 1, the vectors $(a_i, a_{i+1}, ..., a_{i+\ell-1})$ and $(a_{i+\ell}, a_{i+\ell+1}, ..., a_{i+2\ell-1})$ differ in at least $(\frac{1}{2} \epsilon)\ell$ coordinates.
- **ps3** 46. A periodic path in a graph G with respect to a vertex coloring $f: V(G) \to [k]$ is a path $v_1v_2 \ldots v_{2\ell}$ for some positive integer ℓ with $f(v_i) = f(v_{i+\ell})$ for each $i \in [\ell]$ (reminder: no repeated vertices allowed in a path).

Prove that for every Δ , there exists k so that every graph with maximum degree at most Δ has a vertex-coloring using k colors with no periodic paths.

ps3 47. Prove that every graph with maximum degree Δ can be properly edge-colored using $O(\Delta)$ colors so that every cycle contains at least three colors.

(A proper edge-coloring is one where no two adjacent edges receive the same color.)

- ps3* 48. Prove that for every Δ , there exists g so that every bipartite graph with maximum degree Δ and girth at least g can be properly edge-colored using $\Delta + 1$ colors so that every cycle contains at least three colors.
- **ps3*** 49. Prove that for every positive integer r, there exists C_r so that every graph with maximum degree Δ has a *proper* vertex coloring using at most $C_r \Delta^{1+1/r}$ colors so that every vertex has at most r neighbors of each color.
 - 50. Let H = (V, E) be a hypergraph satisfying, for some $\lambda > 1/2$,

$$\sum_{f \in E: v \in f} \lambda^{|f|} \le \frac{1}{2} - \frac{1}{4\lambda} \quad \text{ for every } v \in V$$

(here |f| is then number of vertices in the edge f). Prove that H is 2-colorable.

- 51. Prove that there exists k_0 and a red/blue coloring of \mathbb{Z} without any monochromatic k-term arithmetic progressions with $k \ge k_0$ and common difference less than 1.99^k .
- 52. Vertex-disjoint cycles in digraphs. (Recall that a directed graph is k-regular if all vertices have in-degree and out-degree both equal to k. Also, cycles cannot repeat vertices.)
- ps3 (a) Prove that every k-regular directed graph has at least $ck/\log k$ vertex-disjoint directed cycles, where c > 0 is some constant.
- **ps3*** (b) Prove that every k-regular directed graph has at least ck vertex-disjoint directed cycles, where c > 0 is some constant. (Hint in white:)
- **ps3** \star 53. Prove that there is a constant c > 0 so that every $n \times n$ matrix where no entry appears more than cn times contains cn disjoint Latin transversals. (Hint in white:
 - 54. (a) Generalization of Cayley's formula. Using Prüfer codes, prove the identity

$$x_1 x_2 \cdots x_n (x_1 + \dots + x_n)^{n-2} = \sum_T x_1^{d_T(1)} x_2^{d_T(2)} \cdots x_n^{d_T(n)}$$

where the sum is over all trees T on n vertices labeled by [n] and $d_T(i)$ is the degree of vertex i in T.

- (b) Independence property for uniform spanning tree of K_n . Let F be a forest with vertex set [n], with components having f_1, \ldots, f_s vertices so that $f_1 + \cdots + f_s = n$. Prove that the number of trees on the vertex set [n] that contain F is exactly $n^{n-2} \prod_{i=1}^s (f_i/n^{f_i-1})$. Deduce that if H_1 and H_2 are vertex-disjoint subgraphs of K_n , then for a uniformly random spanning tree T of K_n , the events $H_1 \subseteq T$ and $H_2 \subseteq T$ are independent.
- (c) Packing rainbow spanning trees. Prove that there is a constant c > 0 so that for every edge-coloring of K_n where each color appears at most cn times, there exist at least cn edge-disjoint spanning trees, where each spanning tree has all its edges colored differently.
- **ps4** 55. Let G = (V, E) be a graph. Color every edge with red or blue independently and uniformly at random. Let E_0 be the set of red edges and E_1 the set of blue edges. Let $G_i = (V, E_i)$ for each i = 0, 1. Prove or disprove:

