
4 The Second Moment Method
Starting in this section, we shift the focus to that of concentration: essentially, can we say that the value of our

random variable X is realtively close to the mean?

4.1 Refresher on statistics and concentration
We’ve been discussing expectations of the form E[X] so far, and let’s say that we find E[X] to be large. Can we

generally conclude that X is large or positive with high probability? No, because outliers can increase the mean

dramatically.

So let’s consider a sum of variables

X = X1 +X2 + · · ·+Xn, Xi ∼ Bernoulli(p).

If the Xis are independent, we know a lot by the central limit theorem: a lot of random variables will converge to a

Gaussian or other known distribution in the large limit. But most of the time, we only have that our variables are

“mostly independent” or not independent at all. Is there any way for us to still understand the concentration of the

sum?

Definition 4.1

The variance of a random variable X is defined to be

var(X) = E[X − E[X]]2 = E[X2]− E[X]2.

We will often let µ denote the mean of a variable, σ2 denote the variance, and define σ to be the (positive)

standard deviation of X.

Proposition 4.2 (Chebyshev’s inequality)

Given a random variable X with mean µ and variance σ2, then for all λ,

Pr(|x − µ| ≥ λσ) ≤
1

λ2
.

Proof. The left hand side is equivalent to

Pr((x − µ)2 ≥ λ2σ2)

which, by Markov’s inequality, is

≤
E[|x − µ|2]
λ2σ2

=
σ2

λ2σ2
=
1

λ2
.

Why do we care about these results? The central idea is that if our standard deviation σ � µ, then we have

“concentration” of polynomial decay by Chebyshev.
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Corollary 4.3 (of Chebyshev)

The probability that X deviates from its mean by more than ε times its mean is bounded as

Pr(|X − E[X]| ≥ εE[X]) ≤
var(X)

ε2E[X]2
.

In particular, if var(X) = o(E[X]2), then X ∼ E[X] with high probability.

Usually, variance is easy to calculate. This is because

var(X) = cov[X,X],

where cov[X, Y ] is the covariance

E[(X − E[X])(Y − E[Y ]) = E[XY ]− E[X]E[Y ].

Since this expression is bilinear, if X = X1 + · · ·+Xn, we can expand this out as∑
i ,j

cov[Xi , Xj ] =
∑
i

var(Xi) + 2
∑
i<j

cov[Xi , Xj ]

Often the second term here is small, because each Xi is independent with many other Xjs or there is low covariance

between them.

Example 4.4 (Binomial distribution)

If X = X1 +X2 + · · ·+Xn, where each Xi is independently distributed via the Bernoulli distribution Bernoulli(p),

the mean is E[X] = np, and σ2 = np(1− p). As long as np � 1, we have σ � µ, so X ∼ µ with high probability.

Later on, we’ll get much better bounds. (By the way, we want np � 1 so our distribution doesn’t approach a

Poisson distribution instead)

Example 4.5

Let X be the number of triangles in a random graph G(n, p), where each edge of Kn is formed with probability p.

Is this variable concentrated around its mean? It’s pretty easy to compute that mean: X is the sum over all

triangles

X =
∑
i ,j,k∈[n]
distinct

Xi jk

where Xi jk is 1 if they form a triangle and 0 otherwise. Each Xi jk can be expanded out in terms of the indicator

variables for edges:

X =
∑
i ,j,k∈[n]
distinct

Xi jXjkXik .

By linearity of expectation, each term is p3, so E[X] =
(
n
3

)
p3. The variance is a bit harder, and we’re mostly worried

about the covariance term: when do those cross-terms come up?

Well, given a pair of triples T1, T2 of vertices, we can find the covariance for those triangles. If there is at

most one vertex of overlap, no edges overlap, so there is no covariance. The others are a bit harder, but we use
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cov[X, Y ] = E[XY ]− E[X]E[Y ]:

cov[XT1 , XT2 ] =


0 |T1 ∩ T2| ≤ 1

p5 − p6 |T1 ∩ T2| = 2

p3 − p6 T1 = T2

So we can now finish the computation:

var(X) =

(
n

3

)
(p3 − p6) +

(
n

2

)
(n − 2)(n − 3)(p5 − p6) . n3p3 + n4p5,

and we have σ � µ if and only if p � 1
n . So this means that the number of triangles is concentrated around its mean

with high probability if p is large enough! Later in the course, we will use other methods to prove better concentration.

