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Stability of Numerical Schemes for PDE's.

Rodolfo R. Rosales
�

.

MIT, Friday February 12, 1999.

Abstract

The purpose of these notes is to give some examples illustrating how naive numerical approx-

imations to PDE's may not work at all as expected. In addition, the following two important

notions are introduced: (I) von Neumann stability analysis | helps identify when (and

if) numerical schemes behave properly. (II) Arti�cial viscosity | a tool in stabilizing nu-

merical schemes. These notes should be read in conjunction with the use of the MatLab

scripts (in the Athena 18311-Toolkit at MIT) whose names end with the acronym GBNS (for

Good-Bad-Numerical-Schemes).
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1 Naive Scheme for the Wave Equation.

We will illustrate the points we want to make with the wave equation (in one space dimension)

@2u

@t2
�

@2u

@x2
= 0 : (1.1)

Since this equation is second order in time, it needs two initial conditions. For example:

u(x; 0) = u0(x) and
@u

@t
(x; 0) = v0(x) : (1.2)

We will assume here that both u0 and v0 are periodic, with some period T > 0. Then the solution

of (1.1) is periodic in x with the same period: u(x + T; t) = u(x; t).

Remark 1.1 We note that, in fact, we can write the solution of this problem explicitly

u =
1

2

�
u0(x� t) + u0(x + t) +

Z x+t

x�t
v0(s)ds

�
:

However, this is not the point here (see below).

Operate now as if (1.1) were complicated enough that we needed to solve the equation numerically.

For this purpose introduce a numerical grid fxn; tjg | where n and j are integers, as follows

xn = x0 + n�x and tj = j�t : (1.3)

Here �x and �t are some \small" positive constants and x0 is arbitrary. Next replace the function

u = u(x; t) of the continuum variables x and t by a discrete double sequence fujng, where

ujn = u(xn; tj) : (1.4)

Finally, introduce the new variable v =
@u

@t
to re-write equation (1.1) as a �rst order in time system

@u

@t
= v and

@v

@t
=

@2u

@x2
: (1.5)

In view of (1.4) it is now clear that ujn (and the similarly de�ned vjn) should satisfy

uj+1n � ujn
�t

= vjn +O(�t) and
vj+1n � vjn

�t
=

ujn+1 � 2ujn + ujn�1
(�x)2

+O(�t; (�x)2) ; (1.6)

which can be checked by expanding uj+1n , ujn+1, . . . in Taylor series centered at (xn; tj) | using (1.4)

| and substituting the expansions in (1.6). This suggests the following numerical scheme, allowing

simple calculation of the solution at time t = tj+1 (once it is known at time t = tj)

uj+1n = ujn +�t vjn and vj+1n = vjn +
�t

(�x)2

�
ujn+1 � 2ujn + ujn�1

�
; (1.7)

where the errors should be of size O(�t; (�x)2), that is: small.

Upon implementation one quickly discovers that this algorithm is disastrously bad. TheMatLab

scripts: InitGBNS, lectureGBNS, demoGBNS, movieGBNS and the help �le readmeGBNS in the Athena

18311-Toolkit all deal with this scheme and another one to be introduced later in these notes. In

particular, lectureGBNS goes through and explains a series of calculations showing the details of

how the scheme fails. We illustrate here the problem with a couple of examples.
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Example 1.1 Consider the following initial data (with period T = 2) for equation (1.5):

u(x; 0) = u0(x) =
1

2
(1 + cos(� x)) and v(x; 0) = v0(x) � 0 : (1.8)

The exact solution: u =
1

4
(2 + cos(� (x� t)) + cos(�(x+ t))) =

1

2
(1 + cos(� x) cos(� t)) | see

remark 1.1 | is clearly also periodic in time of period 2 (a standing wave). For the numerical

solution we take �x = 2�t = 2=N (for some \large" N) and x0 = �1 in (1.3). Then we im-

plement (1.7) for 1 � n � N (the periodicity of the solution means that the indexes n +N and n

are equivalent) and solve the equations over one time period: 0 � t � 2.
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Figure 1.1: Solution of (1.5) with initial data (1.8) using (1.7) with 40 points in the

space grid. To avoid an over-dense graph not all the points in the numerical grid are

plotted. However, enough points to show all the relevant details are kept.

Figure 1.1 shows the result of this calculation using N = 40. Note that the periodicity in time fails

to hold. In fact, after one time period the numerical method appears to have ampli�ed the initial
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data by about 30%! However, maybe this is not so bad (or is it?); after all the value of N being

used is not that large and the numerical solution looks otherwise quite reasonable.

