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Lecture 12 2009 10 19 MON 
 
TOPICS: Shock structure and detailed physics. 
        Examples: Viscosity solution. 
        Traffic flow. Flood waves. Shallow water. 
 
Shock structure as produced by more detailed physics. 
 
Example:  Viscosity solution in Traffic Flow 
   Modify flux to q = Q(rho) - nu*rho_x. Justify, explain why. 
   Now traveling wave solutions exist and satisfy the shock conditions 
       (both Rankine Hugoniot and Entropy). 
   Explain why traveling waves should describe what happens near a 
shock when nu is ``small'' --- Scales inside the shock layer are much 
shorter/faster than outside. From point of view of the shock 
layer, both the shock speed, as well as the``outside'' boundary 
conditions on the left and the right are steady. Hence shock layer 
should look like a steady traveling profile. 
 
Example: Flood waves in rivers. 
   Viscosity solution cannot be justified physically. There is no 
analog of the ``look ahead'' preventive driving of Traffic flow. Fluid 
particles keep on going till catastrophe strikes: shock layer structure 
involves turbulent dissipation etc. No simple 1-D model for this seems 
possible. 
 
Example: Numerical viscosity. 
   Even if ``non-physical'', the addition of viscosity (in a 
conservative form) to the equations, when shocks are known to occur, 
prevents the wave breaking and gives structures that (macroscopically) 
behave correctly. Hence, one can use this to stabilize numerical 
schemes. 
 
Example: Shallow Water Wave equations and higher order terms. 
   Argue that, if one looks at the ``full'' equations for water waves, 
and then assumes sufficiently long waves, then the dominant effects 
should balance involving only first order derivatives. In addition, 
only two dependent variables should remain: depth and horizontal flow 
velocity vertical velocity cannot be important in this limit]. The 
independent variables reduce to time and horizontal coordinates. The 
result of this limit is the shallow water wave equations [assuming a 
flat bottom], which (assuming dependence on only one space dimensions) 
must have the form 
 
        h_t + (u*h)_x     and 
       (rho*h*u)_t + ((rho*h*u)*u + p)_x = 0, 
 
because volume and momentum have to be conserved [if we ignore bottom 
friction]. Here p is the integrated pressure over the depth, and rho is 
the (constant) density. Since the pressure must be hydrostatic in this 
limit, we get p = (1/2)*g*rho*h^2, where g is the acceleration of 
gravity. 
 
   The equations above are then the same as isentropic Gas Dynamics for 
an ideal gas with gamma = 2. 
 
Example: Shallow Water Wave equations and higher order terms. 



The equations above have one-way solutions (simple waves). In addition, 
one can consider (in order to see what happens beyond wave breaking) 
adding to them higher order terms. 
 
One easy way to add higher order terms is to go back to the original 
``full'' equations, and linearize near a constant solution. Then the 
linear solutions can be found by Fourier analysis, and will be 
superpositions of modes with dependence exp(i*k*x + lambda(k)*t). 
In the long wave limit (k small) we can then expand lambda. Then we 
add to the equations above appropriate terms to recover this behavior. 
 
When it is all said and done, and for one-way waves, one ends up 
with the following equation (now in a-dimensional variables) 
 
    u_t + (0.5*u^2)_x = nu*u_xx + mu*u_xxx, 
 
where mu and nu are small, and nu > 0. Unfortunately, this can be 
justified only for solutions that are small depertures from a constant 
because we obtain the correction terms from a linear analysis]. It, of 
course, does NOT capture the physics of turbulent hydraulic jumps. 
But is describes the regime where weak jumps live. 
 




