
18.310 lecture notes September 2, 2013

Analyzing Randomized Median Finding and Quicksort

Lecturer: Michel Goemans

We now know enough probability theory that we can analyze the expected number of com-
parisons taken by two randomized algorithms, one for median finding (or any rank m element)
and the other for sorting. Th latter, known as Quicksort is one of the most widely used sorting
algorithms.

1 Randomized Median Finding

In a previous lecture, we discussed the problem of finding the median of a list of m elements, or
more generally the element of rank m. The approach we followed was to select a pivot element p,
to compute its rank, and partition the list into 2 sublists, one containing the elements smaller than
p, the other containing those larger than p. By comparing m, the desired rank, to the size of these
lists, we can restrict our search to one of the lists, and proceed recursively. If we select an arbitrary
element for p, we might be unlucky and be able to discard very few elements; in the worst-case,
this may lead to cn2 comparisons for some c. By carefully selecting a good candidate as pivot
element, we were able to devise a rank m selection algorithm that makes at most cn comparisons
in the worst-case. But this was a pretty complicated algorithm and analysis, and instead, we
propose now a simple probabilistic approach. Just select as pivot p an element selected uniformly
at random among all elements in the list. This is very simple to implement. In the worst-case, we
may be unlucky at every step and perform roughly cn2 comparisons, but that is an extremely rare
situation (an event with extremely tiny probability). In fact, on average, i.e. in expectation, this
simple randomized algorithm performs at most cn comparisons for some appropriate c. We’ll show
this now.

Let fn be the number of comparisons this algorithm performs on an input of n elements. This
is a random variable as this depends on our random choice of pivot at every level of the recursion.
We want to compute, or at least upper bound, E(fn). We claim that E(fn) ≤ 4n.

Describing the sample space precisely and assigning/computing the probability of each sample
point does not seem to be trivial. Rather, to get a bound on the expected value of fn, we will
try to isolate the first level of the recursion from subsequent levels by exploiting independence and
making use of indicator random variables.

Before we proceed, let us observe that when we partition our list into two sublists, which one
we keep depends on the rank m we need to select. To make the analysis valid for any value of m,
let’s assume we always keep the larger of the two sublists. This is as if an adversary would tell us
which sublist to keep and which to discard. If the sublist with elements smaller than p has size �
and the other sublist has size n− 1− � (the pivot element p is in neither list), the list we keep has
size max(�, n − 1 − �). Observe that � is a uniform random variable taking values 0, 1, · · · , n − 1,
thus

1
P(� = i) = ,

n

Quicksort-1

for i = 0, 1, · · · , n− 1. Let k be a random variable denoting the length of the list we keep after the
first pivot. Since both � = 0 and � = n − 1 would result in keeping a sublist of length k = n − 1,
the probability that the list we keep has length n− 1 is P(k = n− 1) = 2 . More generally, we haven
that

2
P(k = i) =

n
for i = n , n + 1, , n 2, n 1. This is not quite correct if n is odd (e.g. if n = 5, we have that2 2
P

· · · − −
(� = 2) = 1/5,P(� = 3) = 2/5,P(� = 4) = 2/5), but this can be fixed easily. For simplicity, we’ll

do the calculations as if we only deal with even sized lists.
To compute E(fn), let us introduce the event Ak that the sublist we keep after the first level

has size k. Observe that for different values of k, these events are disjoint, that is Ak1 ∧ Ak2 = ∅
for k1 = k2, while they partition S, that is An/2 ∨An/2+1 ∨ · · · ∨An−1 = S. Thus,

fn = fn

(
IAn/2

+ IAn/2+1
+ · · ·+ IAn−1

)
.

What multiplies fn in the expression above is (a random variable) always equal to 1, no matter
what happens. Therefore,

E(fn) = E

[
fn

(
IAn/2

+ IAn/2+1
+ · · ·+ IAn−1

)]
,

and by linearity of expectations, this is equal to:

E(fn) = E(fnIAn/2
) + E(fnIAn/2+1

) + · · ·+ E(fnIAn−1).

Let us consider any such term, say E(fnIAk
) for some fixed value k. Here k is not a random variable

but just a given value, say imagine that k = 857. This is the expectation of a product, and recall
that this is not necessarily the product of the expectations, unless the two random variables are
independent. In order to get independence, we write fn as the sum of the number of comparisons
in the first level (which is equal to n−1 since we have to compare the pivot to every other element)
and the number of comparisons in subsequent levels. But observe that fnIAk

is the same random
variable as (n− 1 + fk)IAk

where fk denotes the number of comparisons we perform on a list of k
elements, since both random variables take value 0 on any sample point corresponding to a different
value of k. But IAk

depends only on the the choice of our first pivot, while fk depends only on our
choices of subsequent pivots, and thus we have independence and can write:

E(fnIAk
) = E((n− 1 + fk)IAk

) = E((n− 1)IAK
) + E(fkIAk

)

= (n− 1)E(IAk
) + E(fk)E(IAk

)

= ((n− 1) + E(fk))E(IAk
).