Fact 4.6

It turns out that X satisfies an asymptotic central limit theorem:

X − µ
σ

→ N(0, 1).

This fact was initially proved by taking moments of the form E[Xn], and the idea is that if the moments agree

with the Gaussian moments, we have a Gaussian distribution. But there’s a newer method that can be used called the

method of projections.

4.2 Threshold functions for subgraphs
We’re going to try to look for small subgraphs in a large random graph G(n, p). Here’s an example:

Problem 4.7

For which p = pn (a sequence in terms of n) does G(n, p) have a K4 subgraph with high probability 1− o(1)?

Lemma 4.8

For any random variable X that takes on nonnegative values,

Pr(X = 0) ≤
var(X)

E[X]2
.

Proof. The probability that X = 0 is at most the probability |x − µ| ≥ µ, which is at most var(x)µ2 by Chebyshev’s

inequality.

Corollary 4.9

Let X take on only nonnegative values. If the variance of X is much smaller than µ2, then X > 0 with high

probability.

Definition 4.10

r(n) is a threshold function for a property P if p = pn � r(n) means that G(n, p) satisfies P with low probability,

while p = pn � r(n) means that G(n, p) satisfies P with high probability.
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Proposition 4.11

The threshold for a random graph to contain K3 (triangles) is 1n , so the probability a graph contains a K3 is 0 if

pn → 0 and 1 if pn →∞.

Proof. Let X be the number of triangles in G(n, p). Recall that

µ =

(
n

3

)
p3 ∼

n3p3

6
, σ2 = var(X).

If p � 1
n , the mean µ = o(1), so by Markov’s inequality, the probability X has at least one triangle vanishes:

Pr(X ≥ 1) ≤ E[X] = o(1).

On the other hand, if p � 1
n , µ → ∞, while σ � µ. So X is concentrated around its mean with high probability,

making it positive with high probability.

Problem 4.12

Given a subgraph H, what’s the threshold for containing H?

Let X = X1 + · · ·+ Xm, where each Xi is an indicator variable for Ai . We let i ∼ j for i 6= j to mean that Ai and

Aj are not independent. So if i 6∼ j , then cov[Xi , Xj ] = 0, but if i ∼ j ,

cov[Xi , Xj ] = E[XiXj ]− E[Xi ]E[Xj ] ≤ E[XiXj ] = Pr(Ai ∩ Aj).

So expanding out the expression for variance,

var(X) =
∑
i ,j

cov[Xi , Xj ] ≤ E[X] + ∆,

where ∆ is defined as (the bounded covariance term)∑
i<j,i∼j

Pr(Ai ∩ Aj).

So we approximate covariances by probabilities, but if there are very few dependent pairs, we really just care about the

number of them. It’s possible that all the Xis are all correlated, or that Xis are all nearly independent, but that’s not

the case here.

Corollary 4.13

If E[X]→∞ and ∆ = o(E[X]2), then with high probability, X is positive and concentrated around its mean.

Simplifying ∆,

∆ =
∑
i<j,i∼j

Pr(Ai ∩ Aj) =
∑
i

Pr(Ai)
∑
j :j∼i
Pr(Aj |Ai)

and usually the inner sum doesn’t depend on i by symmetry. In such cases, we can define

∆∗ =
∑
j :j∼i
Pr(Aj |Ai).
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We then have

∆ =
∑
i

Pr(Ai)∆
∗ = ∆∗ · E[X],

and this means that if E[X]→∞ and ∆∗ � µ, X is positive and concentrated around its mean with high probability.

Proposition 4.14

The threshold for having K4 as a subgraph is n−2/3.

Proof. Let X be the random variable which is the number of K4 graphs in G(n, p). The expected value of X is

E[X] =
(
n

4

)
p6 ∼

n4p6

24
,

and if p � n−2/3, then µ = o(1), so again by Markov, X is 0 with high probability.

On the other hand, if p � n−2/3, the mean goes to infinity, and we’ll look at the second moment by letting AS be

the event that we induce a K4 on any set S of four vertices. then

∆∗ . n2p5 + np3,

where n2p5 comes from sets sharing two vertices (which means we need to find two more and have 5 edges chosen

with probability p), and np3 comes from sets sharing three vertices (meaning we find one more and have 3 more edges

chosen). Provided that p � n−2/3, both terms here are small: ∆∗ = o(E[X]), and we are done by Corollary 4.13.