 $\mathbb{P}(G_0 \text{ and } G_1 \text{ are both connected}) \leq \mathbb{P}(G_0 \text{ is connected})^2.$

- **ps4** 56. A set family \mathcal{F} is *intersecting* if $A \cap B \neq \emptyset$ for all $A, B \in \mathcal{F}$. Let $\mathcal{F}_1, \ldots, \mathcal{F}_k$ each be a collection of subsets of [n] and suppose that each \mathcal{F}_i is intersecting. Prove that $\left|\bigcup_{i=1}^k \mathcal{F}_i\right| \leq 2^n 2^{n-k}$.
 - 57. Let $G_{m,n}$ be the grid graph on vertex set $[m] \times [n]$ (*m* vertices wide and *n* vertices tall). A *horizontal crossing* is a path that connects some left-most vertex to some right-most vertex. See below for an example of a horizontal crossing in $G_{7,5}$.

Let $H_{m,n}$ denote the random subgraph of $G_{m,n}$ obtained by keeping every edge with probability 1/2 independently.

Let $\mathsf{RSW}(k)$ denote the following statement: there exists a constant $c_k > 0$ such that for all positive integers n, $\mathbb{P}(H_{kn,n}$ has a horizontal crossing) $\geq c_k$.

- (a) Prove that $\mathsf{RSW}(2)$ implies $\mathsf{RSW}(100)$.
- (b) Prove $\mathsf{RSW}(1)$.

(c) (Challenging. Not to be turned in) Prove $\mathsf{RSW}(2)$.

- **ps4** 58. Let U_1 and U_2 be increasing events and D a decreasing event of independent boolean random variables. Suppose U_1 and U_2 are independent. Prove that $\mathbb{P}(U_1|U_2 \cap D) \leq \mathbb{P}(U_1|U_2)$.
- **ps4** 59. Coupon collector. Let s_1, \ldots, s_m be independent random elements in [n] (not necessarily uniform or identically distributed; chosen with replacement) and $S = \{s_1, \ldots, s_m\}$. Let I and J be disjoint subsets of [n]. Prove that $\mathbb{P}(I \cup J \subseteq S) \leq \mathbb{P}(I \subseteq S)\mathbb{P}(J \subseteq S)$. (Hint in white:
- **ps4*** 60. Prove that there exist $c, \epsilon > 0$ such that if A_1, \ldots, A_k are increasing events of independent boolean random variables with $\mathbb{P}(A_i) \leq \epsilon$ for all i, then, letting X denote the number of events A_i that occur, one has $\mathbb{P}(X = 1) \leq 1 c$. (Give your largest c.)
- ps4 61. Prove that with probability 1 o(1), the size of the largest subset of vertices of G(n, 1/2) inducing a triangle-free subgraph is $\Theta(\log n)$.

ps4

62. Lower tails of small subgraph counts. Fix graph H and $\epsilon \in (0, 1]$. Let X_H denote the number of copies of H in G(n, p). Prove that for all n and 0 ,

$$\mathbb{P}(X_H \le (1-\epsilon)\mathbb{E}X_H) = e^{-\Theta_{H,\epsilon}(\Phi_H)} \quad \text{where } \Phi_H := \min_{\substack{H' \subseteq H: e(H') > 0}} n^{v(H')} p^{e(H')}.$$

Here the hidden constants in $\Theta_{H,\epsilon}$ may depend on H and ϵ (but not on n and p).

