
18.310 lecture notes September 2, 2013

Finding the Median

Lecturer: Michel Goemans

1 The problem of finding the median

Suppose we have a list of n keys that are completely unsorted. If we want to find the largest or the
smallest key, it is very easy to do so with n − 1 comparisons. If we want to find the mth largest
key then you can use a heap structure to do it in cn+ cm log(n) comparisons for some constant c.
Indeed, it takes linear time to build the heap and then one can extract the maximum key m times
in order to get the desired key (at a cost of log(n) comparisons per extraction). If m is larger than
n/2 we can do slightly better by reversing the ordering (that is, building the heap based on minus
the keys). In any case, if we are interested in the mth smallest key (the key of rank m) and m is
close to n/2 (or linear in n), we are not saving much time comparing to sorting all keys. In these
notes, we show how to find the median (key of rank (n + 1)/2 if n is odd, or key of rank n/2 or
n/2 + 1 if n is even) with only a linear number (cn) comparisons in the worst-case.

2 A good strategy ?

The first approach that comes to mind when trying to find the rank m key is to take an arbitrary
key, say p, and partition the n keys into two piles, one containing the keys smaller than p and
the other containing the keys greater than p. By comparing m to the size of the piles, we can
either find out that we got extremely lucky and the mth key is p or we can discard one of the piles
and recursively search the appropriate key in the other pile. More precisely, if the first pile has at
least m elements, we can recursively find the rank m key in the first pile; if not, we can replace m
appropriately and search in the second pile. The problem of this approach is that, in the worst-case,
one of the piles will (repeatedly) be empty, which would result in a number of comparisons equal
to (n− 1) + (n− 2) + · · · , which grows quadratically with n.

We will now describe a technique for finding a key p for which the two piles will be reasonably
balanced, and this will result in an algorithm for finding the median or any rank m key that takes a
linear number of comparisons. This will not be a practical algorithm, as there are algorithms that
run much faster most of the time (although in the worst-case will take more than a linear number
of comparisons). We show you this because it is a really neat algorithm, and because you will learn
some useful techniques and facts about recursion from it.

The big question is how to find a ”good” candidate for the key p. Ideally, we would like p to
be as close as possible to the median1. The following is a simple plan for doing just that.

Step 1. We arbitrarily split the keys into groups of size 5, assuming n is divisible by 5; we ignore
small differences otherwise. (Why did we choose 5? Actually, any small odd number larger
than 3 works, but it turns out that 5 gives the fewest number of comparisons.)

1You might wonder why do we try to find a good candidate for the median while our goal is to find the key of
rank m? Again, we would like the two piles to be of roughly the same size so that we make progress faster.

Median-1

Here is a an example of a set of 35 keys; the seven groups of 5 correspond to the columns.

23 32 6 22 76 15 40
91 28 39 12 97 29 33
75 23 53 71 80 55 68
68 38 64 77 24 7 47
82 10 1 43 37 25 16

We then sort each group of 5 keys, noting that each one can be sorted using a maximum of
7 comparisons (this is a slightly tricky exercise). After performing 7n/5 comparisons, this
leaves us with n/5 groups of 5 sorted keys. Here is the example in which the columns (groups
of 5) are sorted from top to bottom).

23 10 1 12 24 7 16
68 23 6 22 37 15 33
75 28 39 43 76 25 40
82 32 53 71 80 29 47
91 38 64 77 97 55 68

Step 2. Now, we take each of the keys of rank 3 (one per group), the median in its group of 5, and
find the median of this group of n/5 median keys. This ”median of medians” is our good
candidate p. If f(m) is the number of comparisons it takes to find the median of m keys, this
step takes f(m/5) comparisons.

In our example, we find the median of:

75 28 39 43 76 25 40

which happens to be p = 40.

Step 3. Now we partition the keys in two piles, those smaller than p are placed in L< and those larger
than p are placed in L>. If we find other keys equal to p, we can place them either in L< or
in L>.

In order to make this partition, we first compare the rank 3 key of each group of five to p.
This takes n/5 comparisons. If such a rank 3 key is larger than p then not only do we know
that it can be placed in L> but we also know that the rank 4 and rank 5 keys of that group
can also be placed in L>. Similarly, if the rank 3 key happens to be smaller then we can
automatically place the rank 1 and 2 keys of that group in L<. For example, we first compare
75 (the rank 3 key of the first group) to 40 and can immediately tell that the keys 82 and 91
are greater than 40 without doing additional comparisons. By comparing the rank 3 elements
in the example to p, we can immediately decide in which pile to place the following keys:

10 1 7 16
23 6 15 33

75 28 39 43 76 25 40
82 71 80 47
91 77 97 68

Median-2

This has two implications. First, to construct both piles, we only need to do (at most2) 3
comparisons for each group of 5, for a total of 3n/5 comparisons.