So it seems we should be able to do this with any graph H. But the idea with K3 and K4 was that any p with

µ→∞ gave X > 0 with high probability. In general, the answer isn’t quite so simple.

Question 4.15. Consider a K4 with an extra edge attached to a vertex as the subgraph that we’re looking for. What

is its threshold density?

The expected number of copies of this is E[XH] � n5p7, so we might predict that the threshold is p = n−5/7.

Indeed, if p � n−5/7, E[X] is very small, and we have zero copies with small probability. But now let’s say p � n−5/7

but p � n−2/3. There are no K4s, so there’s no way we can have this graph at all. Finally, when p � n−2/3, we have

a bunch of K4s: it can be shown that we can easily find another edge to connect to our K4. Therefore, the threshold

density is n−2/3, and that threshold is not just dependent on the number of edges and vertices of our subgraph H!

In a way, this is saying that K4s are the “hard part” of the graph to hit, and the next definition helps us quantify

that.

Definition 4.16

Define ρ(H) = eH
vH

, sometimes called the density of H, to be the ratio of edges to vertices in our graph H. H is

balanced if every subgraph H′ has ρ(H′) ≤ ρ(H). If H is not balanced, define the maximum subgraph density
m(H) to be the maximum of ρ(H′) across all subgraphs H′.

Example 4.17

Cliques are balanced: the initial density is k−12 , and we can’t do better. On the other hand, the K4 plus an edge

is not balanced, since ρ = 7
5 but the ρ of K4 is 32 .

In fact, m(H) is actually what designates the threshold density:

33



Theorem 4.18

If we pick each edge of Kn with probability p, the threshold for having H as a subgraph is p = n−
1

m(H) .

The proof is very similar to what we’ve been doing.

Proof. Let H′ be the subgraph with maximum density ρ(H′) = m(H). If p is below the threshold, the expected number

of copies of H′

E[X ′H] � nVH′peH′ = o(1),

so with high probability G(n, p) has no copies of H′ and therefore no H.

Now if p � n−1/m(H), we want to compute the number of copies of H. For sets S of vertices with |S| = vH,

∆∗ =
∑

T :|T |=vH ,|T∩S|≥2

Pr(AT |AS)

where T is the event that T contains a copy of H.

Doing cases based on the size of T ∩ S (like we did before), let’s say T intersects S in k spots. Here’s the key

step where we use the maximum subgraph density: overlaps in the covariance terms are subgraphs of H. If H′ is the

overlap between S and T , the contribution to ∆∗ is

. nv
′
Hpe

′
H � nvHpeH

for all H′, so if we keep track of all the overlaps, we find that ∆∗ = o(1), meaning all overlaps don’t contribute much.

This finishes the proof by Corollary 4.13.

4.3 Clique number
Question 4.19. What can we say about ω(G), the number of vertices in the maximum size clique of G, if each edge

in Kn is included with probability 12?

We can’t quote any of the results from last time, since we’re not sticking to fixed-size subgraphs. But this is still

not too hard to calculate from first principles.

Let f (k) be the expected number of k-cliques: this is just
(
n
k

)
2−(

k
2
) by linearity of expectation. We can have a

naive guess: perhaps we have a clique whenever this quantity goes to infinity and not when the quantity goes to 0.

Theorem 4.20

Let k = k(n) be a function such that f (k) =
(
n
k

)
2−(

k
2
) goes to infinity. Then

ω

(
G

(
n,
1

2

))
≥ k

with high probability.

Proof. For all subsets S of the vertices of size k , let AS be the event that S is a clique, and let χS be the indicator

variable for AS. Then the number of k-cliques

X =
∑
S

χS

has expectation f (k), and we want to show that the variance is much smaller than the mean squared. This is very

similar to the earlier proof: fixing S, we can find ∆∗ by summing over all T that intersect S in at least two vertices

34



(those are the only ones that can be dependent on S):

∆∗ =
∑

T :|T∩S|≥2

Pr(AT |AS).