- 63. Vertex-disjoint triangles in G(n, p) again. Using Janson inequalities this time, give another solution to Problem 36 in the following generality.
- (a) Prove that for every $\epsilon > 0$, there exists $C_{\epsilon} > 0$ such that such that with probability 1 o(1), $G(n, C_{\epsilon}n^{-2/3})$ contains at least $(1/3 \epsilon)n$ vertex-disjoint triangles.
- ps4* (b) Compare the dependence of the optimal C_{ϵ} on ϵ you obtain using the method in Problem 36 versus this problem (don't worry about leading constant factors).
- **ps4*** 64. Show that $ch(G(n, 1/2)) = (1 + o(1))\frac{n}{2\log_2 n}$ with probability 1 o(1). Here ch(G) is the *list-chromatic number* (also called *choosability*) of a graph G and it is defined to the minimum k such that if every vertex of G is assigned a list of k acceptable colors, then there exists a proper coloring of G where every vertex is colored by one of its acceptable colors.
- **ps4** 65. For each part, prove that there is some constant c > 0 so that, for all $\lambda > 0$,

$$\mathbb{P}(|X - \mathbb{E}X| \ge \lambda \sqrt{\operatorname{Var} X}) \le 2e^{-c\lambda^2}.$$

(Such families of random variables are called *sub-Gaussian*.)

(a) X is the number of triangles in G(n, 1/2).

ps4

- (b) X is the number of inversions of a uniform random permutation of [n] (an *inversion* of $\sigma \in S_n$ is a pair (i, j) with i < j and $\sigma(i) > \sigma(j)$).
- ps4* 66. Let $k \le n/2$ be positive integers and G an n-vertex graph with average degree at most n/k. Prove that a uniform random k-element subset of the vertices of G contains an independent set of size at least ck with probability at least $1 - e^{-ck}$, where c > 0 is a constant.
- **ps5** 67. True or False: In the definition of a martingale, the condition $\mathbb{E}[X_n|X_{n-1} = x_{n-1}, \dots, X_0 = x_0] = x_{n-1}$ may be replaced by simply $\mathbb{E}[X_n|X_{n-1} = x_{n-1}] = x_{n-1}$.
- **ps5** 68. Prove that for every $\epsilon > 0$ there exists $\delta > 0$ and n_0 such that for all $n \ge n_0$ and $S_1, \ldots, S_m \subset [2n]$ with $m \le 2^{\delta n}$ and $|S_i| = n$ for all $i \in [m]$, there exists a function $f: [2n] \to [n]$ so that $(1 e^{-1} \epsilon)n \le |f(S_i)| \le (1 e^{-1} + \epsilon)n$ for all $i \in [m]$.
- **ps5** 69. Simultaneous bisections. Fix Δ . Let G_1, \ldots, G_m with $m = 2^{o(n)}$ be connected graphs of maximum degree at most Δ on the same vertex set V with |V| = n. Prove that there exists a partition $V = A \cup B$ so that every G_i has $(1 + o(1))e(G_i)/2$ edges between A and B.
- **ps5** 70. Show that for every $\epsilon > 0$ there exists C > 0 so that every $S \subset [4]^n$ with $|S| \ge \epsilon 4^n$ contains four elements whose pairwise Hamming distance at least $n C\sqrt{n}$.
- ps5* 71. Tighter concentration of chromatic number
 - (a) Prove that with probability 1 o(1), every vertex subset of G(n, 1/2) with at least $n^{1/3}$ vertices contains an independent set of size at least $c \log n$, where c > 0 is some constant.
 - (b) Prove that there exists some function f(n) and constant C such that for all $n \ge 2$,

$$\mathbb{P}(f(n) \le \chi(G(n, 1/2)) \le f(n) + C\sqrt{n/\log n}) \ge 0.99.$$

ps5* 72. Let G = (V, E) with chromatic number $\chi(G) = k$ and S a uniform random subset of V. Prove that for every $t \ge 0$,

$$\mathbb{P}(\chi(G[S]) \le k/2 - t) \le e^{-ct^2/k},$$

where c > 0 is a constant and G[S] is the subgraph induced by S.