Let us now check what happens as we increase the resolution (larger N). Any reasonable numerical

scheme ought to give a better approximation when we do this. Figure 1.2 shows the result of in-

creasing N to N = 57 (a rather small increase). The new approximation is not only not better; it

is a disaster. By time t � 2, O(1) grid scale (i.e. wavelength = 2�x) oscillations appear in the

numerical solution, making it useless. As we will soon see, the scheme is amplifying the errors; the

30% ampli�cation of the initial cosine wave seen when using N = 40 was just a forewarning of what

happens for larger N . As N is made even larger, the oscillations generated become huge (in fact,
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Figure 1.2: Solution of (1.5) with initial data (1.8) using (1.7) with 57 points in the

space grid. To avoid an over-dense graph not all the points in the numerical grid are

plotted. However, enough points to show all the relevant details are kept.

their size increases exponentially with N , as we will soon show). This is illustrated by �gure 1.3,

which corresponds to N = 80. Here (instead of a 3D graph) we plot the numerical solution at time

t = 2. Grid scale (wavelength = 2�x) oscillations is all that can be seen in this graph | notice the

(very large) vertical scale on this �gure!
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Finally, we point out that if (instead of increasing N) we compute for longer times, the same e�ect

of large amplitude grid scale oscillations arising (which grow exponentially in time) is observed.
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Figure 1.3: Solution of (1.5) with initial data (1.8) using (1.7) with 80 points

in the space grid. Notice the large amplitude grid scale oscillations generated by

the scheme. There is nothing but numerical noise in this picture!

Example 1.2 In a second example we take the following Gaussian initial data for equation (1.5)

u(x; 0) = u0(x) = exp(�a ln(10) x2) and v(x; 0) = v0(x) � 0 ; (1.9)

for �1 � x � 1, where a > 0 is a constant. We extend this to periodic initial data (of period T = 2)

by repeating the above pro�les over each interval (2n� 1) � x � (2n+ 1), with n integer. These

initial values are not smooth | as were the ones in the prior example. There is a small corner in

u0(x), whenever x is an odd integer (in particular for x = �1). This is because at these points there
is a cut-o� from a Gaussian centered at x� 1 to one centered at x + 1. Notice that the size of the

miss-match in the derivatives of u0 goes down very rapidly as a increases.



Stability of Numerical Schemes for PDE's. MIT, Friday February 12, 1999 | Rosales. 6

For the numerical solution we take x0 = �1, �x = 0:02 and �t = 0:01 in (1.3) | this corresponds

to N = 100 in the notation of example 1.1 | and use (1.7) to solve the equations for 0 � t � 0:5.

This is very similar to what we did in the prior example, except that here we vary the initial

conditions (by changing the parameter a) instead of changing the resolution with variations in N .

In the �rst calculation, we take a relatively large a, namely a = 10. Figure 1.4 shows the result of

this calculation, which appears quite reasonable.
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Figure 1.4: Solution of (1.5) with initial data (1.9) using (1.7) with 100 points in

the space grid and a = 10. To avoid an over-dense graph not all the points in the

numerical grid are plotted (enough points to show all the relevant details are kept).

In the second calculation, we take a smaller value a = 6. This makes the corners more substantial

(though still pretty weak). Figure 1.5 shows the result of this last calculation, which is now not

reasonable at all. It is quite clear that, just as in the prior example, the small errors that are

triggered by the corners are ampli�ed by the scheme (so we observe grid scale oscillations near

x = �1 towards the end of the run).

Finally, we point out that, if the calculations are run for times longer than 0 � t � 0:5, even the one

with a = 10 eventually shows grid scale oscillations. These grow exponentially in time and pretty

soon dominate the whole solution (not just the neighborhood of x = �1) with huge amplitudes.
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Figure 1.5: Solution of (1.5) with initial data (1.9) using (1.7) with 100 points in

the space grid and a = 6. To avoid an over-dense graph not all the points in the

numerical grid are plotted (enough points to show all the relevant details are kept).

The next section gives a detailed explanation of why this is happening.

2 von Neumann stability analysis for PDE's.

In this section we introduce the von Neumann stability analysis technique, that can be used to

analyze numerical schemes and predict when the behavior observed in the prior section will occur.

There are two basic concepts useful in understanding numerical schemes. These are the notions of

consistency and stability. For a numerical scheme to be useful it must be both consistent and

stable. It is very important to realize that these two notions are independent.