We can write this down explicitly, since the expression Pr(AT |AS) just depends on the size of the intersection:

=

k∑
i=2

((
k

i

)(
n − k
k − i

))
2(
i
2
)−(k

2
)

where the first term is the number of ways to choose T with an overlap of i vertices, and the power of 2 is the

probability that T is a clique given that the i vertices in S are all connected. This does indeed turn out to be small

enough: omitting the detailed calculations,

∆∗ �
(
n

k

)
2−(

n
k
) = E[X],

so we’re done.

We also know by Markov’s inequality that if the expected value goes to 0, the probability of having a k-clique is

o(1). The idea is that if there’s some value k such that f (k + 1) � 1 and f (k) � 1, then we have a distinctive

threshold. But it might be that one of the f s is constant order, and then the theorem doesn’t actually let us know

what happens for that specific value of k .

Theorem 4.21

There exists a k0 = k0(n) such that with high probability,

ω

(
G

(
n,
1

2

))
∈ {k0, k0 + 1}

and k0 ∼ 2 log2 n.

This is known as two-point concentration. Rephrasing this, if we create this graph at random, we expect one of

two values for the clique number.

Proof sketch. We can check that for k ∼ 2 log2 n,

f (k + 1)

f (k)
=
n − k
k + 1

2−k = n−1+o(1) = o(1).

(In particular, the gap between two adjacent ks is too large to allow a bunch of ks to give constant order f (k)s.) Then

let k0 = k0(n) be the value such that

f (k0) ≥ 1 > f (k0 + 1);

then f (k0 − 1)� 1 and f (k0 + 2)� 1.

It turns out for most but not all values of n, there is only one k0 that ω takes on with high probability! Later in

this class, we’ll be able to say something more specific.

4.4 Chromatic number
Question 4.22. What is the expected chromatic number (maximum number of colors needed for a proper coloring)

in a random graph G
(
n, 12

)
?
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Remember that we have the result χ(G)α(G) ≥ n, because each color class is an independent set (and therefore

one of them has size at least n
χ(G)).

Corollary 4.23

The expected independence number of G is also ∼ 2 log2 n, since

α(G) = ω(G),

since including an edge in G with probability 12 is equivalent to including it in G with probability 12 .

So this means we can guarantee

χ(G) ≥
n

α(G)
∼

n

2 log2 n
.

Do we also have an upper bound? Can we show that we can color G
(
n, 12

)
with that many colors?

Theorem 4.24 (Bollobás, 1987)

The chromatic number

χ

(
G

(
n,
1

2

))
∼

n

2 log2 n
.

We’ll see how to prove this later on using martingale convergence.

4.5 Number theory
This class was advertised as using probability to solve problems that don’t involved probability. The next few examples

have no randomness inherently, but we’ll still use the second moment method to solve them.

Let ν(n) denote the number of prime divisors of n, not counting multiplicity. Can we figure out the typical size of

ν(n) just given n?

Theorem 4.25 (Hardy - Ramanujan 1920)

For all ε, there exist a constant c such that all but ε fraction of the numbers [1, n] satisfy

|ν(x)− log log n| ≤ c
√
log log n.

Remark. log refers to natural log in number theory contexts.

Proof by Turán, 1934. We’re going to use a basic intuition about a “random model of the primes.” Statistically, they

have many properties that make them seem random, even if the primes themselves are not.

Pick a random x ∈ [n]. For each prime p, let Xp be the indicator variable

Xp =

1 p|x

0 otherwise.

Then the number of prime divisors of x less than or equal to M is approximately

X =
∑
p≤M
Xp,
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where we pick M = n1/10, a constant power of n. Then there are at most 10 prime factors of x larger than M, so

ν(x)− 10 ≤ X ≤ ν(x).

Since we’re dealing with asymptotics, that constant is okay for our purposes here. We’re treating X as a random

variable: we want to show that it is concentrated and that its mean is around log log n. Each Xp is also a random

variable, so this is a good use of the second moment method: we have

E[Xp] =
bn/pc
n
=
1

p
+O

(
1

n

)
for each prime p, so the mean of the random variable is

E[X] =
∑
p≤M

(
1

p
+O

(
1

n

))
.

We’ll now use a basic result from analytic number theory:

Theorem 4.26 (Merten’s theorem)

Adding over all primes up to N, ∑
p≤N

1

p
= log logN +O(1).

