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Lecture 12 2009 10 19 MON

TOPI CS: Shock structure and detail ed physi cs.
Exampl es: Vi scosity sol ution.
Traffic flow Flood waves. Shall ow water.

Shock structure as produced by nore detail ed physics.

Exampl e:  Viscosity solution in Traffic Fl ow
Modi fy flux to g = Qrho) - nu*rho_x. Justify, explain why.
Now traveling wave sol utions exist and satisfy the shock conditions
(bot h Ranki ne Hugoni ot and Entropy).

Expl ai n why traveling waves shoul d descri be what happens near a
shock when nu is ““small'' --- Scal es inside the shock | ayer are much
shorter/faster than outside. From point of view of the shock
| ayer, both the shock speed, as well as the "outside'' boundary
conditions on the left and the right are steady. Hence shock | ayer
shoul d 1 ook like a steady traveling profile.

Exanpl e: Fl ood waves in rivers.

Vi scosity solution cannot be justified physically. There is no
anal og of the "~ “|ook ahead'' preventive driving of Traffic flow Fluid
particles keep on going till catastrophe strikes: shock |layer structure
i nvol ves turbul ent dissipation etc. No sinple 1-D nmodel for this seens
possi bl e.

Exanpl e: Nunerical viscosity.

Even if ~“non-physical'', the addition of viscosity (in a
conservative form to the equations, when shocks are known to occur,
prevents the wave breaking and gives structures that (rmacroscopically)
behave correctly. Hence, one can use this to stabilize nunerica
schenes.

Exampl e: Shal | ow WAt er Wave equati ons and hi gher order terms.

Argue that, if one looks at the “~“full'' equations for water waves,
and then assunes sufficiently |ong waves, then the domi nant effects
shoul d bal ance involving only first order derivatives. In addition,
only two dependent variables should remain: depth and horizontal flow
velocity vertical velocity cannot be inmportant in this limt]. The
i ndependent variables reduce to tinme and horizontal coordinates. The
result of this limt is the shall ow water wave equations [assumi ng a
flat botton], which (assum ng dependence on only one space di mensi ons)
nmust have the form

h_t + (u*h)_x and
(rho*h*u) _t + ((rho*h*u)*u + p)_x = 0,

because vol ume and nmonentum have to be conserved [if we ignore bottom
friction]. Here p is the integrated pressure over the depth, and rho is
the (constant) density. Since the pressure nust be hydrostatic in this
limt, we get p = (1/2)*g*rho*h”2, where g is the accel eration of
gravity.

The equations above are then the same as isentropic Gas Dynanics for
an ideal gas with gamma = 2.

Exanpl e: Shal | ow Water Wave equations and hi gher order terns.



The equations above have one-way sol utions (sinple waves). In addition,
one can consider (in order to see what happens beyond wave breaki ng)
addi ng to them hi gher order ternmns.

One easy way to add higher order terns is to go back to the origina
““full'' equations, and linearize near a constant solution. Then the
i near solutions can be found by Fourier analysis, and will be
superpositions of nodes with dependence exp(i*k*x + |anmbda(k)*t).

In the long wave limt (k small) we can then expand | anbda. Then we
add to the equations above appropriate ternms to recover this behavior.

When it is all said and done, and for one-way waves, one ends up
with the follow ng equation (now i n a-di nensional vari abl es)

ut + (0.5%uM2) _X = nu*u_xX + mu*u_XxXxX,

where mu and nu are snmall, and nu > 0. Unfortunately, this can be
justified only for solutions that are small depertures froma constant
because we obtain the correction terns froma linear analysis]. It, of
course, does NOT capture the physics of turbulent hydraulic junps.

But is describes the regime where weak junps |ive.





