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Abstract

These notes give examples illustrating how conservation principles are used to obtain (phe-

nomenological) continuum models for physical phenomena. The general principles are pre-

sented, with examples from traÆc 
ow, river 
ows, granular 
ows, gas dynamics and di�usion.
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1 Introduction.

In formulating a mathematical model for a continuum physical system, there are three basic steps

that are often used:

A. Identify appropriate conservation laws (e.g. mass, momentum, energy, etc) and their corre-

sponding densities and 
uxes.

B. Write the corresponding equations using conservation.

C. Close the system of equations by proposing appropriate relationships between the 
uxes and

the densities.

Of these steps, the mathematical one is the second. While it involves some subtlety, once you

understand it, its application is fairly mechanical. The �rst and third steps involve physical issues,

and (generally) the third one is the hardest one, where all the main diÆculties appear in developing

a new model. In what follows we will go through these steps, using some practical examples to

illustrate the ideas.

Of course, once a model is formulated, a fourth step arises, which is that of analyzing and validating

the model, comparing its predictions with observations ... and correcting it whenever needed. This

involves simultaneous mathematical and physical thinking. You should never forget that a model is

no better than the approximations (explicit and/or implicit) made when deriving it. It is never a question

of just "solving" the equations, forgetting what is behind them.

2 Continuum Approximation; Densities and Fluxes.

The modeling of physical variables as if they were a continuum �eld is almost always an approxima-

tion. For example, for a gas one often talks about the density �, or the 
ow velocity u, and thinks

of them as functions of space and time: � = �(x; t) or u = u(x; t). But the fact is that a gas is

made up by very many discrete molecules, and the concepts of density, or 
ow velocity, only make

sense as local averages. These averages must be made over scales large enough that the discreteness

of the gas becomes irrelevant, but small enough that the notion of these local averages varying in

space and time makes sense.

Thus, in any continuum modeling there are several scales. On the one hand one has the

"visible" scales, which are the ones over which the mathematical variables in the model vary

(densities, 
uxes). On the other hand, there are the "invisible" scales, that pertain to the micro-

scales that have been averaged in obtaining the model. The second set of scales must be much

smaller than the �rst set for the model to be valid. Unfortunately, this is not always the

case, and whenever this fails all sort of very interesting (and largely open) problems in modern

science and engineering arise.

Note that the reason people insist on trying to use continuum type models, even in situations where

one runs into the diÆculties mentioned at the end of the last paragraph, is that continuum models

are often much simpler (both mathematically and computationally) than anything else, and supply

general understanding that is often very valuable.

The �rst step in the modeling process is to identify conserved quantities (e.g. mass) and de�ne the

appropriate densities and 
uxes | as in the following examples.
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2.1 Examples

Example 2.1 River Flow (a one dimensional example).

Consider a nice river (or a channel) 
owing down a plain (e.g. the Mississippi, the Nile, etc.).

Let x be the length coordinate along the river, and at every point (and time) along the river let

A = A(x; t) be the �lled (by water) cross-section of the river bed.

We note now that A is the volume density (volume per unit length) of water along the river. We

also note that, since water is incompressible, volume is conserved.1 Finally, let Q = Q(x; t) be

the volume 
ux of water down the river (i.e.: volume per unit time). Notice that, if u = u(x; t) is

the average 
ow velocity down the river, then Q = uA (by de�nition of u).

Thus, in this case, an appropriate conservation law is the conservation of volume, with corre-

sponding density A and 
ux Q. We note that both A and Q are regularly measured at various points

along important rivers.

Example 2.2 TraÆc Flow (a one dimensional example).

Consider a one lane road, in a situation where there are no cross-roads (e.g.: a tunnel, such as the

Lincoln tunnel in NYC, or the Summer tunnel in Boston). Let x be length along the road. Under

"heavy" traÆc conditions,2 we can introduce the notions of traÆc density � = �(x; t) (cars per

unit length) and traÆc 
ow q = q(x; t) (cars per unit time). Again, we have q = u�; where u is

the average car 
ow velocity down the road.