- **ps5**^{*} 73. Prove that for all *n* there exists some $k \sim 2 \log_2 n$ and some *n*-vertex graph that contains every graph on *k* vertices as an induced subgraph.
- **ps5*** 74. Prove that there exists a constant c > 0 so that the following holds. Let G be a d-regular graph and $v_0 \in V(G)$. Let $m \in \mathbb{N}$ and consider a simple random walk v_0, v_1, \ldots, v_m where each v_{i+1} is a uniform random neighbor of v_i . For each $v \in V(G)$, let X_v be the number times that v appears among v_0, \ldots, v_m . For that for every $v \in V(G)$ and $\lambda > 0$

$$\mathbb{P}\left(X_v - \frac{1}{d}\sum_{w \in N(v)} X_w \ge \lambda + 1\right) \le 2e^{-c\lambda^2/m}$$

Here N(v) is the neighborhood of v.

ps5* 75. Let $\max \operatorname{cut}(G)$ denote the maximum number of edges in a bipartite subgraph of G. Prove there is a constant c > 0 so that $\max \operatorname{cut}(G(n, 1/2)) > n^2/8 + cn^{3/2}$ with probability 1 - o(1).

For the next three exercises, use Talagrand's inequality

ps5 76. Let Q be a subset of the unit sphere in \mathbb{R}^n . Let $\boldsymbol{x} \in [0,1]^n$ be a random vector with independent coordinates. Let $X = \sup_{\boldsymbol{q} \in Q} \langle \boldsymbol{x}, \boldsymbol{q} \rangle$ and m a median of X. Let t > 0. Prove

$$\mathbb{P}(|X-m| \ge t) \le 4e^{-t^2/4}$$

ps5* 77. Prove that there are constants c, C > 0 such that if A is a symmetric $n \times n$ matrix with independent entries in [-1, 1], then the second largest eigenvalue $\lambda_2(A)$ satisfies

$$\mathbb{P}(|\lambda_2(A) - \mathbb{E}\lambda_2(A)| > t) \le Ce^{-ct^2}.$$

(Hint: use this Courant–Fischer characterization of $\lambda_2(X)$: for every pair of unit vectors $u, v \in \mathbb{R}^n$, there exist $a, b \in \mathbb{R}$ with $a^2 + b^2 = 1$ and w = au + bv satisfying $w^t X w \leq \lambda_2(X)$.)

78. Let $q = q_n \gg n$. Let $\boldsymbol{x} = (x_1, \ldots, x_n)$ and $\boldsymbol{y} = (y_1, \ldots, y_n)$ be two random sequences whose entries are chosen independently and uniformly at random from [q]. Let X be the length of the longest common subsequence between \boldsymbol{x} and \boldsymbol{y} (i.e., X is the largest k such that there exist $i_1 < \cdots < i_k$ and $j_1 < \cdots < j_k$ with $x_{i_1} = y_{j_1}, \ldots, x_{i_k} = y_{j_k}$). Show that with probability 1 - o(1), X lies within \sqrt{n} of its median.

Entropy methods (You are encouraged to find solutions using entropy)

- 79. (Submodularity) Prove that $H(X, Y, Z) + H(X) \le H(X, Y) + H(X, Z)$.
- ps5★ 80. (Uniquely decodable codes) Let $[r]^*$ denote the set of all finite strings of elements in [r]. Let A be a finite subset of $[r]^*$ and suppose no two distinct concatenations of sequences in A can produce the same string. Prove that $\sum_{a \in A} r^{-|a|} \leq 1$ where |a| is the length of $a \in A$.
- ps5 81. Let \mathcal{G} be a family of graphs on vertices labeled by [2n] such that the intersection of every pair of graphs in \mathcal{G} contains a perfect matching. Prove that $|\mathcal{G}| \leq 2^{\binom{2n}{2}-n}$.

ps5* 82. Let X, Y, Z be independent \mathbb{Z} -valued random variables. Prove that

$$2H(X + Y + Z) \le H(X + Y) + H(X + Z) + H(Y + Z).$$

ps5* 83. Triangles versus vees in a directed graph. Let V be a finite set, $E \subseteq V \times V$, and

$$\triangle = \left| \left\{ (x, y, z) \in V^3 : (x, y), (y, z), (z, x) \in E \right\} \right|$$

(i.e., cyclic triangles; note the direction of edges) and

$$\wedge = \left| \left\{ (x, y, z) \in V^3 : (x, y), (x, z) \in E \right\} \right|.$$

Prove that $\triangle \leq \land$.

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

18.218 Probabilistic Method in Combinatorics Spring 2019

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.