Consistency simply means that, as �x and �t vanish, the solutions of the equation must satisfy

the numerical scheme with errors that vanish. This is in fact what equation (1.6) tells us about

the scheme in (1.7). Consistency guarantees that the scheme truly approximates the equation we

intend to solve with it (and not something else).
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Stability simply means that the scheme does not amplify errors. Obviously this is very important,

since errors are impossible to avoid in any numerical calculation. In fact, even in the ideal case

of in�nite precision, we still have to deal with discretization errors | i.e. the O terms in (1.6).

Clearly, if errors are ampli�ed, pretty soon they will dominate any computation (making it useless).

As it turns out, for linear constant coeÆcient schemes such as (1.7), a complete stability

analysis is possible, because the numerical algorithm equations can be solved exactly by separa-

tion of variables. This means then that any solution of the scheme can be written as a superposition

of Fourier modes. These Fourier modes are solutions of the form

ujn = U Gj eikn and vjn = V Gj eikn ; (2.1)

where U , V , G and k are constants (with k real). Generally double sequences like this will be solu-

tions provided G, U and V are restricted by some functional relations of the form G = G(k;�x;�t),

U = U(k;�x;�t) and V = V (k;�x;�t) | below we carry through the calculations for the speci�c

example of (1.7).

G is called the Growth Factor. It is clear that:

for stability kGk � 1 is needed for all k. (2.2)

Else some modes will be ampli�ed by a factor G in each time step, eventually dominating the

solution. A scheme is called stable if the stability condition kGk � 1 can be satis�ed with (perhaps)

a restriction on the time step of the form 0 < �t � �(�x), where � is a positive function of its

argument. Notice that restrictions of this latter form allow arbitrarily small time and space steps,

which are needed to be able to compute the solution with any required degree of accuracy (how

small is determined by how well consistency is satis�ed, which determines the size of the errors for

any given �t and �x).

Remark 2.1 The parameter k is the wavenumber of the mode, related to the wavelength � in

space1 by � = (2��x)=k. For the particular case of periodic problems (such as the ones consid-

ered in examples 1.1 and 1.2), the Fourier modes (2.1) must also satisfy the periodicity condition.

That is, one must have � = T=`, where ` is an integer and T is the period in space. Since in this

case one would normally take �x = T=N , where N is a large natural number, the acceptable values

for k end up restricted to the set

k = k` =
2 ��x

T
` =

2�

N
` and � = �` =

T

`
; with 0 � ` < N : (2.3)

Here the upper bound N on ` follows from the fact that k` and k`+N give the same Fourier mode in

(2.1); thus there is no reason to keep both.

We note that (due to the fact that the numerical scheme only samples the solution at a discrete set

fxng of points in space) there is a certain trickiness in the interpretation of the wavelengths

�` above. Clearly, ` = 0 corresponds to a solution independent of x and ` = 1 corresponds to the

fundamental mode with wavelength T in x. As ` continues to increase harmonics of this fundamental

mode appear, with wavelengths T=2, T=3 . . .However, this process cannot continue forever, since

1Write the argument kn in the exponentials in (2.1) as kn =
k

�x
(xn � x0), using (1.3).
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the numerical grid cannot resolve arbitrarily small wavelengths. In fact, the shortest wavelength that

can be resolved corresponds to ` = N=2 with �` = 2�x (grid size oscillations, with period 2 in n: the

solution alternates between two values on the grid). To see this recall that k` and k`+N give the same

Fourier mode in (2.1). Thus the mode (N � `) has the same wavelength as the mode �`, i.e. T=`.
This means that, after ` = N=2 the wavelengths start increasing, to reach back the fundamental

mode at ` = N � 1. Each wavelength then actually appears twice in the range 1 < ` < N .

We should not be too surprised by the fact that each wavelength appears twice in the range 1 < ` < N .

Notice that the modes in (2.1) are complex valued (except when k is a multiple of 2�). Thus, to be

real valued any solution should include both the modes and their complex conjugates. However, the

mode conjugate to the one with k = k` above in (2.3) is the mode with k = k
�`, which is precisely

the same as the mode with k = kN�`.

In any numerical calculation it is the modes with wavelengths of the order of the grid size �x

(i.e. ` close to N=2) that are worrisome in terms of instabilities. These modes cannot be expected

to represent accurately any true feature of the real solution one is trying to compute2 and should

not have any signi�cant presence in the numerical solution. Thus, it is very important that they

not be ampli�ed by the scheme. In fact, generally it is desirable to have them damped, since they

mostly represent numerical "noise" generated by all the approximations implicit in any numerical

calculation.

On the other hand, the modes with wavelengths much bigger than �x (that is, ` � 0 or ` � N in

(2.3)) should be treated "accurately" by the scheme. By this we mean that their time evolution

(given by the factors Gj in (2.1)) should be as close as possible to the one provided by the PDE the

scheme approximates. This is what consistency is all about.