In this case, the appropriate conservation law is, obviously, the conservation of cars. Notice that

this is one example where the continuum approximation is rather borderline (since, for example, the

local averaging distances are almost never much larger than a few car separation lengths). Never-

theless, as we will see, one can gain some very interesting insights from the model we will develop

(and some useful practical facts).

Example 2.3 Heat Conductivity.

Consider the thermal energy in a chunk of solid material (such as, say, a piece of copper). Then

the thermal energy density (thermal energy per unit volume) is given by e = c � T (x; t), where

T is the temperature, c is the speci�c heat per unit mass, and � is the density of the material

(for simplicity we will assume here that both c and � are constants). The thermal energy 
ow,

Q = Q(x; t) is now a vector, whose magnitude gives the energy 
ow across a unit area normal to

the 
ow direction.

In this case, assuming that heat is not being lost or gained from other energy forms, the relevant

conservation law is the conservation of heat energy.

Example 2.4 Steady State (dry) Granular Flow.

Consider steady state (dry) granular 
ow down some container (e.g. a silo, containing some dry

granular material, with a hole at the bottom). At every point we characterize the 
ow in terms of two

velocities: an horizontal (vector) velocity u = u(x; y; z; t), and a vertical (scalar) velocity

v = v(x; y; z; t), where x and y are the horizontal length coordinates, and z is the vertical one.

1We are neglecting here such things as evaporation, seepage into the ground, etc. This cannot always be done.
2Why must we assume "heavy" traÆc?
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The mass 
ow rate is then given by Q = � [u; v], where � is the mass density | which we will

assume is nearly constant. The relevant conservation is now the conservation of mass.

This example is di�erent from the others in that we are looking at a steady state situation. We also

note that this is another example where the continuum approximation is quite often "borderline",

since the scale separation between the grain scales and the 
ow scales is not that great.

Example 2.5 Inviscid Fluid Flow.

For a 
uid 
owing in some region of space, we consider now two conservation laws: conserva-

tion of mass and conservation of linear momentum. Let now � = �(x; t), u = u(x; t) and

p = p(x; t) be, respectively, the 
uid density, 
ow velocity, and pressure | where we use either

[u; v; w] or [u1; u2; u3] to denote the components of u, and either [x; y; z] or [x1; x2; x3] to denote the

components of x. Then:

� The mass conservation law density is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �.

� The mass conservation law 
ow is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �u.

� The linear momentum conservation law density is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �u.

� The linear momentum conservation law 
ow is . . . . . . . . . . . . . . . . . . . . . . . . . . . . �u
 u + p I.

The �rst two expressions above are fairly obvious, but the last two (in particular, the last one)

require some explanation. First of all, momentum is a vector quantity. Thus its conservation is

equivalent to three conservation laws, with a vector density and a rank two tensor3 
ow (we explain

this below). Second, momentum can be transferred from one part of a liquid to another in two ways:

Advection: as a parcel of 
uid moves, it carries with it some momentum. Let us consider this

mechanism component by component: The momentum density component � ui is advected with a


ow rate � ui u = � [uiu1; uiu2; uiu3]. Putting all three components together, we get for the momen-

tum 
ux (due to advection) the expression � [ui uj] = �u
 u | i.e., a rank two tensor, where each

row (freeze the �rst index) corresponds to the 
ux for one of the momentum components.

Forces: momentum is transferred by the forces exerted by one parcel of 
uid on another. If we

assume that the 
uid is inviscid, then these forces can only be normal, and are given by the pres-

sure (this is, actually, the "de�nition" of inviscid). Thus, again, let us consider this mechanism

component by component: the momentum transfer by the pressure in the direction given by the unit

vector4 ei = [Æi j], corresponding to the density � ui, is the force per unit area (normal to ei) by the


uid. Thus the corresponding momentum 
ow vector is p ei. Putting all three components together,

we get for the momentum 
ux (due to pressure forces) the expression p [Æi j] = p I | again a rank

two tensor, now a scalar multiple of the identity rank two tensor I.