To find the expected value of X2, we need to understand the covariance between different Xps. For any primes

p 6= q,

cov[Xp, Xq] = E[XpXq]− E[Xp]E[Xq] =
bn/(pq)c
n

−
bn/pc
n

bn/qc
n
≤
1

pq
−
(
1

p
−
1

n

)(
1

q
−
1

n

)
≤
1

n

(
1

p
+
1

q

)
.

The idea is that these variables are basically independent by Chinese Remainder Theorem, except for the “edge cases”

near n. So the total sum of the covariances is∑
p 6=q,p,q≤M

cov[Xp, Xq] ≤
1

n

∑
p 6=q,p,q≤M

(
1

p
+
1

q

)
≤
2M

n

∑
p≤M

1

p
. n−9/10 log log n = o(1),

since M = n1/10. Now the variance of X is

var(X) =
∑
p

var(Xp) + o(1) = log log n +O(1)

(which is not very large), and therefore the standard deviation is on the order of
√
log log n. Now by Chebyshev’s

inequality,

Pr
(
|x − log log n| ≥ λ

√
log log n

)
≤
1

λ2
+ o(1),

and since X is within 10 of ν(x), we’ve shown concentration with high probability (just pick λ to be whatever constant

we need in terms of ε).

What’s the distribution, though? Is
√
log log n the right order of magnitude? If we really believe the Xps are

independent, we should believe in the central limit theorem.
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Theorem 4.27 (Erdős-Kac theorem)

Picking a random x ∈ [n], ν(x) is asymptotically normal:

Pr
x∈[n]

(
ν(n)− log log n√
log log n

≥ λ
)
=
1√
2π

∫ ∞
λ

e−t
2/2dt

for all λ ∈ R.

We briefly mentioned the method of moments earlier: instead of looking at second moments, look at higher

moments as well. There’s a theorem in probability that if all the moments of our function are the same as certain

distributions (including the normal distribution), then convergence happens.

We can do this explicitly if we want, but it gets a bit tedious. Here’s a trick that simplifies the calculation: let’s

compare E[Xk ] with that of an “idealized” random variable Y .

Proof. This time, set M = n1/s(n) where s(n)→∞ slowly. Choosing s(n) = log log log n is fine, but s(n) can’t grow

too quickly because we have that

ν(x)− s(n) ≤ X ≤ ν(x).

(Joke: What’s the sound a drowning number theorist makes?...) So now let

Y =
∑
p≤M
Yp,

where Yp is now idealized to Bernoulli
(
1
p

)
, independent of the other variables. This is supposed to model Xp. So now

let

µ = E[Y ] ∼ E[X],

and

σ2 = var(Y ) ∼ var(X).

Set

X̃ =
X − µ
σ
, Ỹ =

Y − µ
σ
.

By the central limit theorem, we know that Ỹ converges to N(0, 1). Now let’s compare Ỹ and X̃, showing that for all

k ,

E[X̃k ] = E[Ỹ k ],

which are (by the central limit theorem) also equal to E[Zk ] for the standard normal distribution.

When we expand out the factors of E[Xk − Y k ] for distinct primes p1, · · · , pr ≤ M, they look like

E[Xp1Xp2 · · ·Xpr − Yp1 · · · Ypr ] =
1

n

⌊
n

p1 · · · pr

⌋
−

1

p1 · · · pr
= O

(
1

n

)
.

So if we compare the expansions of X̃k in terms of the Xps, there’s Mk = no(1) terms. Since each term contributes

O
(
1
n

)
, the moments are essentially the same:

E[X̃k − Ỹ k ] = n−1+o(1) = o(1).

Since all moments converge, X̃ converges to the normal distribution asymptotically.

38



4.6 Distinct sums

Question 4.28. What’s the size of the largest subset S ⊆ [n] such that all 2|S| subset sums of S are distinct?

Example 4.29

We can take S = {1, 2, 4, · · · , 2k}, where k = blog2 nc. All sums are distinct by base-2 expansion.

This set has size log2(n). Is there any way we can do much better?

Problem 4.30 (Open; Erdős offered $300 for this one)

Prove or disprove: |S| ≤ log2 n +O(1).

One thing we know is that all subset sums have size at most n|S|, since there are only |S| things we can add.

There are 2|S| sums, so if they’re all distinct, by Pigeonhole, we must have 2|S| ≤ n|S|, which rearranges to

|S| ≤ log2 n + log2 log2 n +O(1).