Consider now the special case of the algorithm (1.7). To see under which conditions (2.1)

is a solution, substitute this form into (1.7). Dividing by the common factor Gj eikn it follows that

GU = U +�t V and GV = V +
�t

(�x)2
(eik � 2 + e�ik)U :

Clearly an eigenvalue equationAY = GY, with eigenvalue G, eigenvector Y = (U; V )T and matrix

of coeÆcients

A =

 
1 �t

�4 �t

(�x)2
sin2(k

2
) 1

!
:

From the characteristic equation det(A�G) = 0, then

G = 1� 2 i
�t

�x
sin(

1

2
k) : (2.4)

It is clear that, for (1.7) there is no stability, since (2.4) yields

kGk2 = 1 +

�
2
�t

�x
sin(

1

2
k)

�2
; (2.5)

which is always bigger than one.

2Recall (1.4), which makes sense in terms of approximating the solution only if �x is much smaller than any

distance over which the solution changes signi�cantly.



Stability of Numerical Schemes for PDE's. MIT, Friday February 12, 1999 | Rosales. 10

Notice that the maximum ampli�cation for the scheme (1.7) occurs| as follows from (2.5)

| for k = �. This corresponds to ` = N=2 in (2.3), i.e.: grid size oscillations with � = 2�x.

In this case

kGk = GM =
q
1 + 4 � ; (2.6)

where � = (�t=�x)2 : For (1.7), the amplitude of the grid size oscillations grows like Gj
M . Thus

we can write for the ampli�cation factor A2 = A2(t) (for the period 2�x mode)

A2 = exp(t
ln(GM)

�t
) ; (2.7)

where we have used j = t=�t. In particular (in examples 1.1 and 1.2 earlier) we took �x = 2�t

and �t = 1=N , so that

A2 = exp(
ln 2

2
N t) = 2

N t

2 : (2.8)

We will now use these results to explain the behavior observed earlier in �gures 1.1 through 1.5.

Remark 2.2 Consider �rst example 1.1, with the initial data for scheme (1.7) given by

u0n =
1

2

�
1� cos(

2n�

N
)

�
and v0n = 0 :

These data correspond to a superposition of just three modes in (2.1), with k = k0, k = k1 and

k = k
�1 � kN�1 in (2.3). Thus, the exact solution for the scheme equations is rather simple

and has the form

ujn =
1

2

 
1�

gj + �gj

2
cos(

2n�

N
)

!
and vjn =

gj � �gj

2i
v̂ cos(

2n�

N
) ; for g = 1 + i sin(

�

N
) ; (2.9)

where v̂ is a constant and �g denotes the complex conjugate of g. Of course, g and �g are the values

G in (2.4) takes for k = k1 = 2�=N .

Notice that the exact solution (2.9) does not exhibit any catastrophic growth of grid size oscillations,

as was observed in example 1.1. However, the results displayed in �gures 1.1 through 1.3 do not

correspond to the exact solution above but to actual computations using the scheme in (1.7) | which

were done using double precision 
oating point arithmetic (MatLab's default). The round o� errors

introduced by the �nite precision of the calculations introduces (very small) perturbations into the

exact solution above, which the scheme then evolves in time just as if they were part of the solution.

To understand what the scheme does with the perturbations introduced by the �nite precision, de-

compose them into a sum over the modes in (2.1). This sum will generally include all the modes,

in particular the highly ampli�ed ones with grid size wavelengths. Consider then what would happen

with the solution of the scheme if we add to the initial data above3 a small amount of the component

corresponding to the maximum ampli�cation rate above in (2.6). Let the amplitude of this compo-

nent be �, where � has (roughly) the size of the expected errors. Actually, � should be a little smaller

than the round o� errors that occur, since not all the errors get projected into the fastest growing

modes. Thus take � = O(10�17) as a good ballpark �gure for the calculations in section 1

and use (2.8) above to explain the behavior observed in �gures 1.1 through 1.3, as follows:

3Which has only components corresponding to ` = 0, ` = 1 and ` = N � 1 in (2.3).
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1. First, for N = 40, (2.8) gives A2 � 1:1� 1012 for the �nal time t = 2. This is not enough to

compensate for the smallness of � and the numerical solution is well described by (2.9).

Notice that (2.9) is not periodic in time; since the wave amplitude in u behaves like Re(gj),

which grows as j grows. In fact, 2N = 80 steps are needed to reach the �nal time t = 2 and

it is easy to check that

Re(g80) = Re

(�
1 + i sin(

�

40
)

�80)
� 1:28 :

This agrees quite well with the � 30% growth in the wave amplitude observed in �gure 1.1.