Regarding the zero viscosity (inviscid) assumption: Fluids can also exert tangential forces, which

also a�ect the momentum transfer. Momentum can also be transferred in the normal direction by

di�usion of "faster" molecules into a region with "slower" molecules, and viceversa. Both these

e�ects are characterized by the viscosity coeÆcient | which here we assume can be neglected.

Note that in some of the examples we have given only one conservation law, and in others two

(further examples, with three or more conservation laws invoked, exist). The reason will become

clear when we go to the third step (step C in section 1). In fact, steps A and C in section 1 are

intimately linked, as we will soon see.

3If you do not know what a tensor is, just think of it as a vector with more than one index (the rank is the number

of indexes). This is all you need to know to understand what follows.
4Here Æi j is the Kronecker delta, equal to 1 if i = j, and to 0 if i 6= j.
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3 Conservation Laws in Mathematical Form.

In this section we assume that we have identi�ed some conservation law, with conserved density

� = �(x; t), and 
ux F = F(x; t), and derive mathematical formulations for the conservation hy-

pothesis. In other words, we will just state in mathematical terms the fact that � is the density for

a conserved quantity, with 
ux F.

First consider the one dimensional case (where the 
ux F is a scalar, and there is only one space

coordinate: x). In this case, consider some (�xed) arbitrary interval in the line 
 = fa � x � bg,
and let us look at the evolution in time of the conserved quantity inside this interval. At any given

time, the total amount of conserved stu� in 
 is given by (this by de�nition of density)

M(t) =
Z

b

a

�(x; t) dx : (3.1)

Further, the net rate at which the conserved quantity enters 
 is given by (de�nition of 
ux)

R(t) = F (a; t)� F (b; t) : (3.2)

It is also possible to have sources and sinks for the conserved quantity.5 In this case let

s = s(x; t) be the total net amount of the conserved quantity, per unit time and unit length,

provided by the sources and sinks. For the interval 
 we have then a net rate of added conserved

stu�, per unit time, given by

S(t) =
Z

b

a

s(x; t) dx : (3.3)

The conservation law can now be stated in the mathematical form

d

dt
M = R + S ; (3.4)

which must apply for any choice of interval 
. Since this equation involves only integrals of

the relevant densities and 
uxes, it is known as the Integral Form of the Conservation Law.

Assume now that the densities and 
uxes are nice enough to have nice derivatives.

Then we can write:

d

dt
M =

Z
b

a

@

@t
�(x; t) dx and R = �

Z
b

a

@

@x
F (x; t) dx : (3.5)

Equation (3.4) can then be re-written in the formZ
b

a

 
@

@t
�(x; t) +

@

@x
F (x; t)� s(x; t)

!
dx = 0 ; (3.6)

which must apply for any choice of the interval 
. It follows that the integrand above in (3.6) must

vanish identically. This then yields the following partial di�erential equation involving the density,


ux and source terms:
@

@t
�(x; t) +

@

@x
F (x; t) = s(x; t) : (3.7)

This equation is known as the Di�erential Form of the Conservation Law.

5As an illustration, in the inviscid 
uid 
ow case of example 2.5, the e�ects of gravity translate into a vertical

source of momentum, of strength � g per unit volume | where g is the acceleration of gravity. Other body forces

have similar e�ects.
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Remark 3.1 You may wonder why we even bother to give a name to the form of the equations

in (3.4), since the di�erential form in (3.7) appears so much more convenient to deal with (it

is just one equation, not an equation for every possible choice of 
). The reason is that it is

not always possible to assume that the densities and 
uxes have nice derivatives. Oftentimes the

physical systems involved develop, as they evolve,6 short enough scales that force the introduction of

discontinuities into the densities and 
uxes | and then (3.7) no longer applies, but (3.4) still does.

Shock waves are the best known example of this situation. Examples of shock waves you may be

familiar with are: the sonic boom produced by a supersonic aircraft; the hydraulic jump occurring

near the bottom of the discharge ramp in a large dam; the wave-front associated with a 
ood moving

down a river; the backward facing front of a traÆc jam; etc. Some shock waves can cause quite

spectacular e�ects, such as those produced by supernova explosions.