Using E(IAk
) = P(Ak) and summing over k, we get:

n−1

E(fn) =
∑

(n− 1 + E(f))Pk (Ak)

k=n/2⎛
n−1

= (n− 1)
∑

P

⎞
n−1

(A)⎝ Ek) +
∑

(f

k=n/2

⎠ Pk (Ak)

k=n/2

n
2

−1

= (n− 1) +
n

∑
E(fk).

k=n/2

Quicksort-2

�

We have thus obtained a recurrence relation for E(fn) and we simply need to solve it. Let’s show
by induction that E(fn) ≤ cn for some value of n. We check the base case and also assume as
inductive hypothesis that E(fm) ≤ cm for all m < n. Thus we get that

n
2

−1

E(fn) = (n− 1) +
n

∑
E(fk)

k=n/2

n
2

−1

≤ (n− 1) + c
n

∑
k

k=n/2

3
< (n− 1) + c n

4
3c

< (1 +)n
4

≤ cn,

provided that we choose c ≥ 4. This proves by induction that E(fn) ≤ 4n. This randomized rank
m selection algorithm therefore makes an expected number of comparisons linear in n (even though
in the worst-case it is quadratic).

2 Quicksort

We now analyze Quicksort, one of the most widely used sorting algorithms. Quicksort is an
algorithm that can be implemented in place; that is, we do not need more storage than is required
to store the number of keys we are sorting.

How does Quicksort work? The first step is to choose a random key. We call this key the
pivot. We then divide all the other keys into ones larger and smaller than the pivot. Now, we put
the keys less than the pivot before it, and the keys greater than the pivot after it. This gives us
two lists which we still need to sort: the list of keys smaller than the pivot and those larger than
the pivot. Let’s give an example. Assume that we have the following array to sort:

6 9 3 7 1 2 8 4 5 10,

Suppose we choose 7 as our random key. Putting those keys smaller than 7 before it and those
larger than 7 after it, we get the following array:

6 3 1 2 4 5 7 9 8 10.

Now, we have two new lists to sort: the first consisting of six numbers (6 3 1 2 4 5), and the
second of three. We sort these lists recursively, applying Quicksort to each list. Although in
this example, we have kept the relative order within the two lists, there is in general no reason an
implementation of Quicksort needs to do this (and it does make it harder to program). This first
step takes n− 1 comparisons, as we have to compare the pivot to every other key.

How many comparisons does Quicksort take? First, let’s look at the two extremes, that is,
the worst-case and the bast-case performance. Take k to be the number of keys that are less than
the pivot. Then n−k−1 are the number of keys that are larger than the pivot, and we use recursion
on lists of size k and size n− k − 1.

Quicksort-3

If we let f(j) be the number of comparison Quicksort takes to sort j items, we thus get the
recursion

f(n) = n− 1 + f(k) + f(n− k − 1)

The best-case running time for Quicksort occurs when the pivot is always in the exact middle
of the list. If we were very lucky, and the pivot always divides the list into two nearly equally sized
lists at each step, we get the recursion equation

f(n) ≤ 2f(n/2) + n− 1.

(Actually, this is slightly different depending on whether n is even or odd, but this only makes a
very small difference to the analysis.) This recursion is very similar to an equation we have seen
before, and solves to f(n) ≈ n log2 n.

If, on the other hand, we are really unlucky in the choice of the pivot, and always chose a pivot
that was either the smallest or largest key in the list, then we get the equation

f(n) = n− 1 + f(n− 1)

which gives
f(n) = (n− 1) + (n− 2) + (n− 3) + . . .+ 1,

so f(n) = n(n − 1)/2 ≈ n2/2. This case happens if you always choose the first key in your list to
be sorted, and you start with a list that is already sorted. Since in practice, many lists which need
to be sorted are already nearly sorted, choosing the first key as the pivot is not a good idea.

If we have some deterministic algorithm for picking the pivot, then we can arrange the input
so the pivot is always the first element of the sublist, and Quicksort will take around n2/2
comparisons on this input. How can we do better? What we can do is always choose a random
key in the list. If we do this, we can show that the expected number of comparisons taken by
Quicksort is cn log n.

If we let f be the random variable which gives the amount of time taken by the algorithm on
an input of size n, then we have by linearity of expectation,

E(f(n)) = n− 1 + E(f(k)) + E(f(n− k − 1))

where k is a random variable which is uniformly distributed between 0 and n − 1. One way to
analyze Quicksort is to solve this equation. However, there’s another very clever way which
illustrates the use of indicator variables and linearity of expectations, and we will explain this now.