Can we formulate a better argument than this? Let’s try the second moment method! The idea is that if we pick a

random subset sum, we should expect some concentration around the mean.

Theorem 4.31

Every subset S ⊆ [n] with distinct subset sums has

|S| ≤ log2 n +
1

2
log2 log2 n +O(1).

Proof. Given our set S = {x1, · · · , xk}, define a random variable X = ε1x1 + · · · + εkxk where εi ∈ {0, 1} uniformly

and independently. The mean is (by linearity of expectation) just 12(x1 + · · ·+ xk), and the variance is

σ2 =
1

4
(x21 + · · ·+ x2k ) ≤

n2k

4
,

since all xi ≤ n. By Chebyshev’s inequality, for all λ > 1,

Pr

[
|X − µ| <

λn
√
k

2

]
≥ 1−

1

λ2
.

But X must take distinct values for all different instantiations, so the probability that X = x is at most 2−k for each

x . This means that in the probability expression above, X must lie in the range
[
µ− λn

√
k

2 , µ+
λn
√
k

2

]
, which has a

probability

Pr

[
|X − µ| <

λn
√
k

2

]
≤ 2−k · (λn

√
k + 1).

Putting these inequalities together,

1−
1

λ2
≤ 2−k(λn

√
k + 1),

which rearranges to

n ≥
2k(1− λ−2)− 1√

kλ
.

We can choose λ to optimize this expression: in this case, λ =
√
3 yields the desired result.
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4.7 An application to analysis
We’re going to prove the following result using the second moment method:

Theorem 4.32 (Weierstrass approximation theorem)

Let f : [0, 1]→ R be a continuous function on a bounded interval. Given ε > 0, it is possible to approximate f by

a polynomial p(x) such that

|p(x)− f (x)| ≤ ε ∀x ∈ [0, 1].

Proof. First of all, since [0, 1] is compact, f is uniformly continuous and is therefore bounded. In other words, there

exists a δ such that

|f (x)− f (y)| ≤
ε

2
for all x, y with |x − y | ≤ δ.

Rescale f so that it is bounded by 1, so now |f (x)| ≤ 1 for all x . Let X be a random variable X ∼ Binomial(n, x):

then

Pr(X = j) =

(
n

j

)
x j(1− x)n−j for all 0 ≤ j ≤ n.

We know the statistics E[X] = nx, var(X) = nx(1− x) ≤ n. So by Chebyshev,

Pr
[
|X − nx | > n2/3

]
≤ n−1/3.

In particular, if we take n fixed but large enough – let n > max(64ε−3, δ−3) – we can bound this in terms of ε:

Pr
[
|X − nx | > n2/3

]
<
ε

4
.

We can now write down our approximating polynomial explicitly:

Pn(x) =

n∑
i=0

(
n

i

)
x i(1− x)n−i f

(
i

n

)
.

Basically, chop up [0, 1] into n intervals and sample the value at each one. We claim that this works: we do have

|Pn(x)− f (x)| ≤ ε for all x ∈ [0, 1]. To show this, note that by the triangle inequality,

|Pn(x)− f (x)| ≤
n∑
i=0

(
n

i

)
x i(1− x)n−i

∣∣∣∣f ( in
)
− f (x)

∣∣∣∣
implicitly using that the sum of

(
n
i

)
x i(1− x)n−i = 1. The idea is that this absolute value is small if x ≈ i

n ; otherwise,

Chebyshev bounds the contribution! We’ll split this up into two terms - those close and far away from our given x :

=
∑

i :
∣∣ i
n
−x

∣∣≤n−1/3
(
n

i

)
x i(1− x)n−i

∣∣∣∣f ( in
)
− f (x)

∣∣∣∣+ 2
 ∑
i :
∣∣ i
n
−x

∣∣>n−1/3
(
n

i

)
x i(1− x)n−i

 ,
where the 2 comes from the fact that |f (x)| ≤ 1. But now note that the absolute value in the first term deals with

those x within δ of in , and the second term was bounded earlier:

≤
∑

i :
∣∣ i
n
−x

∣∣≤n−1/3
((
n

i

)
x i(1− x)n−i ·

ε

2

)
+ 2 ·

ε

4
,

and now both terms are at most ε2 , so this is at most ε, as desired.
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