Now let us consider the multi-dimensional case, when the 
ux F is a vector. In this case,

consider some (�xed but arbitrary) region in space 
, with boundary @
, and inside unit normal

along the boundary n̂. We will now look at the evolution in time of the conserved quantity inside

this region. At any given time, the total amount of conserved stu� in 
 is given by

M(t) =
Z



�(x; t) dV : (3.8)

On the other hand, the net rate at which the conserved quantity enters 
 is given by

R(t) =
Z
@


F(x; t) � n̂ dS : (3.9)

Let also s = s(x; t) be the total net amount of conserved quantity, per unit time and unit volume,

provided by any sources and/or sinks. For the region 
 we have then a net rate of added conserved

stu�, per unit time, given by

S(t) =
Z



s(x; t) dV : (3.10)

The conservation law can now be stated in the mathematical form (compare with equation (3.4))

| Integral Form of the Conservation Law:

d

dt
M = R + S ; (3.11)

which must apply for any choice of the region 
.

If the densities and 
uxes are nice enough to have nice derivatives, we can write:

d

dt
M =

Z



@

@t
�(x; t) dV and R = �

Z



div(F(x; t)) dV ; (3.12)

where we have used the Gauss divergence theorem for the second integral. Equation (3.11) can then

be re-written in the form

Z



 
@

@t
�(x; t) + div(F(x; t))� s(x; t)

!
dV = 0 ; (3.13)

6Even when starting with very nice initial conditions.
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which must apply for any choice of the region 
. It follows that the integrand above in (3.13) must

vanish identically. This then yields the following partial di�erential equation involving the density,


ux and source terms (compare with equation (3.7))

@

@t
�(x; t) + div(F(x; t)) = s(x; t) : (3.14)

This equation is known as the Di�erential Form of the Conservation Law.

Remark 3.2 In the case of a vector conservation law, the density � and the source term s

will both be vectors, while the 
ux F will be a rank two tensor (each row being the 
ux for the

corresponding element in the density vector �). In this case equation (3.14) is valid component by

component, but can be given a vector meaning if we de�ne the divergence for a rank two tensor

F = [Fi j] as follows:

div(F) =

2
4X

j

@

@xj
Fi j

3
5 ;

so that div(F) is a vector (each element corresponding to a row in F). You should check that this is

correct.7

4 Phenomenological Equation Closure.

From the results in section 3 it is clear that each conservation principle can be used to yield an

evolution equation relating the corresponding density and 
ux. However, this is not enough to

provide a complete system of equations, since each conservation law provides only one equation,

but requires two (in principle) "independent" variables. Thus extra relations between the 
uxes

and the densities must be found to be able to formulate a complete mathematical model. This

is the Closure Problem, and it often requires making further assumptions and approximations

about the physical processes involved.

Closure is actually the hardest and the subtler part of any model formulation. How good a model

is, typically depends on how well one can do this part. Oftentimes the physical processes considered

are very complex, and no good understanding of them exist. In these cases one is often forced to

make "brute force" phenomenological approximations (some formula | with a few free parameters

| relating the 
uxes to the densities is proposed, and then it is �tted to direct measurements).

Sometimes this works reasonably well, but just as often it does not (producing situations with very

many di�erent empirical �ts, each working under some situations and not at all in others, with no

clear way of knowing "a priori" if a particular �t will work for any given case).

We will illustrate how one goes about resolving the closure problem using the examples introduced

earlier in subsection 2.1. These examples are all "simple", in the sense that one can get away with

algebraic formulas relating the 
uxes with the densities. However, this is not the only possibility,

and situations where extra di�erential equations must be introduced also arise. The more complex

the process being modeled is, the worse the problem, and the harder it is to close the system (with

very many challenging problems still not satisfactorily resolved).