We will compute the probability that the rank j and rank k keys are compared in Quicksort.
To get some intuition into this, let’s look at the extreme cases first. If j = i+ 1, then Quicksort
(and in fact, any sorting algorithm) must compare these keys, as otherwise there would be no way
to tell which was larger. In the Quicksort algorithm, what happens is that they remain in the
same sublist until one of them is chosen as a pivot, at which point they are compared. If i = 1 and
j = n, then the first key chosen as a pivot will separate them into two sublists, except in the case
when one of them is chosen as the first pivot; in this case they will be compared on the first step.
Thus, the probability that these keys are compared is 2/n.

Let us consider the probability the the i’th rank key and the j’th rank key get compared for
arbitrary i and j. There are j − i − 1 keys strictly between these two keys, and j − i + 1 keys in
between if we also include i and j. What happens when we run Quicksort? As long as these

Quicksort-4

two keys remain in the same sublist, the possibility exists that these keys will be compared later
in the algorithm. When we process this sublist, if we do not pick either of these two keys, or any
of the j − i+ 1 keys between them as a pivot, they will remain in the same sublist. If we pick one
of these two keys as a pivot, then they will be compared. If we pick one of the keys between them,
then the i’th and j’th rank keys will be placed in different sublists, and so will never be compared.
Thus, there is exactly one critical step that determines whether the i’th and j’th rank keys will
be compared. This is the first pivot that picks either one of these keys or one of the keys between
them (and there must exist a critical step, otherwise this would not be a correct sorting algorithm).
Given that this pivot step picks one of these j− i+1 keys, the conditional probability that it picks
any particular one of these keys is 1/(j − i + 1). Thus, the probability that key i and key j are
compared is the probability that one of these is picked on this step, which is 2/(j − i+ 1).

Now, let Ii,j be the indicator variable which is 1 if keys i and j are compared by our algorithm
and 0 otherwise. The number of comparisons needed by Quicksort is

C =
∑

Ii,j
i<j

so by linearity of expectation, we can take the expectation on both sides and get

E(C) =
∑

E(Ii,j).
1≤i<j≤n

What is E(Ii,j)? It is 1 if we compare them, and 0 if we don’t, so the expectation of Ii,j is exactly
the probability that we compare the rank i and rank j keys, or 2/(j − i+ 1). Thus, we have

E(C) =
∑ 2

.
j

1≤i<j≤n
− i+ 1

We can count that there are n− k pairs of keys whose difference is exactly k, so

n−1 n

E(C) =
∑ 2 1

(n− k) ≤ 2n
k + 1

∑
.

h
k=1 h=2

nThe harmonic series
∑ 1

h=1 is approximately lnn (you can show this by bounding the sum fromh
above and below by an integral that you can compute exactly). Thus, we have an upper bound
of 2n lnn for E(C). Looking at the sum above more carefully, it is not hard to check that to first
order this bound is correct, and E(C) ≈ 2n lnn.

There is one last thing to do: we claimed that Quicksort was an algorithm that sorts “in
place,” that is, without using any extra workspace, and we haven’t showed how to do this. The
only hard part of doing this is the first step: namely, rearranging the list to put the keys smaller
than the pivot first and the keys larger than the pivot last? There are several ways of doing this,
and the one presented in class is different from the one in these notes. Let’s first put the pivot at
the end where it will be out of the way. Now let us first assume that we know where the pivot goes.
We’ll put an imaginary dividing line there. Doing this with our example,

6 9 3 7 1 2 8 4 5 10

Quicksort-5

with 7 as the pivot, gives

6 9 3 10 1 2 | 8 4 5 | 7.

Now, the correct number of keys are on each side of this dividing line. This means that the number
of out-of-place keys on the right is the same as the number of out-of-place keys on the left. [This
isn’t hard to prove, but we’ll leave it as an exercise for you.]

Now, we can go through the list on the right of the dividing line and the list on the left, one
key at a time, and when we find two out-of-place keys we can swap them. Once we’ve swapped all
the out-of-place keys, the correct number will be on each side of the line, since there are an equal
number of out-of-place keys on either side. Let’s look for the misplaced keys by working from the
outside in, and comparing each key to the pivot. The first misplaced keys we find are 9 (on the
left) and 5 (on the right). Swapping them gives

6 5 3 10 1 2 | 8 4 9 | 7.

The next two are 10 and 4. Swapping them gives

6 5 3 4 1 2 | 8 10 9 | 7,

and now all the keys are on the correct size of the line. Now, we can swap the pivot and the first
key to the right of the dividing line, to get

6 5 3 4 1 2 | 7 | 10 9 8.

This places the keys smaller and larger than the pivot on the correct side of the pivot, and we’re
ready for the next step of Quicksort.

But how do we know where to put the dividing line? In fact, we don’t need to know where the
dividing line is to run the algorithm. Suppose we don’t know where the dividing line is. We can
still work our way in from the two ends of the array, and whenever we find two out-of-place keys,
we swap them. The place where we meet in the middle is the dividing line.

Quicksort-6

MIT OpenCourseWare
http://ocw.mit.edu

18.310 Principles of Discrete Applied Mathematics
Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