2. Second, for N = 57, (2.8) gives A2 � 1:4� 1017 for the �nal time t = 2. This is about the

same as ��1 and agrees with the fact that grid oscillations of O(1) amplitude are observed in

�gure 1.2.

3. Third, for N = 80, (2.8) gives A2 � 1:2� 1024 for the �nal time t = 2. This is about 107

times bigger than ��1, which (again) agrees pretty well with the observed amplitude of the grid

size oscillations in �gure 1.3.

4. Finally, it is not just the mode with ` = N=2 in (2.3) that gets a large ampli�cation factor by

the scheme. All the ones with ` � N=2 do and should thus be present in the solution. It is

well known that when sinusoidals with close wavenumbers are added, "beats" with wavenumbers

equal to the di�erence in wavenumbers occur. Thus, in this case we should observe "beats" with

wavenumbers low multiples of k1 = 2�=N | which, indeed, are quite obvious in �gure 1.3.

Remark 2.3 Now consider example 1.2, where N = 100 and 0 � t � 0:5. Then, for the time

t = 0:5, equation (2.8) gives A2 � 3:4� 107:

In this case the initial data has components in all the modes 0 � ` < N in (2.3). In fact, be-

cause of the corners at x = �1, the amplitude present in the higher modes is relatively large. The

strength of these corners can be measured by the jump in the derivative of the initial data there:

J(a) = 4 a ln(10) 10�a. For moderate4 size a, J(a) pretty much determines how much amplitude

there is in the higher modes. Now J(10) � 9:2� 10�9 and J(6) � 5:5� 10�5. Thus, from the value

of A2 above, it should be clear why in �gure 1.4 (corresponding to a = 10) the solution exhibits no

detectable oscillations, while in �gure 1.5 (corresponding to a = 6) they show up.

Notice that in this case it is also true that it is not just the mode with ` = N=2 in (2.3) that gets a

large ampli�cation factor by the scheme. All the neighboring ones are also present. However, now

their amplitudes and phases are all correlated because they (mostly) are generated by the corner in

the initial data. Thus they interfere with each other in ways subtler than the mere beating observed in

the prior example; i.e.: the pattern of grid size oscillations has a clear maximum near the positions

of the corners in �gure 1.5.

In the next section we will discuss a simple strategy to stabilize numerical schemes, to get rid

of numerical oscillations and other undesirable e�ects. The strategy is based on the introduction

of arti�cial (numerical) dissipation to (selectively) damp the higher modes, without signi�cantly

a�ecting the lower modes (where a consistent scheme should behave properly | see remark 2.4).

4When a is large, the corner is very weak and the dominant contribution to the mode amplitudes comes from the

smooth part of the initial data (which yields very little amplitude in the high modes).
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Remark 2.4 Finally, going back now to the last paragraph in remark 2.1, consider the behavior of

G in (2.4) for k small. Namely

G = 1� i
�t

�x
k +O

�
�t

�x
k3
�
: (2.10)

This should be compared with the behavior of the exact solution for the wave equation (1.1) | see

remark 1.1 | which evolves Fourier modes according to the rule

u / exp

(
i
k

�x
(xn � tj)

)
/ exp

�
i

�
kn�

�t

�x
kj

��
:

Thus the exact evolution corresponds to a factor G given by

Gexact = exp

�
�i

�t

�x
k

�
= 1� i

�t

�x
k +O

�
(
�t

�x
k)2
�
: (2.11)

This should be compared with (2.10) above. It is clear then that (for k small) G is correct up to

small terms in k, which is an alternative way of verifying that the scheme (1.7) is consistent.

3 Numerical Viscosity and Stabilized Scheme.

FILL IN HERE THE GOOD SCHEME EQUATIONS. (3.1)

Notation used for Good Scheme in MatLab: � = (�t=�x)2 and � = �t=�x2.

Next the �gures that go with the good scheme.

4 Reference.

For more information regarding stability of numerical schemes (and many other useful numerical

topics) a good all-around practical reference is Numerical Recipes, The Art of Scienti�c Computing

by W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery. Cambridge U. Press, New

York, 1992.
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Figure 3.1: Solution of (1.5) with initial data (1.8) using the corrected scheme (3.1)

with 55 points in the space grid. To avoid an over-dense graph not all the points

in the numerical grid are plotted. However, enough points to show all the relevant

details are kept.
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Figure 3.2: Solution of (1.5) with initial data (1.8) using the corrected scheme (3.1)

with 190 points in the space grid. To avoid an over-dense graph not all the points

in the numerical grid are plotted. However, enough points to show all the relevant

details are kept.