7Recall that, for a vector �eld, div(v) =
X
j

@

@xj

vj .
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An important point to be made is that the formulation of an adequate mathematical model

is only the beginning. As the examples below will illustrate, it is often the case that the

mathematical models obtained are quite complicated (re
ecting the fact that the phenomena being

modeled are complex), and often poorly understood. Thus, even in cases where accurate mathe-

matical models have been known for well over a century (as in classical 
uids), there are plenty

of open problems still around ... and even now new, un-expected, behaviors are being discovered

in experimental laboratories. The fact is that, for these complex phenomena, mathematics alone

is not enough. There is just too much that can happen, and the equations are too complicated to

have explicit solutions. The only possibility of advance is by a simultaneous approach incorporating

experiments and observations, numerical calculations, and theory.

4.1 Examples

Example 4.1 River Flow (see example 2.1).

In this case we can write the conservation equation

At +Qx = 0 ; (4.1)

where A and Q were introduced in example 2.1, and we ignore any sources or sinks for the water

in the river. In order to close the model, we now claim that it is reasonable to assume that Q

is a function of A; that is to say Q = Q(A; x) | for a uniform, man-made channel, one has

Q = Q(A): We justify this hypothesis as follows:

First: For a given river bed shape, when the 
ow is steady (i.e.: no changes in time) the average


ow velocity u follows from the balance between the force of gravity pulling the water down the

slope, and the friction force on the river bed. This balance depends only on the river bed shape, its

slope, and how much water there is (i.e. A). Thus, under these conditions, we have u = u(A; x).

Consequently Q = Q(A; x) = u(A; x)A.

Second: As long as the 
ow in the river does not deviate too much from steady state ("slow"

changes), the we can assume that the relationship Q = Q(A; x) that applies for steady 
ow remains

(approximately) valid. This is the quasi-equilibrium approximation, which is often invoked

in problems like this. How well it works in any given situation depends on how fast the processes

leading to the equilibrium situation (the one that leads to Q = Q(A; x)) work | relative to the time

scales of the river 
ow variations one is interested in. For actual rivers and channels, it turns out

that this approximation is good enough for many applications.

Of course, the actual functional relationship Q = Q(A; x) (to be used to model a speci�c river)

cannot be calculated theoretically, and must be extracted from actual measurements of the river 
ow

under various conditions. The data is then �tted by (relatively simple) empirical formulas, with free

parameters selected for the best possible match.

However, it is possible to get a qualitative idea of roughly how Q depends on A, by the

following simple argument: The force pulling the water downstream (gravity) is proportional to the

slope of the bed, the acceleration of gravity, the density of water, and the volume of water. Thus,

roughly speaking, this force has the form Fg � cg A (where cg = cg(x) is some function). On the

other hand, the force opposing this motion, in the simplest possible model, can be thought as being
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proportional to the wetted perimeter of the river bed (roughly P /
p
A) times the frictional force on

the bed (roughly proportional to the velocity u). That is Ff � cf u
p
A, for some friction coeÆcient

cf . These two forces must balance (Fg = Ff), leading to u � cu
p
A (where cu = cg=cf), thus:

Q � cuA
3=2 : (4.2)

Of course, this is too simple for a real river. But the feature of the 
ux increasing faster than linear

is generally true | so that Q as a function of A produces a concave graph, with dQ=dA > 0

and d2Q=dA2 > 0:

Example 4.2 TraÆc Flow (see example 2.2).

In this case we can write the conservation equation

�t + qx = 0 ; (4.3)

where � and q were introduced in example 2.2, and we ignore any sources or sinks for cars (from

road exit and incoming ramps, say). Just as in the river model, we close now the equations by

claiming that it is reasonable to assume that q is a function of �, that is to say q = q(�; x) | for

a nice, uniform, road, one has q = q(�): Again, we use a quasi-equilibrium approximation to

justify this hypothesis:

Under steady traÆc conditions, it is reasonable to assume that the drivers will adjust their car

speed to the local density (drive faster if there are few cars, slower if there are many). This yields

u = u(�; x), thus q = u(�; x)� = q(�; x). Then, if the traÆc conditions do not vary too rapidly,

we can assume that the equilibrium relationship q = q(�; x) will still be (approximately) valid |

quasi-equilibrium approximation.