Secondly, since half of the rank 3 keys will be smaller or equal to p, at least 31 n = 3n keys2 5 10
will be in L> and similarly for L<. This means that both

3n 7n

10
≤ |L<| ≤ ,

10

and
3n 7n

L
10

≤ | >| ≤ .
10

By simply counting the number of keys we place in L< and in L>, we can find out the exact
rank of our candidate p.

Step 4. Knowing the rank of p and comparing it to m, we can keep only one of the two piles thereby
eliminating at least 3n/10 keys. If m is smaller than the rank of p we can throw away all keys
in L>, while if m is larger than the rank of p, we can discard L< (and decrease our value of
m by the number |L<| of keys we have just discarded).

In any case, we have at most 7n/10 keys left, and need to find the rank m′ key in them. This
takes at most f(7n/10) comparisons in the worst-case.

It is important to realize that our procedure does not involve circular reasoning, even though
our procedure uses as a subroutine a procedure for finding the rank m′ key. What we are doing
is using the technique of recursion. To find the rank m key out of n keys, as intermediate steps
we find the median of n/5 keys and the the rank m′ key out of 7n/10 keys. During each of these
intermediate steps, we again run the procedure for a smaller number of keys. Our algorithm does
not run forever because we will terminate this recursion whenever the number of keys is small
(which might be when we reach fewer than five keys); in this case we must use a different procedure
for finding the rank m key (we could sort them, for example — this is more efficient for small n).

3 Showing the Procedure is Linear

If f(n) is the number of comparisons to find the rank m key out of n keys (irrespective of what m
is), we have the formula

7n
f(n) ≤ + f

5

(n) 3n
+ + f

5 5

(
7n

10

)
,

where the 7n/5 is the cost of sorting the groups of 5, the f(n/5) is the number of comparisons
required to find the median of medians, p, the 3n/5 is the cost of comparing the median of medians
to all the keys, and f(7n/10) is the number of comparisons used to find the rank m element out of
7n/10 elements.

How do we know that the number of comparisons f(n) is linear in the number of keys? That
is, how do we know that f(n) ≤ cn for some constant c? We will show this by using induction.

2if the rank 3 key happens to be equal to p, we don’t need any additional comparisons since we can place the rank
1 and 2 keys in L< and the rank 4 and 5 keys in L>.

Median-3

Suppose that we have shown that the equation f(m) ≤ cm holds for all m < n (we’ll figure out the
value of c later). Remember we have

n
f(n) ≤ f

()
+ f

(
7n

)
+ 2n.

5 10

But we can substitute f(m) ≤ cm for both of these values of f on the right hand side of the
equation, because for both of these we have m ≤ n. This gives:

cn c7n
f(n) ≤ + + 2n.

5 10

Now, we’d like to choose c so that this inequality is true for all n. To get the best value for c,
we can impose that the right-hand side of this equation is equal to cn. This is a linear equation
cn = cn + c7n + 2n where the n’s cancel and the solution is c = 20. We also need to verify that5 10
when n is small enough and we decide to simply sort the keys that the number of comparisons is
indeed at most 20n.

4 Improving the procedure

There are lots of clever tricks we can use to improve the constant in this procedure. All use the
fact that we have been discarding lots of precious information that we have gathered in previous
steps, and that we could instead recycle. We will describe one extremely simple improvement.

In step 2, when finding the median p of the n/5 rank 3 keys, we end up knowing for each of
these n/5 keys whether they are greater or smaller than p. There is no need therefore to compare
them again to p in step 3. By combining step 2 and part of step 3, we can therefore decrease the
number of comparisons in step 3 from 3n/5 to 2n/5. The recurrence we thus get says that

7n n
f(n) ≤ + f

(n) 2 7n
+ + f

5 5 5

(
10

)
,

and this implies that f(n) ≤ 18n.
Many further improvements can be made, but we won’t discuss them here.

Median-4

MIT OpenCourseWare
http://ocw.mit.edu

18.310 Principles of Discrete Applied Mathematics
Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