As in the river 
ow case, the actual functional dependence to be used for a given road must follow

from empirical data. Such a �t for the Lincoln tunnel in NYC is given by8

q = a � log(�j=�) ; (4.4)

where a = 17:2 mph, and �j = 228 vpm (vehicles per mile). The generic shape of this formula

is always true: q is a convex function of �, reaching a maximum 
ow rate qm for some value

� = �m, and then decreases back to zero 
ow at a jamming density � = �j. In particular, dq=d� is

a decreasing function of �, with d2q=d�2 < 0:

For the formula above in (4.4), we have: �m = 83 vpm and qm = 1430 vph (vehicles per hour), with

a corresponding 
ow speed um = qm=�m = a. The very existence of �m teaches us a rather useful

fact, even before we solve any equation: in order to maximize the 
ow in a highway, we should

try to keep the car density near the optimal value �m. This is what the lights at the entrances to

freeways attempt to do during rush hour. Unfortunately, they do not work very well for this purpose,

as some analysis with the model above (or just plain observation of an actual freeway) will show.

In this example the continuum approximation is rather borderline. Nevertheless, the equations have

the right qualitative (and even rough quantitative) behavior, and are rather useful to understand

many features of how heavy traÆc behaves.

8Greenberg, H., 1959. An analysis of traÆc 
ow. Oper. Res. 7:79{85.



Conservation Laws in Continuum Modeling. MIT, March, 2001 | Rosales. 10

Example 4.3 Heat Conductivity (see example 2.3).

In this case we can write the conservation equation

c � Tt + div(Q) = s ; (4.5)

where c; �; T and Q were introduced in example 2.3, and s = s(x; t) is the heat supplied (per unit

volume and unit time) by any sources (or sinks) | e.g. electrical currents, chemical reactions, etc.

We now complete the model by observing that heat 
ows from hot to cold, and postulating that

the heat 
ow across a temperature jump is proportional to the temperature di�erence (this can be

checked experimentally, and happens to be an accurate approximation). This leads to Fick's Law

for the heat 
ow:

Q = ��rT ; (4.6)

where � is the coeÆcient of thermal conductivity of the material.9 For simplicity we will

assume here that all of c, �, and � are constant | though this is not necessarily true in general.

Substituting (4.6) into (4.5), we then obtain the heat or di�usion equation:

Tt = �r2T + f ; (4.7)

where � =
�

c �
is the thermal di�usivity of the material, and f =

s

c �
.

In deriving the equation above, we assumed that the heat was contained in a chunk of solid material.

The reason for this is that, in a 
uid, heat can also be transported by motion of the 
uid (convection).

In this case (4.6) above must be modi�ed to:

Q = ��rT+ c � T u ; (4.8)

where u = u(x; t) is the 
uid velocity. Then, instead of (4.7), we obtain

Tt + div(uT ) = �r2T + f : (4.9)

In fact, this is the simplest possible situation that can occur in a 
uid. The reason is that, generally,

the 
uid density depends on temperature, so that the 
uid motion ends up coupled to the temperature

variations, due to buoyancy forces. Then equation (4.9) must be augmented with the 
uid equations,

to determine u and the other relevant 
uid variables | see example 4.5.

Remark 4.1 Note that � has dimensions
Length2

Time
. Thus, given a length L, a time scale is provided

by � = L2=�. Roughly speaking, this is the amount of time it would take to heat (or cool) a region

of size L by di�usion alone. If you go and check the value of � for (say) water, you will �nd out

that it would take a rather long time to heat even a cup of tea by di�usion alone (you should do this

calculation). The other term in (4.9) is crucial in speeding things up.

Remark 4.2 If the 
uid is incompressible, then div(u) = 0 (see example 4.5), and equation (4.9)

takes the form

Tt + (u � r)T = �r2T + f : (4.10)

Note that the left hand side in this equation is just the time derivative of the temperature in a �xed

parcel of 
uid, as it is being carried around by the 
ow.

9� must be measured experimentally, and varies from material to material.



Conservation Laws in Continuum Modeling. MIT, March, 2001 | Rosales. 11

Remark 4.3 Equations such as (4.9) and (4.10) are satis�ed not just by the temperature, but

by many other quantities that propagate by di�usion (i.e.: their 
uxes satisfy Fick's Law (4.6)).

Examples are given by any chemicals in solution in a liquid (salt, sugar, colorants, pollutants, etc.).

Of course, if there are any reactions these chemicals participate in, these reactions will have to be

incorporated into the equations (as sources and sinks).

Example 4.4 Steady State (dry) Granular Flow (see example 2.4).

In this case we can write the conservation equation

div(Q) = 0 ; (4.11)

where Q = �[u; v] is as in example 2.4, and there are no time derivatives involved because we

assumed that the density � was nearly constant (we also assume that there are no sources or sinks

for the media). These equation involves three unknowns (the three 
ow velocities), so we need some

extra relations between them to close the equation.

The argument now is as follows: as the grain particles 
ow down (because of the force of gravity),

they will also | more or less randomly | move to the sides (due to particle collisions). We claim

now that, on the average, it is easier for a particle to move from a region of low vertical velocity to

one of high vertical velocity than the reverse.10 The simplest way to model this idea is to propose that

the horizontal 
ow velocity u is proportional to the horizontal gradient of the vertical 
ow velocity

v. Thus we propose a law of the form:

u = br?v (4.12)

where b is a coeÆcient (having length dimensions) and r? denotes the gradient with re-

spect to the horizontal coordinates x and y. Two important points:

A. Set the coordinate system so that the z axis points down. Thus v is positive when the 
ow is

downwards, and b above is positive.

B. Equation (4.12) is a purely empirical proposal, based on some rough intuition and experimental

observations. However, it works. The predictions of the resulting model in equation (4.13)

below have been checked against laboratory experiments, and they match the observations,

provided that the value of b is adjusted properly (typically, b must be taken around a few

particle diameters).

Substituting (4.12) into (4.11), using the formula for the divergence, and eliminating the common

constant factor �, we obtain the following model equation for the vertical velocity v:

0 = vz + br2

?
v = vz + b (vxx + vyy) : (4.13)

Note that this is a di�usion equation, except that the role of time has been taken over by the vertical

coordinate z. Mathematical analysis of this equation shows that it only makes sense to solve it

for z decreasing; i.e.: from bottom to top in the container where the 
ow takes place.

This, actually, makes perfect physical sense: if you have a container full of (say) dry sand, and

you open a hole at the bottom, the motion will propagate upwards through the media. On the other

hand, if you move the grains at the top, the ones at the bottom will remain undisturbed. In other

words, information about motion in the media propagates upward, not downwards.

10Intuitively: where the 
ow speed is higher, there is more space between particles where a new particle can move

into.
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Example 4.5 Inviscid Fluid Flow (see example 2.5).

In this case, using the densities and 
uxes introduced in example 2.5, we can write the conservation

equations:

�t + div(�u) = 0 (4.14)

for the conservation of mass, and

(�u)t + div(�u
 u) +rp = F (4.15)

for the conservation of momentum. Here F = F(x; t) denotes the body forces11 (which are mo-

mentum sources), and we have used the mathematical identity (you should check this) div(p I) = rp.
Another easy to check mathematical identity is div(u
m) = (div(m))u+ (m � r)u. Using this

second identity, with m = �u, in equation (4.15), and substituting from equation (4.14) to elimi-

nate the term containing the divergence of m, we obtain:

� (ut + (r � u)u) +rp = F : (4.16)

The problem now is that we have four equations and �ve unknowns (density, pressure and the three

velocities). An extra equation is needed. Various possibilities exist, and we illustrate a few

below.

Incompressibility Assumption (liquids).

Liquids are generally very had to compress. This means that, as a parcel of 
uid is carried around by

the 
ow, its volume (equivalently, its density) will change very little. If we then make the assumption

that the liquid density does not change at all (due to pressure changes ... it certainly may change due

to temperature changes, or solutes12 in the liquid), then we obtain the following additional equation:

�t + (r � u) � = 0 : (4.17)

This equation simply states that the time derivative of the density, following a parcel of 
uid as it

moves, vanishes. In other words: the 
uid is incompressible (though it need not have a constant

density). In this case we can write a complete system of equations for the 
uid motion. Namely:

0 = �t + (r � u) � ;
0 = div(u) ;

F = � (ut + (r � u)u) +rp ;

9>=
>; (4.18)

where the second equation follows from (4.14), upon use of (4.17). These are known as the Incom-

pressible Euler Equations for a 
uid. The "simplest" situation arises when � can be assumed

constant, and then the �rst equation above is not needed. However, even in this case, the behavior

of the solutions to these equations is not well understood | and extremely rich.

Remark 4.4 The equations above ignore viscous e�ects, important in modeling many physical sit-

uations. Viscosity is incorporated with the method used in example 4.3, by adding to the momentum


ux components proportional to derivatives of the 
ow velocity u. What results from this are the

Incompressible Navier-Stokes Equations.

Furthermore, heat conduction e�ects can also be considered (and are needed to correctly model many

physical situations). This requires the introduction of a new independent variable into the equations

(temperature), and the use of one more conservation law (energy).

11Such as gravity.
12For example, salt.
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Gas Dynamics.

For gases one cannot assume incompressibility. In this case, one must introduce another conser-

vation law (conservation of energy), and yet another variable: the internal energy per unit

mass e. This results in �ve equations (conservation of mass (4.14), conservation of momentum

(4.15), and conservation of energy) and six variables (density �, 
ow velocity u, pressure p and

internal energy e). At this stage thermodynamics comes to the rescue, providing an extra rela-

tionship: the equation of state. For example, for an ideal gas with constant speci�c heats

(polytropic gas) one has:

e = cv T and p = R�T =) Equation of state: e =
p

(
 � 1) �
; (4.19)

where cv is the speci�c heat at constant volume, cp is the speci�c heat at constant pressure,

R = cp � cv is the gas constant and 
 = cp=cv is the ratio of speci�c heats.

A simplifying assumption that can be made, applicable in some cases, is that the 
ow is isentropic.13

In this case the pressure is a function of the density only, and (4.14) and (4.15) then form a complete

system: the Isentropic Euler Equations of Gas Dynamics. For a polytropic gas:

p = � �
 ; (4.20)

where � is a constant. In one dimension the equations are

�t + (� u)x = 0 and (� u)t + (� u2 + p)x = 0 ; (4.21)

where p = p(�).

Remark 4.5 The closure problem in this last example involving gas dynamics seemed rather simple,

and (apparently) we did not have to call upon any "quasi-equilibrium" approximation, or similar.

However, this is so only because we invoked an already existing (mayor) theory: thermodynamics.

In e�ect, in this case, one cannot get closure unless thermodynamics is developed �rst (no small

feat). Furthermore: in fact, a quasi-equilibrium approximation is involved. Formulas such as the ones

above in (4.19, apply only for equilibrium thermodynamics! Thus, the closure problem for this example

is resolved in a fashion that is exactly analogous to the one used in several of the previous examples.

Remark 4.6 In the fashion similar to the one explained in remark 4.4 for the incompressible case,

viscous and heat conduction e�ects can be incorporated into the equations of Gas Dynamics. The

result is the Navier-Stokes Equations for Gas Dynamics.

5 Concluding Remarks.

Here we have presented the derivation (using conservation principles) of a few systems of equations

used in the modeling of physical phenomena. The study of these equations, and of the physical

phenomena they model, on the other hand, would require several lifetimes (and is still proceeding).

In particular, notice that here we have not even mentioned the very important subject of

boundary conditions (what to do at the boundaries of, say, a 
uid). This introduces a whole set

of new complications, and physical e�ects (such as surface tension).

13That is: the entropy is the same everywhere.


